Hybrid FEM-NN models: Combining artificial neural networks with the finite element method

•An approach for training neural networks combined with partial differential equations.•Combines a finite element framework with a machine learning library.•Learns missing physics in the partial differential equation. We present a methodology combining neural networks with physical principle constra...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 446; p. 110651
Main Authors Mitusch, Sebastian K., Funke, Simon W., Kuchta, Miroslav
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.12.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2021.110651

Cover

Abstract •An approach for training neural networks combined with partial differential equations.•Combines a finite element framework with a machine learning library.•Learns missing physics in the partial differential equation. We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach allows to train neural networks while respecting the PDEs as a strong constraint in the optimisation as apposed to making them part of the loss function. The resulting models are discretised in space by the finite element method (FEM). The method applies to both stationary and transient as well as linear/nonlinear PDEs. We describe implementation of the approach as an extension of the existing FEM framework FEniCS and its algorithmic differentiation tool dolfin-adjoint. Through series of examples we demonstrate capabilities of the approach to recover coefficients and missing PDE operators from observations. Further, the proposed method is compared with alternative methodologies, namely, physics informed neural networks and standard PDE-constrained optimisation. Finally, we demonstrate the method on a complex cardiac cell model problem using deep neural networks.
AbstractList We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach allows to train neural networks while respecting the PDEs as a strong constraint in the optimisation as apposed to making them part of the loss function. The resulting models are discretised in space by the finite element method (FEM). The method applies to both stationary and transient as well as linear/nonlinear PDEs. We describe implementation of the approach as an extension of the existing FEM framework FEniCS and its algorithmic differentiation tool dolfin-adjoint. Through series of examples we demonstrate capabilities of the approach to recover coefficients and missing PDE operators from observations. Further, the proposed method is compared with alternative methodologies, namely, physics informed neural networks and standard PDE-constrained optimisation. Finally, we demonstrate the method on a complex cardiac cell model problem using deep neural networks.
•An approach for training neural networks combined with partial differential equations.•Combines a finite element framework with a machine learning library.•Learns missing physics in the partial differential equation. We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach allows to train neural networks while respecting the PDEs as a strong constraint in the optimisation as apposed to making them part of the loss function. The resulting models are discretised in space by the finite element method (FEM). The method applies to both stationary and transient as well as linear/nonlinear PDEs. We describe implementation of the approach as an extension of the existing FEM framework FEniCS and its algorithmic differentiation tool dolfin-adjoint. Through series of examples we demonstrate capabilities of the approach to recover coefficients and missing PDE operators from observations. Further, the proposed method is compared with alternative methodologies, namely, physics informed neural networks and standard PDE-constrained optimisation. Finally, we demonstrate the method on a complex cardiac cell model problem using deep neural networks.
ArticleNumber 110651
Author Funke, Simon W.
Kuchta, Miroslav
Mitusch, Sebastian K.
Author_xml – sequence: 1
  givenname: Sebastian K.
  orcidid: 0000-0002-8888-6568
  surname: Mitusch
  fullname: Mitusch, Sebastian K.
  email: sebastkm@simula.no
– sequence: 2
  givenname: Simon W.
  orcidid: 0000-0003-4709-8415
  surname: Funke
  fullname: Funke, Simon W.
  email: simon@simula.no
– sequence: 3
  givenname: Miroslav
  surname: Kuchta
  fullname: Kuchta, Miroslav
  email: miroslav@simula.no
BookMark eNp9kLFu2zAQhokiBeK4fYBsBDrL4ckWRaZTYcRJANdd2qETQZPHmopEuiSdwG8fOe7UIdM_3P_d4b4rchFiQEKugc2AAb_pZp3Zz2pWwwyA8QY-kAkwyaq6BX5BJmycVFJKuCRXOXeMMdEsxIT8fjhuk7d0dfe92mzoEC32-ZYu47D1wYc_VKfinTde9zTgIb1FeYnpKdMXX3a07JC6sVqQYo8DhkIHLLtoP5GPTvcZP__LKfm1uvu5fKjWP-4fl9_WlZlzUSoDuhUcxNY2ujEtt8wtuNXbOQddAzdaCOmkY07AQtdNazm4mjEuec2F4M18Sr6c9-5T_HvAXFQXDymMJ1XdiEby8Ws5ttpzy6SYc0KnjC-6-BhK0r5XwNTJo-rU6FGdPKqzx5GE_8h98oNOx3eZr2dmlInPHpPKxmMwaH1CU5SN_h36FXnGi7I
CitedBy_id crossref_primary_10_1007_s10462_024_10784_5
crossref_primary_10_1016_j_cma_2023_116692
crossref_primary_10_1016_j_mtcomm_2024_111278
crossref_primary_10_3390_math12111617
crossref_primary_10_1016_j_cma_2024_116890
crossref_primary_10_1016_j_neucom_2024_128936
crossref_primary_10_1016_j_cmpb_2023_107464
crossref_primary_10_1016_j_eml_2024_102157
crossref_primary_10_1038_s43017_023_00450_9
crossref_primary_10_1029_2024WR037318
crossref_primary_10_1016_j_physd_2024_134152
crossref_primary_10_1007_s10462_024_10836_w
crossref_primary_10_1038_s44172_024_00303_3
crossref_primary_10_1016_j_jcp_2024_112791
crossref_primary_10_1063_5_0245547
crossref_primary_10_1137_23M1566935
crossref_primary_10_1007_s00419_024_02601_w
crossref_primary_10_1038_s41598_022_16946_1
crossref_primary_10_1002_nme_70015
crossref_primary_10_1016_j_eml_2023_102103
crossref_primary_10_1002_celc_202300712
crossref_primary_10_1109_ACCESS_2024_3465572
crossref_primary_10_1016_j_compchemeng_2022_107898
crossref_primary_10_1016_j_ijnonlinmec_2024_104988
crossref_primary_10_1016_j_physd_2024_134362
crossref_primary_10_1016_j_cma_2025_117748
crossref_primary_10_1098_rsta_2022_0406
crossref_primary_10_1016_j_cma_2025_117889
crossref_primary_10_1088_1572_9494_accb8d
crossref_primary_10_1103_PhysRevFluids_9_013901
crossref_primary_10_1109_TDMR_2024_3352001
crossref_primary_10_1093_imanum_drad073
crossref_primary_10_1016_j_jterra_2024_101003
crossref_primary_10_1016_j_tws_2024_111726
crossref_primary_10_1080_0952813X_2023_2242356
crossref_primary_10_1016_j_eml_2022_101645
crossref_primary_10_1016_j_enganabound_2023_08_020
crossref_primary_10_1016_j_engappai_2024_108010
crossref_primary_10_1016_j_jcp_2022_111768
crossref_primary_10_3390_math11092016
crossref_primary_10_1016_j_neucom_2025_129657
crossref_primary_10_3390_polym14235290
crossref_primary_10_1016_j_cma_2023_116505
crossref_primary_10_1016_j_soildyn_2024_109186
crossref_primary_10_1002_htj_23086
crossref_primary_10_1093_ptep_ptad131
crossref_primary_10_1140_epjp_s13360_024_05866_w
crossref_primary_10_1016_j_cma_2024_116940
crossref_primary_10_1016_j_cmpb_2023_107616
crossref_primary_10_1016_j_ijsolstr_2024_112819
crossref_primary_10_1007_s00366_024_01955_7
crossref_primary_10_1016_j_engappai_2023_107324
crossref_primary_10_1016_j_engappai_2024_109128
crossref_primary_10_1016_j_jocs_2025_102533
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_3934_math_20241683
crossref_primary_10_1016_j_jocs_2023_102136
crossref_primary_10_3390_machines11111013
crossref_primary_10_1016_j_compstruc_2025_107698
crossref_primary_10_1016_j_cma_2022_115766
crossref_primary_10_1007_s00366_024_02033_8
Cites_doi 10.1145/279232.279236
10.1007/BF01589116
10.1016/j.jcp.2019.109136
10.1113/jphysiol.1962.sp006849
10.1016/j.cma.2020.113028
10.1016/j.jcp.2018.10.045
10.1038/s41592-019-0686-2
10.1145/2566630
10.1016/j.jcp.2020.109491
10.1073/pnas.1517384113
10.1016/S0898-1221(99)00248-5
10.1146/annurev-fluid-010518-040547
10.1023/B:BITN.0000046811.70614.38
10.1113/jphysiol.1952.sp004764
10.1145/1731022.1731030
10.1016/j.jcp.2019.108925
10.1038/s41598-020-66042-5
10.1137/17M1144532
10.1137/0721052
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier Science Ltd. Dec 1, 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier Science Ltd. Dec 1, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2021.110651
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2021_110651
S0021999121005465
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
RIG
SBC
SEW
SHN
SPG
SSH
T9H
UQL
WUQ
ZY4
7SC
7SP
7U5
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-c1a78618bd5a5c76d0f46dab361a216ca889f9f0f814a257d61f2006962688653
IEDL.DBID AIKHN
ISSN 0021-9991
IngestDate Fri Jul 25 06:13:30 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 01:54:52 EDT 2025
Fri Feb 23 02:43:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Data-driven scientific computing
Partial differential equations
Learning unknown physics
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-c1a78618bd5a5c76d0f46dab361a216ca889f9f0f814a257d61f2006962688653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4709-8415
0000-0002-8888-6568
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0021999121005465
PQID 2585969999
PQPubID 2047462
ParticipantIDs proquest_journals_2585969999
crossref_citationtrail_10_1016_j_jcp_2021_110651
crossref_primary_10_1016_j_jcp_2021_110651
elsevier_sciencedirect_doi_10_1016_j_jcp_2021_110651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Liu, Nocedal (br0300) 1989; 45
Ruthotto, Haber (br0040) 2019
Naumann (br0250) 2012
Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar (br0060)
Kværnø (br0350) 2004; 44
Raissi, Perdikaris, Karniadakis (br0070) 2019; 378
Wang, Yu, Perdikaris (br0110)
Rackauckas, Ma, Martensen, Warner, Zubov, Supekar, Skinner, Ramadhan (br0180)
Glowinski (br0230) 2003; vol. 9
Sundnes, Lines, Cai, Nielsen, Mardal, Tveito (br0430) 2007
Duraisamy, Iaccarino, Xiao (br0210) 2019; 51
Zhu, Byrd, Lu, Nocedal (br0420) 1997; 23
Tartakovsky, Marrero, Perdikaris, Tartakovsky, Barajas-Solano (br0080)
Marcus (br0010)
Shen (br0370) 1999; 38
Fan, Xu, Pathak, Darve (br0160)
Valnes, Mitusch, Ringstad, Eide, Funke, Mardal (br0340) 2020; 10
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (br0200) 2019; vol. 32
Xu, Darve (br0150)
Kharazmi, Zhang, Karniadakis (br0240)
Brunton, Proctor, Kutz (br0220) 2016; 113
Hodgkin, Huxley (br0450) 1952; 117
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (br0310) 2020; 17
Ayed, de Bézenac, Pajot, Brajard, Gallinari (br0470)
Xu, Tartakovsky, Burghardt, Darve (br0170)
Mishra, Molinaro (br0120)
Logg, Wells (br0190) 2010; 37
Homolya, Kirby, Ham (br0290)
Huang, Xu, Farhat, Darve (br0140) 2020; 416
Nash (br0320) 1984; 21
Berg, Nyström (br0130)
Jagtap, Karniadakis (br0390) 2020
Wang, Teng, Perdikaris (br0400)
Jagtap, Kawaguchi, Karniadakis (br0410) 2020; 404
Shin, Darbon, Karniadakis (br0100)
Skare (br0360) 2012
Mitusch, Funke, Dokken (br0280) 2019; 4
Alnæs, Logg, Ølgaard, Rognes, Wells (br0270) 2014; 40
Long, Lu, Ma, Dong (br0030) 2018
Lu, Jin, Karniadakis (br0050)
Ulbrich (br0260) 2009
Löhner, Antil (br0330)
Raissi (br0090) 2018; 19
Farrell, Hake, Funke, Rognes (br0440) 2019; 41
Long, Lu, Dong (br0020) 2019; 399
Noble (br0460) 1962; 160
Jagtap, Kharazmi, Karniadakis (br0380) 2020; 365
Naumann (10.1016/j.jcp.2021.110651_br0250) 2012
Logg (10.1016/j.jcp.2021.110651_br0190) 2010; 37
Liu (10.1016/j.jcp.2021.110651_br0300) 1989; 45
Jagtap (10.1016/j.jcp.2021.110651_br0410) 2020; 404
Mitusch (10.1016/j.jcp.2021.110651_br0280) 2019; 4
Farrell (10.1016/j.jcp.2021.110651_br0440) 2019; 41
Marcus (10.1016/j.jcp.2021.110651_br0010)
Sundnes (10.1016/j.jcp.2021.110651_br0430) 2007
Homolya (10.1016/j.jcp.2021.110651_br0290)
Ruthotto (10.1016/j.jcp.2021.110651_br0040) 2019
Rackauckas (10.1016/j.jcp.2021.110651_br0180)
Brunton (10.1016/j.jcp.2021.110651_br0220) 2016; 113
Skare (10.1016/j.jcp.2021.110651_br0360) 2012
Huang (10.1016/j.jcp.2021.110651_br0140) 2020; 416
Jagtap (10.1016/j.jcp.2021.110651_br0390) 2020
Löhner (10.1016/j.jcp.2021.110651_br0330)
Duraisamy (10.1016/j.jcp.2021.110651_br0210) 2019; 51
Hodgkin (10.1016/j.jcp.2021.110651_br0450) 1952; 117
Raissi (10.1016/j.jcp.2021.110651_br0090) 2018; 19
Shin (10.1016/j.jcp.2021.110651_br0100)
Glowinski (10.1016/j.jcp.2021.110651_br0230) 2003; vol. 9
Ayed (10.1016/j.jcp.2021.110651_br0470)
Ulbrich (10.1016/j.jcp.2021.110651_br0260) 2009
Wang (10.1016/j.jcp.2021.110651_br0400)
Mishra (10.1016/j.jcp.2021.110651_br0120)
Fan (10.1016/j.jcp.2021.110651_br0160)
Kværnø (10.1016/j.jcp.2021.110651_br0350) 2004; 44
Shen (10.1016/j.jcp.2021.110651_br0370) 1999; 38
Long (10.1016/j.jcp.2021.110651_br0030) 2018
Valnes (10.1016/j.jcp.2021.110651_br0340) 2020; 10
Lu (10.1016/j.jcp.2021.110651_br0050)
Long (10.1016/j.jcp.2021.110651_br0020) 2019; 399
Paszke (10.1016/j.jcp.2021.110651_br0200) 2019; vol. 32
Tartakovsky (10.1016/j.jcp.2021.110651_br0080)
Wang (10.1016/j.jcp.2021.110651_br0110)
Zhu (10.1016/j.jcp.2021.110651_br0420) 1997; 23
Alnæs (10.1016/j.jcp.2021.110651_br0270) 2014; 40
Xu (10.1016/j.jcp.2021.110651_br0150)
Virtanen (10.1016/j.jcp.2021.110651_br0310) 2020; 17
Jagtap (10.1016/j.jcp.2021.110651_br0380) 2020; 365
Berg (10.1016/j.jcp.2021.110651_br0130)
Xu (10.1016/j.jcp.2021.110651_br0170)
Kharazmi (10.1016/j.jcp.2021.110651_br0240)
Noble (10.1016/j.jcp.2021.110651_br0460) 1962; 160
Li (10.1016/j.jcp.2021.110651_br0060)
Nash (10.1016/j.jcp.2021.110651_br0320) 1984; 21
Raissi (10.1016/j.jcp.2021.110651_br0070) 2019; 378
References_xml – volume: 19
  start-page: 1
  year: 2018
  end-page: 24
  ident: br0090
  article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– volume: vol. 9
  start-page: 3
  year: 2003
  end-page: 1176
  ident: br0230
  article-title: Finite element methods for incompressible viscous flow
  publication-title: Numerical Methods for Fluids (Part 3)
– volume: 4
  year: 2019
  ident: br0280
  article-title: Dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake
  publication-title: J. Open Sour. Softw.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: br0300
  article-title: On the limited memory bfgs method for large scale optimization
  publication-title: Math. Program.
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: br0220
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– volume: 399
  year: 2019
  ident: br0020
  article-title: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network
  publication-title: J. Comput. Phys.
– start-page: 2002
  year: 2020
  end-page: 2041
  ident: br0390
  article-title: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
– year: 2007
  ident: br0430
  article-title: Computing the Electrical Activity in the Heart
  publication-title: Monographs in Computational Science and Engineering
– ident: br0290
  article-title: Exposing and exploiting structure: optimal code generation for high-order finite element methods
– volume: 38
  start-page: 173
  year: 1999
  end-page: 188
  ident: br0370
  article-title: A numerical study of inverse heat conduction problems
  publication-title: Comput. Math. Appl.
– volume: 365
  year: 2020
  ident: br0380
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: vol. 32
  start-page: 8024
  year: 2019
  end-page: 8035
  ident: br0200
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– ident: br0400
  article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks
– volume: 44
  start-page: 489
  year: 2004
  end-page: 502
  ident: br0350
  article-title: Singly diagonally implicit Runge-Kutta methods with an explicit first stage
  publication-title: BIT Numer. Math.
– ident: br0150
  article-title: Adcme: learning spatially-varying physical fields using deep neural networks
– ident: br0130
  article-title: Neural network augmented inverse problems for PDEs
– ident: br0470
  article-title: Learning dynamical systems from partial observations
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: br0310
  article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– ident: br0060
  article-title: Fourier neural operator for parametric partial differential equations
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: br0070
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 416
  year: 2020
  ident: br0140
  article-title: Learning constitutive relations from indirect observations using deep neural networks
  publication-title: J. Comput. Phys.
– volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: br0420
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
– volume: 117
  start-page: 500
  year: 1952
  end-page: 544
  ident: br0450
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J. Physiol.
– volume: 404
  year: 2020
  ident: br0410
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– ident: br0010
  article-title: Deep learning: a critical appraisal
– ident: br0050
  article-title: Deeponet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
– volume: 37
  start-page: 20:1
  year: 2010
  end-page: 20:28
  ident: br0190
  article-title: DOLFIN: automated finite element computing
  publication-title: ACM Trans. Math. Softw.
– volume: 160
  start-page: 317
  year: 1962
  end-page: 352
  ident: br0460
  article-title: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials
  publication-title: J. Physiol.
– ident: br0100
  article-title: On the convergence and generalization of physics informed neural networks
– volume: 21
  start-page: 770
  year: 1984
  end-page: 788
  ident: br0320
  article-title: Newton-type minimization via the Lanczos method
  publication-title: SIAM J. Numer. Anal.
– ident: br0160
  article-title: Solving inverse problems in steady state Navier-Stokes equations using deep neural networks
– year: 2012
  ident: br0360
  article-title: Gryphon-a module for time integration of partial differential equations in fenics
– volume: 41
  start-page: C219
  year: 2019
  end-page: C244
  ident: br0440
  article-title: Automated adjoints of coupled PDE-ODE systems
  publication-title: SIAM J. Sci. Comput.
– ident: br0330
  article-title: Revisiting Calderon's problem
– start-page: 1
  year: 2019
  end-page: 13
  ident: br0040
  article-title: Deep neural networks motivated by partial differential equations
  publication-title: J. Math. Imaging Vis.
– ident: br0120
  article-title: Estimates on the generalization error of physics informed neural networks (pinns) for approximating pdes
– ident: br0170
  article-title: Inverse modeling of viscoelasticity materials using physics constrained learning
– volume: 40
  start-page: 9:1
  year: 2014
  end-page: 9:37
  ident: br0270
  article-title: Unified form language: a domain-specific language for weak formulations of partial differential equations
  publication-title: ACM Trans. Math. Softw.
– ident: br0110
  article-title: When and why pinns fail to train: a neural tangent kernel perspective
– ident: br0080
  article-title: Learning parameters and constitutive relationships with physics informed deep neural networks
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  ident: br0210
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 3208
  year: 2018
  end-page: 3216
  ident: br0030
  article-title: PDE-Net: learning PDEs from data
  publication-title: International Conference on Machine Learning
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: br0340
  article-title: Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex
  publication-title: Sci. Rep.
– start-page: 1
  year: 2009
  end-page: 95
  ident: br0260
  article-title: Analytical Background and Optimality Theory
– ident: br0180
  article-title: Universal differential equations for scientific machine learning
– ident: br0240
  article-title: Variational physics-informed neural networks for solving partial differential equations
– year: 2012
  ident: br0250
  article-title: The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation
– volume: 23
  start-page: 550
  issue: 4
  year: 1997
  ident: 10.1016/j.jcp.2021.110651_br0420
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/279232.279236
– year: 2012
  ident: 10.1016/j.jcp.2021.110651_br0360
– ident: 10.1016/j.jcp.2021.110651_br0180
– ident: 10.1016/j.jcp.2021.110651_br0060
– ident: 10.1016/j.jcp.2021.110651_br0110
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 10.1016/j.jcp.2021.110651_br0300
  article-title: On the limited memory bfgs method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– ident: 10.1016/j.jcp.2021.110651_br0080
– volume: vol. 9
  start-page: 3
  year: 2003
  ident: 10.1016/j.jcp.2021.110651_br0230
  article-title: Finite element methods for incompressible viscous flow
– ident: 10.1016/j.jcp.2021.110651_br0470
– volume: 404
  year: 2020
  ident: 10.1016/j.jcp.2021.110651_br0410
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– ident: 10.1016/j.jcp.2021.110651_br0100
– ident: 10.1016/j.jcp.2021.110651_br0130
– start-page: 2002
  year: 2020
  ident: 10.1016/j.jcp.2021.110651_br0390
  article-title: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
– volume: 160
  start-page: 317
  issue: 2
  year: 1962
  ident: 10.1016/j.jcp.2021.110651_br0460
  article-title: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006849
– volume: 365
  year: 2020
  ident: 10.1016/j.jcp.2021.110651_br0380
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113028
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jcp.2021.110651_br0070
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 19
  start-page: 1
  issue: 25
  year: 2018
  ident: 10.1016/j.jcp.2021.110651_br0090
  article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.jcp.2021.110651_br0310
  article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 40
  start-page: 9:1
  issue: 2
  year: 2014
  ident: 10.1016/j.jcp.2021.110651_br0270
  article-title: Unified form language: a domain-specific language for weak formulations of partial differential equations
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2566630
– start-page: 1
  year: 2019
  ident: 10.1016/j.jcp.2021.110651_br0040
  article-title: Deep neural networks motivated by partial differential equations
  publication-title: J. Math. Imaging Vis.
– volume: 416
  year: 2020
  ident: 10.1016/j.jcp.2021.110651_br0140
  article-title: Learning constitutive relations from indirect observations using deep neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109491
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.jcp.2021.110651_br0220
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 4
  issue: 38
  year: 2019
  ident: 10.1016/j.jcp.2021.110651_br0280
  article-title: Dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake
  publication-title: J. Open Sour. Softw.
– year: 2007
  ident: 10.1016/j.jcp.2021.110651_br0430
  article-title: Computing the Electrical Activity in the Heart
– volume: 38
  start-page: 173
  issue: 7–8
  year: 1999
  ident: 10.1016/j.jcp.2021.110651_br0370
  article-title: A numerical study of inverse heat conduction problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(99)00248-5
– volume: 51
  start-page: 357
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2021.110651_br0210
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010518-040547
– start-page: 1
  year: 2009
  ident: 10.1016/j.jcp.2021.110651_br0260
– volume: 44
  start-page: 489
  issue: 3
  year: 2004
  ident: 10.1016/j.jcp.2021.110651_br0350
  article-title: Singly diagonally implicit Runge-Kutta methods with an explicit first stage
  publication-title: BIT Numer. Math.
  doi: 10.1023/B:BITN.0000046811.70614.38
– volume: 117
  start-page: 500
  issue: 4
  year: 1952
  ident: 10.1016/j.jcp.2021.110651_br0450
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 37
  start-page: 20:1
  issue: 2
  year: 2010
  ident: 10.1016/j.jcp.2021.110651_br0190
  article-title: DOLFIN: automated finite element computing
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1731022.1731030
– ident: 10.1016/j.jcp.2021.110651_br0170
– ident: 10.1016/j.jcp.2021.110651_br0050
– volume: vol. 32
  start-page: 8024
  year: 2019
  ident: 10.1016/j.jcp.2021.110651_br0200
  article-title: Pytorch: an imperative style, high-performance deep learning library
– ident: 10.1016/j.jcp.2021.110651_br0400
– volume: 399
  year: 2019
  ident: 10.1016/j.jcp.2021.110651_br0020
  article-title: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108925
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.jcp.2021.110651_br0340
  article-title: Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66042-5
– volume: 41
  start-page: C219
  issue: 3
  year: 2019
  ident: 10.1016/j.jcp.2021.110651_br0440
  article-title: Automated adjoints of coupled PDE-ODE systems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1144532
– start-page: 3208
  year: 2018
  ident: 10.1016/j.jcp.2021.110651_br0030
  article-title: PDE-Net: learning PDEs from data
– ident: 10.1016/j.jcp.2021.110651_br0120
– ident: 10.1016/j.jcp.2021.110651_br0290
– volume: 21
  start-page: 770
  issue: 4
  year: 1984
  ident: 10.1016/j.jcp.2021.110651_br0320
  article-title: Newton-type minimization via the Lanczos method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0721052
– ident: 10.1016/j.jcp.2021.110651_br0010
– ident: 10.1016/j.jcp.2021.110651_br0240
– ident: 10.1016/j.jcp.2021.110651_br0150
– ident: 10.1016/j.jcp.2021.110651_br0160
– year: 2012
  ident: 10.1016/j.jcp.2021.110651_br0250
– ident: 10.1016/j.jcp.2021.110651_br0330
SSID ssj0008548
Score 2.6123803
Snippet •An approach for training neural networks combined with partial differential equations.•Combines a finite element framework with a machine learning...
We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110651
SubjectTerms Artificial neural networks
Computational physics
Constraints
Data-driven scientific computing
Finite element analysis
Finite element method
Learning unknown physics
Machine learning
Mathematical models
Neural networks
Operators (mathematics)
Optimization
Partial differential equations
Title Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
URI https://dx.doi.org/10.1016/j.jcp.2021.110651
https://www.proquest.com/docview/2585969999
Volume 446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VsrDwRjwK8sCEFIjjR202VFEVEJ1AgslynFgqQgXRMrDw2_HFTiWQYGCKEsVRcuf7cmd_dwdwXJaM8xJTtwR1GXe1zkqmbcaYqPI6hHK5xx3d27Ec3fPrB_HQgUGbC4O0yoT9EdMbtE5XzpI0z14nE8zxLTCHHitg5djSewmWC6al6MLyxdXNaLwAZCV4BGRkI4QB7eZmQ_N6cli1sqDIh5eC_vZ7-gHUzd9nuA6ryW0kF_HNNqBTTzdhLbmQJBnobAseRx-YgkWGl7fZeEyaPjezcxKsvmw6QRD8tlg0gmApy-bQEMFnBJdkSfAHiZ-gI0rqyCwnscn0NtwPL-8Goyx1T8gck2qeOWr7SlJVVsIK15dV7rmsbMkktQWVziqlvfZBF5TbYLiVpB7XF3QIcZSSgu1Ad_oyrXeBFDooOlcVqyrH-7m3zkol6txKX4dw0O9B3grNuFRaHDtcPJuWQ_ZkgpwNytlEOe_ByWLIa6yr8dfNvNWE-TY5TMD9v4b1Wq2ZZJkzU4T4SMswDfT-_556ACt4FiktPejO397rw-CYzMsjWDr9pEdp-n0B1ODgbw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRjwKeGBCCo3jRx02VLUqj3ZqpTJZjhNLrVCpSBlY-O34YgcEEh2YIiV2lNzLd_Z3dwhdZhllLIPULU5MxEyRRhlNdUQpz-PChXKxhRPd_kD0Rux-zMcrqF3nwgCsMth-b9Mrax3uNAM1m_PJBHJ8E8ihhwpYMbT0XkXrjNMW4PquP75xHpIzb44Bi-CG10ebFchraqBmZUIADS84-Wtx-mWmq7Wnu4O2gtOIb_137aKVYraHtoMDiYN6lvvoqfcOCVi42-lHgwGuutyUN9jpfFb1gcDwZ75kBIZCltWlgoGXGDZksfMGsZ2AG4oLjyvHvsX0ARp1O8N2Lwq9EyJDhVxEhuiWFERmOdfctEQeWyZynVFBdEKE0VKmNrWOE4Rpp7a5IBZ2F1IX4EgpOD1Ea7OXWXGEcJI6Nscyp3luWCu22mgheRFrYQsXDNpjFNdEUyYUFof-Fs-qRpBNlaOzAjorT-djdPU1Ze6raiwbzGpOqB-ioZzVXzatUXNNBb0sVeKio1Q4MUhP_vfWC7TRG_Yf1ePd4OEUbcITD25poLXF61tx5lyURXZeieAntPDhOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+FEM-NN+models%3A+Combining+artificial+neural+networks+with+the+finite+element+method&rft.jtitle=Journal+of+computational+physics&rft.au=Mitusch%2C+Sebastian+K&rft.au=Funke%2C+Simon+W&rft.au=Kuchta%2C+Miroslav&rft.date=2021-12-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=446&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcp.2021.110651&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon