Novel determination of differential-equation solutions: universal approximation method

In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an ar...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 146; no. 2; pp. 443 - 457
Main Author Leephakpreeda, Thananchai
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.09.2002
Elsevier
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/S0377-0427(02)00397-7

Cover

Abstract In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an artificial intelligence utility in a simple way. In this proposed method, neural network model (NNM) and fuzzy linguistic model (FLM) are applied as universal approximators for any nonlinear continuous functions. With this outstanding capability, the solutions of DEs can be approximated by the appropriate NNM or FLM within an arbitrary accuracy. The adjustable parameters of such NNM and FLM are determined by implementing the optimization algorithm. This systematic search yields sub-optimal adjustable parameters of NNM and FLM with the satisfactory conditions and with the minimum residual errors of the governing equations subject to the constraints of boundary conditions of DEs. The simulation results are investigated for the viability of efficiently determining the solutions of the ordinary and partial nonlinear DEs.
AbstractList In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an artificial intelligence utility in a simple way. In this proposed method, neural network model (NNM) and fuzzy linguistic model (FLM) are applied as universal approximators for any nonlinear continuous functions. With this outstanding capability, the solutions of DEs can be approximated by the appropriate NNM or FLM within an arbitrary accuracy. The adjustable parameters of such NNM and FLM are determined by implementing the optimization algorithm. This systematic search yields sub-optimal adjustable parameters of NNM and FLM with the satisfactory conditions and with the minimum residual errors of the governing equations subject to the constraints of boundary conditions of DEs. The simulation results are investigated for the viability of efficiently determining the solutions of the ordinary and partial nonlinear DEs.
Author Leephakpreeda, Thananchai
Author_xml – sequence: 1
  givenname: Thananchai
  surname: Leephakpreeda
  fullname: Leephakpreeda, Thananchai
  email: thanan@siit.tu.ac.th
  organization: School of Industrial and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Thammasat-Rangsit, P.O., 12121 Pathum Thani, Thailand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13851450$$DView record in Pascal Francis
BookMark eNqFkMtqHDEQRUWwIWM7nxDoTUy86Lik1qMnWRhj8gJjL_LYCo1UTRQ00lhSD_bfu2faxJCNV1VQ516Kc0QOYopIyFsKHyhQef4DOqVa4Ey9B3YG0C1Vq16RBe3VsqVK9Qdk8Q95TY5K-QsAckn5gvy-SVsMjcOKee2jqT7FJg2N88OAGWP1JrR4N86HksK4W8rHZox-i7mY0JjNJqd7v56RNdY_yZ2Qw8GEgm-e5jH59eXzz6tv7fXt1-9Xl9et7WRfW2vVynbAjOIrTh3rrZVCCtOzngvpQDgGBqVzjgoUA4KClQVDB75SXHLeHZPTuXd64W7EUvXaF4shmIhpLJop2Qkm-wl89wSaYk0YsonWF73J09_5QdOuF5QLmDgxczanUjIOzwjonW29t613KjUwvbet1ZT79F_O-ro3UrPx4cX0xZzGydXWY9bFeowWnc9oq3bJv9DwCJ6JnN0
CODEN JCAMDI
CitedBy_id crossref_primary_10_1007_s00521_013_1526_4
crossref_primary_10_1016_j_asoc_2013_04_013
crossref_primary_10_1016_j_endm_2018_05_002
crossref_primary_10_1109_TAP_2022_3186710
crossref_primary_10_1016_j_neucom_2010_12_026
crossref_primary_10_1016_j_triboint_2008_02_008
crossref_primary_10_1016_j_patrec_2005_09_019
crossref_primary_10_1016_j_probengmech_2024_103594
crossref_primary_10_1007_s40096_017_0212_6
crossref_primary_10_1007_s11831_020_09433_1
crossref_primary_10_1016_j_isatra_2013_06_009
crossref_primary_10_1007_s00500_018_3604_0
crossref_primary_10_1016_j_jfranklin_2009_05_003
crossref_primary_10_1155_2013_181895
crossref_primary_10_1016_j_ijengsci_2009_08_001
crossref_primary_10_1016_j_amc_2014_08_085
crossref_primary_10_1007_s00521_011_0621_7
crossref_primary_10_1016_j_asoc_2009_07_006
crossref_primary_10_1016_j_asoc_2012_03_041
crossref_primary_10_1109_TNN_2009_2020735
crossref_primary_10_1063_1_5132840
crossref_primary_10_1109_TFUZZ_2008_2005010
crossref_primary_10_1016_j_chaos_2006_03_102
crossref_primary_10_1016_j_eswa_2010_12_120
Cites_doi 10.1016/S0020-0255(97)10058-5
10.1109/3477.484447
10.1016/0893-6080(89)90020-8
10.1109/72.80265
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science B.V.
– notice: 2002 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7TB
8FD
FR3
KR7
DOI 10.1016/S0377-0427(02)00397-7
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1879-1778
EndPage 457
ExternalDocumentID 13851450
10_1016_S0377_0427_02_00397_7
S0377042702003977
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c368t-cc7bc302a74b41d28cc6565a828456d05d20ae6ddd15e5fe070bc0a1f4b746443
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Thu Sep 04 16:39:37 EDT 2025
Mon Jul 21 09:17:16 EDT 2025
Tue Jul 01 03:58:40 EDT 2025
Thu Apr 24 23:07:29 EDT 2025
Fri Feb 23 02:30:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Finite difference
Neural network model
Fuzzy linguistic model
Universal approximation
Solving differential equations
Finite element
Finite element method
Numerical computation
Error estimation
Differential equation
Optimization method
Equation resolution
Continuous function
Neural network
Boundary condition
Linguistic model
Finite difference method
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-cc7bc302a74b41d28cc6565a828456d05d20ae6ddd15e5fe070bc0a1f4b746443
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042702003977
PQID 27635268
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_27635268
pascalfrancis_primary_13851450
crossref_primary_10_1016_S0377_0427_02_00397_7
crossref_citationtrail_10_1016_S0377_0427_02_00397_7
elsevier_sciencedirect_doi_10_1016_S0377_0427_02_00397_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-09-15
PublicationDateYYYYMMDD 2002-09-15
PublicationDate_xml – month: 09
  year: 2002
  text: 2002-09-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2002
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hagan, Demuth, Beale (BIB4) 1996
Grace (BIB3) 1995
Ying (BIB6) 1998; 108
Castro, Delgado (BIB1) 1996; 26
Cotter (BIB2) 1990; 1
Hornik, Stinchcombe, White (BIB5) 1989; 2
Hagan (10.1016/S0377-0427(02)00397-7_BIB4) 1996
Cotter (10.1016/S0377-0427(02)00397-7_BIB2) 1990; 1
Castro (10.1016/S0377-0427(02)00397-7_BIB1) 1996; 26
Grace (10.1016/S0377-0427(02)00397-7_BIB3) 1995
Ying (10.1016/S0377-0427(02)00397-7_BIB6) 1998; 108
Hornik (10.1016/S0377-0427(02)00397-7_BIB5) 1989; 2
References_xml – volume: 1
  start-page: 290
  year: 1990
  end-page: 295
  ident: BIB2
  article-title: The Stone–Weierstrass theorem and its application to neural nets
  publication-title: IEEE Trans. Neural Networks
– year: 1996
  ident: BIB4
  publication-title: Neural Network Design
– volume: 26
  start-page: 149
  year: 1996
  end-page: 152
  ident: BIB1
  article-title: Fuzzy systems with defuzzification are universal approximators
  publication-title: IEEE Trans. Systems Man Cybernet., Part B: Cybernet.
– volume: 108
  start-page: 91
  year: 1998
  end-page: 107
  ident: BIB6
  article-title: General Takagi–Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters
  publication-title: Inform. Sci.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: BIB5
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– year: 1995
  ident: BIB3
  publication-title: Optimization Toolbox
– volume: 108
  start-page: 91
  year: 1998
  ident: 10.1016/S0377-0427(02)00397-7_BIB6
  article-title: General Takagi–Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters
  publication-title: Inform. Sci.
  doi: 10.1016/S0020-0255(97)10058-5
– volume: 26
  start-page: 149
  year: 1996
  ident: 10.1016/S0377-0427(02)00397-7_BIB1
  article-title: Fuzzy systems with defuzzification are universal approximators
  publication-title: IEEE Trans. Systems Man Cybernet., Part B: Cybernet.
  doi: 10.1109/3477.484447
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/S0377-0427(02)00397-7_BIB5
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 1
  start-page: 290
  year: 1990
  ident: 10.1016/S0377-0427(02)00397-7_BIB2
  article-title: The Stone–Weierstrass theorem and its application to neural nets
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.80265
– year: 1995
  ident: 10.1016/S0377-0427(02)00397-7_BIB3
– year: 1996
  ident: 10.1016/S0377-0427(02)00397-7_BIB4
SSID ssj0006914
Score 1.8120319
Snippet In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 443
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Connectionism. Neural networks
Exact sciences and technology
Finite difference
Finite element
Fuzzy linguistic model
Mathematics
Neural network model
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Solving differential equations
Universal approximation
Title Novel determination of differential-equation solutions: universal approximation method
URI https://dx.doi.org/10.1016/S0377-0427(02)00397-7
https://www.proquest.com/docview/27635268
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iF0XEJ9ZH3YMHPcSm2WSz9VZFqRZ78NlbyOYBhdJW24onf7uTzW6LiAieFrJ5LDOTySyZ-T6EjlOtUsa1wYlxCjNlLVaJY9gY5Qmt4TX31ch3naT1xG67vLuALstaGJ9WWfj-4NNzb1201App1ka9Xu2BxEJ4pgji86sgjPEV7Ex4Wz_7nKd5JI2A7w2dse89r-IJM-SNJ4Se5pNg8dv5tDpSY5CaC3QXPzx3fhxdr6O1Io6MmuFTN9CCHWyilbsZCOt4Cz13hu-2H5ky4cWrIBq6qOREgb3dx_Y1YH1HMxs8j6YhWQOmzxHHP3qhvDEKbNPb6On66vGyhQsaBazjJJ1grUWmY0KVYBmrG5pqDUEcV_CvBdGTIdxQomxijKlzy50FJ5BpouqOZYJBuBTvoMXBcGB3UcT95ZdTyjGYLGmIzAnhUkupaVhHG7aCWCk8qQuMcU910ZfzZLLYg4uDzCWhMpe5FBV0Nhs2CiAbfw1IS83Ib9Yi4SD4a2j1mybnC8YQfDJOKuioVK2ErebvT9TADqdjST14H9jv3v9X30fLOZ2M56DgB2hx8ja1hxDVTLJqbrZVtNS8abc6_tm-f2lD60334guurvZK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4S55CUEvKkbvPYQw7JQbGslVbr3kxIcB72JQ9yE1o9wGBsp7ZLf35Hq12bEEqg192d0TIzGo3Q6PsAznKjcy6MJZn1mnDtHNGZ58RaHQit8bUIt5H7g6z3zO9exesaXNV3YUJbZZX7Y04vs3X1pFVZszUdDluPNJUyMEXQ0F-FZcw6bHCBu70GbHRv73uDZULOOhHiG78nQWB1kScqKR-eU3ZR6iHyX0vU16meoeF8ZLz4kLzLFelmB7arUjLpxr_dhTU33oMv_SUO62wfXgaT326U2LrnJXghmfikpkXB6T0i7i3CfSfLMPyZLGK_BqovQcf_DOMNxyQSTh_A883101WPVEwKxKRZPifGyMKklGnJC962LDcG6zihcbuFBZSlwjKqXWatbQsnvMM8UBiq254XkmPFlB5CYzwZu2-QiHD-5bX2HJVlHVl4KX3uGLMd51nHNYHXxlOmghkPbBcjteonSwO-ONpcUaZKmyvZhMul2DTibHwmkNeeUe8CRuFa8JnoyTtPrgZMsf7kgjbhtHatwtkWjlD02E0WM8UCfh-G8Pf_H_0UNntP_Qf1cDu4_wFbJbtMoKQQR9CY_1q4Yyxy5sVJFcR_Ab5h9lo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+determination+of+differential-equation+solutions%3A+universal+approximation+method&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=LEEPHAKPREEDA%2C+Thananchai&rft.date=2002-09-15&rft.pub=Elsevier&rft.issn=0377-0427&rft.volume=146&rft.issue=2&rft.spage=443&rft.epage=457&rft_id=info:doi/10.1016%2FS0377-0427%2802%2900397-7&rft.externalDBID=n%2Fa&rft.externalDocID=13851450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon