A Theoretical Model for the Size Prediction of Single Bubbles Formed under Liquid Cross-flow
The size of initial bubbles is an important factor to the developed bubble size distribution in a gas-liquid contactor. A liquid cross-flow over a sparger can produce smaller bubbles, and hereby enhance the performance of contactor. A one stage model by balancing the forces acting on a growing bubbl...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 18; no. 5; pp. 770 - 776 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The size of initial bubbles is an important factor to the developed bubble size distribution in a gas-liquid contactor. A liquid cross-flow over a sparger can produce smaller bubbles, and hereby enhance the performance of contactor. A one stage model by balancing the forces acting on a growing bubble was developed to describe the formation of the bubble from an orifice exposed to liquid cross-flow. The prediction with this model agrees with the experimental data available in the literatures, and show that orifice size strongly affects the bubble size. It is showed that the shear-lift force, inertia force, surface tension force and buoyancy force are major forces, and a simplified mathematical model was developed, and the detachment bubble diameter can be predicted with accuracy of ±21%. |
---|---|
Bibliography: | force balance TQ541 bubble formation; liquid cross-flow; one stage model; force balance one stage model O4-33 liquid cross-flow 11-3270/TQ bubble formation ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/S1004-9541(09)60128-2 |