Novel determination of differential-equation solutions: universal approximation method
In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an ar...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 146; no. 2; pp. 443 - 457 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.09.2002
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0377-0427 1879-1778 |
DOI | 10.1016/S0377-0427(02)00397-7 |
Cover
Abstract | In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an artificial intelligence utility in a simple way. In this proposed method, neural network model (NNM) and fuzzy linguistic model (FLM) are applied as universal approximators for any nonlinear continuous functions. With this outstanding capability, the solutions of DEs can be approximated by the appropriate NNM or FLM within an arbitrary accuracy. The adjustable parameters of such NNM and FLM are determined by implementing the optimization algorithm. This systematic search yields sub-optimal adjustable parameters of NNM and FLM with the satisfactory conditions and with the minimum residual errors of the governing equations subject to the constraints of boundary conditions of DEs. The simulation results are investigated for the viability of efficiently determining the solutions of the ordinary and partial nonlinear DEs. |
---|---|
AbstractList | In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of differential equations (DEs). This paper presents a novel approach to solve DEs by applying the universal approximation method through an artificial intelligence utility in a simple way. In this proposed method, neural network model (NNM) and fuzzy linguistic model (FLM) are applied as universal approximators for any nonlinear continuous functions. With this outstanding capability, the solutions of DEs can be approximated by the appropriate NNM or FLM within an arbitrary accuracy. The adjustable parameters of such NNM and FLM are determined by implementing the optimization algorithm. This systematic search yields sub-optimal adjustable parameters of NNM and FLM with the satisfactory conditions and with the minimum residual errors of the governing equations subject to the constraints of boundary conditions of DEs. The simulation results are investigated for the viability of efficiently determining the solutions of the ordinary and partial nonlinear DEs. |
Author | Leephakpreeda, Thananchai |
Author_xml | – sequence: 1 givenname: Thananchai surname: Leephakpreeda fullname: Leephakpreeda, Thananchai email: thanan@siit.tu.ac.th organization: School of Industrial and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Thammasat-Rangsit, P.O., 12121 Pathum Thani, Thailand |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13851450$$DView record in Pascal Francis |
BookMark | eNqFkMtqHDEQRUWwIWM7nxDoTUy86Lik1qMnWRhj8gJjL_LYCo1UTRQ00lhSD_bfu2faxJCNV1VQ516Kc0QOYopIyFsKHyhQef4DOqVa4Ey9B3YG0C1Vq16RBe3VsqVK9Qdk8Q95TY5K-QsAckn5gvy-SVsMjcOKee2jqT7FJg2N88OAGWP1JrR4N86HksK4W8rHZox-i7mY0JjNJqd7v56RNdY_yZ2Qw8GEgm-e5jH59eXzz6tv7fXt1-9Xl9et7WRfW2vVynbAjOIrTh3rrZVCCtOzngvpQDgGBqVzjgoUA4KClQVDB75SXHLeHZPTuXd64W7EUvXaF4shmIhpLJop2Qkm-wl89wSaYk0YsonWF73J09_5QdOuF5QLmDgxczanUjIOzwjonW29t613KjUwvbet1ZT79F_O-ro3UrPx4cX0xZzGydXWY9bFeowWnc9oq3bJv9DwCJ6JnN0 |
CODEN | JCAMDI |
CitedBy_id | crossref_primary_10_1007_s00521_013_1526_4 crossref_primary_10_1016_j_asoc_2013_04_013 crossref_primary_10_1016_j_endm_2018_05_002 crossref_primary_10_1109_TAP_2022_3186710 crossref_primary_10_1016_j_neucom_2010_12_026 crossref_primary_10_1016_j_triboint_2008_02_008 crossref_primary_10_1016_j_patrec_2005_09_019 crossref_primary_10_1016_j_probengmech_2024_103594 crossref_primary_10_1007_s40096_017_0212_6 crossref_primary_10_1007_s11831_020_09433_1 crossref_primary_10_1016_j_isatra_2013_06_009 crossref_primary_10_1007_s00500_018_3604_0 crossref_primary_10_1016_j_jfranklin_2009_05_003 crossref_primary_10_1155_2013_181895 crossref_primary_10_1016_j_ijengsci_2009_08_001 crossref_primary_10_1016_j_amc_2014_08_085 crossref_primary_10_1007_s00521_011_0621_7 crossref_primary_10_1016_j_asoc_2009_07_006 crossref_primary_10_1016_j_asoc_2012_03_041 crossref_primary_10_1109_TNN_2009_2020735 crossref_primary_10_1063_1_5132840 crossref_primary_10_1109_TFUZZ_2008_2005010 crossref_primary_10_1016_j_chaos_2006_03_102 crossref_primary_10_1016_j_eswa_2010_12_120 |
Cites_doi | 10.1016/S0020-0255(97)10058-5 10.1109/3477.484447 10.1016/0893-6080(89)90020-8 10.1109/72.80265 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science B.V. 2002 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science B.V. – notice: 2002 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW 7TB 8FD FR3 KR7 |
DOI | 10.1016/S0377-0427(02)00397-7 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Applied Sciences |
EISSN | 1879-1778 |
EndPage | 457 |
ExternalDocumentID | 13851450 10_1016_S0377_0427_02_00397_7 S0377042702003977 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c368t-cc7bc302a74b41d28cc6565a828456d05d20ae6ddd15e5fe070bc0a1f4b746443 |
IEDL.DBID | .~1 |
ISSN | 0377-0427 |
IngestDate | Thu Sep 04 16:39:37 EDT 2025 Mon Jul 21 09:17:16 EDT 2025 Tue Jul 01 03:58:40 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 Fri Feb 23 02:30:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Finite difference Neural network model Fuzzy linguistic model Universal approximation Solving differential equations Finite element Finite element method Numerical computation Error estimation Differential equation Optimization method Equation resolution Continuous function Neural network Boundary condition Linguistic model Finite difference method |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-cc7bc302a74b41d28cc6565a828456d05d20ae6ddd15e5fe070bc0a1f4b746443 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0377042702003977 |
PQID | 27635268 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_27635268 pascalfrancis_primary_13851450 crossref_primary_10_1016_S0377_0427_02_00397_7 crossref_citationtrail_10_1016_S0377_0427_02_00397_7 elsevier_sciencedirect_doi_10_1016_S0377_0427_02_00397_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-09-15 |
PublicationDateYYYYMMDD | 2002-09-15 |
PublicationDate_xml | – month: 09 year: 2002 text: 2002-09-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2002 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hagan, Demuth, Beale (BIB4) 1996 Grace (BIB3) 1995 Ying (BIB6) 1998; 108 Castro, Delgado (BIB1) 1996; 26 Cotter (BIB2) 1990; 1 Hornik, Stinchcombe, White (BIB5) 1989; 2 Hagan (10.1016/S0377-0427(02)00397-7_BIB4) 1996 Cotter (10.1016/S0377-0427(02)00397-7_BIB2) 1990; 1 Castro (10.1016/S0377-0427(02)00397-7_BIB1) 1996; 26 Grace (10.1016/S0377-0427(02)00397-7_BIB3) 1995 Ying (10.1016/S0377-0427(02)00397-7_BIB6) 1998; 108 Hornik (10.1016/S0377-0427(02)00397-7_BIB5) 1989; 2 |
References_xml | – volume: 1 start-page: 290 year: 1990 end-page: 295 ident: BIB2 article-title: The Stone–Weierstrass theorem and its application to neural nets publication-title: IEEE Trans. Neural Networks – year: 1996 ident: BIB4 publication-title: Neural Network Design – volume: 26 start-page: 149 year: 1996 end-page: 152 ident: BIB1 article-title: Fuzzy systems with defuzzification are universal approximators publication-title: IEEE Trans. Systems Man Cybernet., Part B: Cybernet. – volume: 108 start-page: 91 year: 1998 end-page: 107 ident: BIB6 article-title: General Takagi–Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters publication-title: Inform. Sci. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: BIB5 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – year: 1995 ident: BIB3 publication-title: Optimization Toolbox – volume: 108 start-page: 91 year: 1998 ident: 10.1016/S0377-0427(02)00397-7_BIB6 article-title: General Takagi–Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters publication-title: Inform. Sci. doi: 10.1016/S0020-0255(97)10058-5 – volume: 26 start-page: 149 year: 1996 ident: 10.1016/S0377-0427(02)00397-7_BIB1 article-title: Fuzzy systems with defuzzification are universal approximators publication-title: IEEE Trans. Systems Man Cybernet., Part B: Cybernet. doi: 10.1109/3477.484447 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/S0377-0427(02)00397-7_BIB5 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 1 start-page: 290 year: 1990 ident: 10.1016/S0377-0427(02)00397-7_BIB2 article-title: The Stone–Weierstrass theorem and its application to neural nets publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.80265 – year: 1995 ident: 10.1016/S0377-0427(02)00397-7_BIB3 – year: 1996 ident: 10.1016/S0377-0427(02)00397-7_BIB4 |
SSID | ssj0006914 |
Score | 1.8120319 |
Snippet | In a conventional approach to numerical computation, finite difference and finite element methods are usually implemented to determine the solution of a set of... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 443 |
SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Connectionism. Neural networks Exact sciences and technology Finite difference Finite element Fuzzy linguistic model Mathematics Neural network model Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use Solving differential equations Universal approximation |
Title | Novel determination of differential-equation solutions: universal approximation method |
URI | https://dx.doi.org/10.1016/S0377-0427(02)00397-7 https://www.proquest.com/docview/27635268 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iF0XEJ9ZH3YMHPcSm2WSz9VZFqRZ78NlbyOYBhdJW24onf7uTzW6LiAieFrJ5LDOTySyZ-T6EjlOtUsa1wYlxCjNlLVaJY9gY5Qmt4TX31ch3naT1xG67vLuALstaGJ9WWfj-4NNzb1201App1ka9Xu2BxEJ4pgji86sgjPEV7Ex4Wz_7nKd5JI2A7w2dse89r-IJM-SNJ4Se5pNg8dv5tDpSY5CaC3QXPzx3fhxdr6O1Io6MmuFTN9CCHWyilbsZCOt4Cz13hu-2H5ky4cWrIBq6qOREgb3dx_Y1YH1HMxs8j6YhWQOmzxHHP3qhvDEKbNPb6On66vGyhQsaBazjJJ1grUWmY0KVYBmrG5pqDUEcV_CvBdGTIdxQomxijKlzy50FJ5BpouqOZYJBuBTvoMXBcGB3UcT95ZdTyjGYLGmIzAnhUkupaVhHG7aCWCk8qQuMcU910ZfzZLLYg4uDzCWhMpe5FBV0Nhs2CiAbfw1IS83Ib9Yi4SD4a2j1mybnC8YQfDJOKuioVK2ErebvT9TADqdjST14H9jv3v9X30fLOZ2M56DgB2hx8ja1hxDVTLJqbrZVtNS8abc6_tm-f2lD60334guurvZK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4S55CUEvKkbvPYQw7JQbGslVbr3kxIcB72JQ9yE1o9wGBsp7ZLf35Hq12bEEqg192d0TIzGo3Q6PsAznKjcy6MJZn1mnDtHNGZ58RaHQit8bUIt5H7g6z3zO9exesaXNV3YUJbZZX7Y04vs3X1pFVZszUdDluPNJUyMEXQ0F-FZcw6bHCBu70GbHRv73uDZULOOhHiG78nQWB1kScqKR-eU3ZR6iHyX0vU16meoeF8ZLz4kLzLFelmB7arUjLpxr_dhTU33oMv_SUO62wfXgaT326U2LrnJXghmfikpkXB6T0i7i3CfSfLMPyZLGK_BqovQcf_DOMNxyQSTh_A883101WPVEwKxKRZPifGyMKklGnJC962LDcG6zihcbuFBZSlwjKqXWatbQsnvMM8UBiq254XkmPFlB5CYzwZu2-QiHD-5bX2HJVlHVl4KX3uGLMd51nHNYHXxlOmghkPbBcjteonSwO-ONpcUaZKmyvZhMul2DTibHwmkNeeUe8CRuFa8JnoyTtPrgZMsf7kgjbhtHatwtkWjlD02E0WM8UCfh-G8Pf_H_0UNntP_Qf1cDu4_wFbJbtMoKQQR9CY_1q4Yyxy5sVJFcR_Ab5h9lo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+determination+of+differential-equation+solutions%3A+universal+approximation+method&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=LEEPHAKPREEDA%2C+Thananchai&rft.date=2002-09-15&rft.pub=Elsevier&rft.issn=0377-0427&rft.volume=146&rft.issue=2&rft.spage=443&rft.epage=457&rft_id=info:doi/10.1016%2FS0377-0427%2802%2900397-7&rft.externalDBID=n%2Fa&rft.externalDocID=13851450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |