Aircraft fault-tolerant trajectory control using Incremental Nonlinear Dynamic Inversion

This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear dynamic inversion with online model identification, can be applied. However, since there are a number of unknown aerodynamic...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 57; pp. 126 - 141
Main Authors Lu, Peng, van Kampen, Erik-Jan, de Visser, Cornelis, Chu, Qiping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2016
Subjects
Online AccessGet full text
ISSN0967-0661
1873-6939
DOI10.1016/j.conengprac.2016.09.010

Cover

Abstract This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear dynamic inversion with online model identification, can be applied. However, since there are a number of unknown aerodynamic derivatives, the tuning of parameter update law gains is time-consuming. Methods with online model identification require excitation and the selection of a threshold. Furthermore, to deal with highly nonlinear aircraft dynamics, the aerodynamic model structure needs to be designed. In this paper, a novel aircraft trajectory controller, which uses the Incremental Nonlinear Dynamic Inversion, is proposed to achieve fault-tolerant trajectory control. The detailed control law design of four loops is presented. The idea is to design the loops with uncertainties using the incremental approach. The tuning of the approach is straightforward and there is no requirement for excitation and selection of a threshold. The performance of the proposed controller is compared with existing approaches using three scenarios. The results show that the proposed trajectory controller can follow the reference even when there are model uncertainties and actuator faults. •A novel aircraft trajectory controller with four control loops is proposed.•The approach does not require designing parameter update laws or online model identification.•The approach does not require additional effort for designing the aerodynamic model structure.•The approach is robust to model uncertainties as well as structural and actuator faults.•The performance of the proposed approach is compared to existing approaches.
AbstractList This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear dynamic inversion with online model identification, can be applied. However, since there are a number of unknown aerodynamic derivatives, the tuning of parameter update law gains is time-consuming. Methods with online model identification require excitation and the selection of a threshold. Furthermore, to deal with highly nonlinear aircraft dynamics, the aerodynamic model structure needs to be designed. In this paper, a novel aircraft trajectory controller, which uses the Incremental Nonlinear Dynamic Inversion, is proposed to achieve fault-tolerant trajectory control. The detailed control law design of four loops is presented. The idea is to design the loops with uncertainties using the incremental approach. The tuning of the approach is straightforward and there is no requirement for excitation and selection of a threshold. The performance of the proposed controller is compared with existing approaches using three scenarios. The results show that the proposed trajectory controller can follow the reference even when there are model uncertainties and actuator faults. •A novel aircraft trajectory controller with four control loops is proposed.•The approach does not require designing parameter update laws or online model identification.•The approach does not require additional effort for designing the aerodynamic model structure.•The approach is robust to model uncertainties as well as structural and actuator faults.•The performance of the proposed approach is compared to existing approaches.
Author Chu, Qiping
Lu, Peng
de Visser, Cornelis
van Kampen, Erik-Jan
Author_xml – sequence: 1
  givenname: Peng
  surname: Lu
  fullname: Lu, Peng
  email: P.Lu-1@tudelft.nl
– sequence: 2
  givenname: Erik-Jan
  surname: van Kampen
  fullname: van Kampen, Erik-Jan
  email: E.vanKampen@tudelft.nl
– sequence: 3
  givenname: Cornelis
  surname: de Visser
  fullname: de Visser, Cornelis
  email: c.c.devisser@tudelft.nl
– sequence: 4
  givenname: Qiping
  surname: Chu
  fullname: Chu, Qiping
  email: q.p.chu@tudelft.nl
BookMark eNqNkN1KAzEQhYNUsK2-Q15g12R_ks2NUOtfoeiNgnchO5uULNukZNNC396UCoI3ejVwZs4ZzjdDE-edRghTklNC2W2fQxLcZhcU5EVSciJyQskFmtKGlxkTpZigKRGMZ4QxeoVm49iTdCgEnaLPhQ0QlInYqP0Qs-gHHZSLOAbVa4g-HHF6EIMf8H60boNXDoLeahfVgF-9G6zTKuCHo1NbC2l70GG03l2jS6OGUd98zzn6eHp8X75k67fn1XKxzqBkTcyAmFrwRtSq6oqmaIsW6lYAGM5aTSgwCrWuCDHc1HVVVpwXnLZtSUUHRlSsnKPmnAvBj2PQRu6C3apwlJTIEyHZyx9C8kRIEiEToWS9-2UFG1W0p7rKDv8JuD8H6FTwYHWQI1jtQHc2JHay8_bvkC-V0o3o
CitedBy_id crossref_primary_10_1007_s11071_022_07904_7
crossref_primary_10_1002_rnc_3951
crossref_primary_10_1007_s11075_018_0564_5
crossref_primary_10_1016_j_robot_2022_104292
crossref_primary_10_1002_rnc_6503
crossref_primary_10_1016_j_ast_2022_107898
crossref_primary_10_1016_j_isatra_2019_02_037
crossref_primary_10_1016_j_paerosci_2021_100696
crossref_primary_10_3390_electronics12143079
crossref_primary_10_1016_j_conengprac_2021_104938
crossref_primary_10_1016_j_ast_2022_107979
crossref_primary_10_1016_j_ast_2018_08_002
crossref_primary_10_1109_TFUZZ_2024_3356577
crossref_primary_10_1016_j_ast_2020_105986
crossref_primary_10_1109_ACCESS_2021_3092164
crossref_primary_10_1155_2021_7411673
crossref_primary_10_3390_aerospace10010049
crossref_primary_10_3390_aerospace9010034
crossref_primary_10_2514_1_G004246
crossref_primary_10_1016_j_cja_2020_02_020
crossref_primary_10_2514_1_G003472
crossref_primary_10_2514_1_G003791
crossref_primary_10_1088_1742_6596_2472_1_012043
crossref_primary_10_1155_2021_4945642
crossref_primary_10_1155_2018_6315856
crossref_primary_10_1177_01423312221114687
crossref_primary_10_1016_j_ast_2023_108472
crossref_primary_10_1016_j_ast_2019_105300
crossref_primary_10_1016_j_isatra_2022_10_021
crossref_primary_10_2514_1_G008215
crossref_primary_10_1016_j_ast_2022_107601
crossref_primary_10_23919_JSEE_2022_000018
crossref_primary_10_1109_ACCESS_2024_3425462
crossref_primary_10_3390_app132212225
crossref_primary_10_1142_S0217984919503111
crossref_primary_10_1007_s11071_023_08849_1
crossref_primary_10_3390_aerospace9070352
crossref_primary_10_2514_1_G005785
crossref_primary_10_2514_1_G002079
crossref_primary_10_1016_j_isatra_2021_03_011
crossref_primary_10_1016_j_ast_2024_109336
crossref_primary_10_1016_j_neucom_2021_08_069
crossref_primary_10_1002_acs_3548
crossref_primary_10_1016_j_ast_2019_105514
crossref_primary_10_2514_1_G007254
crossref_primary_10_2514_1_I010846
crossref_primary_10_1016_j_ast_2022_107950
crossref_primary_10_1109_TAES_2022_3168247
crossref_primary_10_1002_rnc_6570
crossref_primary_10_1016_j_ast_2022_107959
crossref_primary_10_1007_s40435_020_00740_w
crossref_primary_10_3390_aerospace8040108
crossref_primary_10_1016_j_ast_2018_05_059
crossref_primary_10_1061__ASCE_AS_1943_5525_0001495
crossref_primary_10_1016_j_ast_2020_106013
crossref_primary_10_1038_s41467_024_55157_2
crossref_primary_10_1109_TCST_2018_2868038
crossref_primary_10_2514_1_G003497
crossref_primary_10_1051_jnwpu_20213950995
crossref_primary_10_1016_j_ast_2023_108490
crossref_primary_10_1017_aer_2019_1
crossref_primary_10_1016_j_actaastro_2022_10_056
crossref_primary_10_2514_1_G008112
crossref_primary_10_3390_aerospace10090786
crossref_primary_10_2514_1_G007984
crossref_primary_10_1016_j_conengprac_2017_12_011
crossref_primary_10_1061_JAEEEZ_ASENG_5066
crossref_primary_10_3390_aerospace10050448
crossref_primary_10_1016_j_cja_2021_05_025
crossref_primary_10_3390_aerospace11120990
crossref_primary_10_2514_1_G006417
crossref_primary_10_2514_1_G005921
crossref_primary_10_1016_j_ast_2019_105530
crossref_primary_10_2514_1_G003980
crossref_primary_10_1016_j_isatra_2020_07_035
crossref_primary_10_1109_ACCESS_2020_3035436
crossref_primary_10_3390_act13040130
Cites_doi 10.1109/TAC.2009.2015562
10.2514/1.47256
10.1016/j.conengprac.2013.12.011
10.1177/0954410011421717
10.1016/j.conengprac.2013.03.009
10.2514/1.38785
10.1016/S0005-1098(97)00209-4
10.2514/2.4229
10.2514/1.49978
10.1016/j.conengprac.2013.05.007
10.1016/j.conengprac.2014.12.007
10.1016/j.conengprac.2010.12.008
10.1109/TAES.2003.1261125
10.2514/1.50683
10.1016/j.paerosci.2012.02.004
10.1109/87.987075
10.1109/7.976972
10.1016/S0005-1098(01)00007-3
10.1016/j.conengprac.2016.01.012
10.1109/TCST.2004.826956
10.2514/1.47442
10.2514/6.2015-1762
10.2514/1.25834
10.1109/TCST.2011.2121907
10.2514/1.13030
10.1016/j.arcontrol.2008.03.008
10.2514/6.2015-1312
10.2514/1.46108
10.1016/0167-6911(92)90111-5
10.1016/j.conengprac.2008.11.006
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2016.09.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 141
ExternalDocumentID 10_1016_j_conengprac_2016_09_010
S0967066116302118
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c368t-c0f597895a4d282b2bc5b9ccf76be01c61c5e400f7f5543477271bb319dcf9463
IEDL.DBID AIKHN
ISSN 0967-0661
IngestDate Tue Jul 01 00:39:01 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Fri Feb 23 02:35:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear flight control
Trajectory control
Fault-tolerant control
Model identification
Incremental Nonlinear Dynamic Inversion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-c0f597895a4d282b2bc5b9ccf76be01c61c5e400f7f5543477271bb319dcf9463
OpenAccessLink http://resolver.tudelft.nl/uuid:051aee7e-458b-43c6-9a65-9818b67ec279
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_conengprac_2016_09_010
crossref_citationtrail_10_1016_j_conengprac_2016_09_010
elsevier_sciencedirect_doi_10_1016_j_conengprac_2016_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Krstic, Kanellakopoulos, Kokotovic (bib14) 1995
(pp. 1–17), AIAA 2015-1312, Kissimmee, Florida.
Lu, van Kampen, de Visser, Chu (bib21) 2016; 49
Tol, Visser, Sun, Kampen, Chu (bib36) 2016
Khalil (bib12) 2002
Almeida, Leißling (bib1) 2010; 33
Sonneveldt, Van Oort, Chu, Mulder (bib34) 2009; 32
Lombaerts, Van Oort, Chu, Mulder, Joosten (bib17) 2010; 33
Zolghadri (bib41) 2012; 53
Dong, Farrell, Polycarpou, Djapic, Sharma (bib7) 2012; 20
Stevens, Lewis (bib35) 1992
Farrell, Polycarpou, Sharma, Dong (bib9) 2009; 54
(pp. 1033–1054).
(pp. 1–15), AIAA 2015-1762, Kissimmee, Florida.
Levant (bib15) 1998; 34
Smeur, Chu, Croon (bib32) 2016
Castaldi, Geri, Bonfe, Simani, Benini (bib4) 2010; 18
Maximilian, M., Dauer, J.C., & Holzapfel, F. (2013). Adaptive trajectory controller for generic fixed-wing unmanned aircraft. In
Singh, Steinberg, Page (bib31) 2003; 39
Krstić, Kanellakopoulos, Kokotović (bib13) 1992; 19
Ren, Beard (bib27) 2004; 12
Zolghadri, Henry, Cieslak, Efimov, Goupil (bib42) 2014
Yang, Wang, Soh (bib39) 2001; 37
Alwi, Edwards, Stroosma, Mulder (bib2) 2010; 33
Farrell, Sharma, Polycarpou (bib8) 2005; 28
Castaldi, Mimmo, Simani (bib5) 2014; 32
Lu, Van Eykeren, van Kampen, de Visser, Chu (bib20) 2015; 36
Freeman, Seiler, Balas (bib10) 2013; 21
Simplício, Pavel, van Kampen, Chu (bib30) 2013; 21
Shtessel, Buffington, Banda (bib28) 2002; 10
Lu, P., & van Kampen, E. (2015). Active fault-tolerant control system using incremental backstepping approach. In
(pp. 236–255).
van der Linden (bib37) 1998
Lu, P. (2016). Fault diagnosis and fault-tolerant control for aircraft subjected to sensor and actuator faults (Ph.D. thesis). Delft University of Technology.
Dobrokhodov, Kaminer, Kitsios, Xargay, Hovakimyan, Cao (bib6) 2011; 34
Kaminer, Pascoal, Hallberg, Silvestre (bib11) 1998; 21
Lu, P., van Kampen, E., & Chu, Q. (2015). Robustness and tuning of incremental backstepping. In
(pp. 398–403).
Sonneveldt, Chu, Mulder (bib33) 2007; 30
Zhang, Jiang (bib40) 2008
Sieberling, Chu, Mulder (bib29) 2010; 33
Marzat, Piet-Lahanier, Damongeot, Walter (bib23) 2012; 226
Patton, R.J. (1997). Fault-tolerant control systems: The 1997 situation. In
Lombaerts, Chu, Mulder, Joosten (bib16) 2011; 19
Venkataraman, R., Lukatsi, M., Vanek, B., & Seiler, P. (2015). Reliability assessment reliability assessment of actuator architectures for unmanned aircraft. In
Mclean (bib25) 1990
Bacon, Ostroff, Joshi (bib3) 2001; 37
Singh (10.1016/j.conengprac.2016.09.010_bib31) 2003; 39
Zolghadri (10.1016/j.conengprac.2016.09.010_bib42) 2014
Levant (10.1016/j.conengprac.2016.09.010_bib15) 1998; 34
Alwi (10.1016/j.conengprac.2016.09.010_bib2) 2010; 33
Krstić (10.1016/j.conengprac.2016.09.010_bib13) 1992; 19
Zhang (10.1016/j.conengprac.2016.09.010_bib40) 2008
Krstic (10.1016/j.conengprac.2016.09.010_bib14) 1995
Lombaerts (10.1016/j.conengprac.2016.09.010_bib16) 2011; 19
10.1016/j.conengprac.2016.09.010_bib26
Dobrokhodov (10.1016/j.conengprac.2016.09.010_bib6) 2011; 34
10.1016/j.conengprac.2016.09.010_bib24
Castaldi (10.1016/j.conengprac.2016.09.010_bib5) 2014; 32
10.1016/j.conengprac.2016.09.010_bib22
Ren (10.1016/j.conengprac.2016.09.010_bib27) 2004; 12
Bacon (10.1016/j.conengprac.2016.09.010_bib3) 2001; 37
Tol (10.1016/j.conengprac.2016.09.010_bib36) 2016
Zolghadri (10.1016/j.conengprac.2016.09.010_bib41) 2012; 53
Mclean (10.1016/j.conengprac.2016.09.010_bib25) 1990
Sieberling (10.1016/j.conengprac.2016.09.010_bib29) 2010; 33
Dong (10.1016/j.conengprac.2016.09.010_bib7) 2012; 20
Marzat (10.1016/j.conengprac.2016.09.010_bib23) 2012; 226
Stevens (10.1016/j.conengprac.2016.09.010_bib35) 1992
Freeman (10.1016/j.conengprac.2016.09.010_bib10) 2013; 21
Lu (10.1016/j.conengprac.2016.09.010_bib21) 2016; 49
Castaldi (10.1016/j.conengprac.2016.09.010_bib4) 2010; 18
10.1016/j.conengprac.2016.09.010_bib19
10.1016/j.conengprac.2016.09.010_bib18
Simplício (10.1016/j.conengprac.2016.09.010_bib30) 2013; 21
10.1016/j.conengprac.2016.09.010_bib38
Kaminer (10.1016/j.conengprac.2016.09.010_bib11) 1998; 21
Lombaerts (10.1016/j.conengprac.2016.09.010_bib17) 2010; 33
Khalil (10.1016/j.conengprac.2016.09.010_bib12) 2002
Sonneveldt (10.1016/j.conengprac.2016.09.010_bib33) 2007; 30
van der Linden (10.1016/j.conengprac.2016.09.010_bib37) 1998
Almeida (10.1016/j.conengprac.2016.09.010_bib1) 2010; 33
Sonneveldt (10.1016/j.conengprac.2016.09.010_bib34) 2009; 32
Lu (10.1016/j.conengprac.2016.09.010_bib20) 2015; 36
Shtessel (10.1016/j.conengprac.2016.09.010_bib28) 2002; 10
Farrell (10.1016/j.conengprac.2016.09.010_bib9) 2009; 54
Yang (10.1016/j.conengprac.2016.09.010_bib39) 2001; 37
Farrell (10.1016/j.conengprac.2016.09.010_bib8) 2005; 28
Smeur (10.1016/j.conengprac.2016.09.010_bib32) 2016
References_xml – reference: Lu, P., & van Kampen, E. (2015). Active fault-tolerant control system using incremental backstepping approach. In
– volume: 34
  start-page: 1311
  year: 2011
  end-page: 1328
  ident: bib6
  article-title: Experimental validation of L1 adaptive control
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 19
  start-page: 540
  year: 2011
  end-page: 554
  ident: bib16
  article-title: Modular flight control reconfiguration design and simulation
  publication-title: Control Engineering Practice
– reference: Lu, P. (2016). Fault diagnosis and fault-tolerant control for aircraft subjected to sensor and actuator faults (Ph.D. thesis). Delft University of Technology.
– reference: Venkataraman, R., Lukatsi, M., Vanek, B., & Seiler, P. (2015). Reliability assessment reliability assessment of actuator architectures for unmanned aircraft. In
– volume: 226
  start-page: 1329
  year: 2012
  end-page: 1360
  ident: bib23
  article-title: Model-based fault diagnosis for aerospace systems: A survey
– reference: (pp. 1–15), AIAA 2015-1762, Kissimmee, Florida.
– volume: 33
  year: 2010
  ident: bib1
  article-title: Fault-tolerant model predictive control with flight-test results
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 28
  start-page: 1089
  year: 2005
  end-page: 1102
  ident: bib8
  article-title: Backstepping-based flight control with adaptive function approximation
  publication-title: Journal of Guidance, Control, and Dynamics
– year: 1995
  ident: bib14
  article-title: Nonlinear and adaptive control design
– reference: Maximilian, M., Dauer, J.C., & Holzapfel, F. (2013). Adaptive trajectory controller for generic fixed-wing unmanned aircraft. In
– volume: 39
  start-page: 1250
  year: 2003
  end-page: 1262
  ident: bib31
  article-title: Nonlinear adaptive and sliding mode flight path control of F/A-18 model
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 18
  start-page: 449
  year: 2010
  end-page: 459
  ident: bib4
  article-title: Design of residual generators and adaptive filters for the FDI of aircraft model sensors
  publication-title: Control Engineering Practice
– start-page: 1
  year: 2016
  end-page: 20
  ident: bib36
  article-title: Multivariate spline-based adaptive control of high-performance aircraft with aerodynamic uncertainties
  publication-title: Journal of Guidance, Control and Dynamics
– volume: 36
  start-page: 39
  year: 2015
  end-page: 57
  ident: bib20
  article-title: Double-model adaptive fault detection and diagnosis applied to real flight data
  publication-title: Control Engineering Practice
– volume: 37
  start-page: 717
  year: 2001
  end-page: 725
  ident: bib39
  article-title: Reliable H infinity controller design for linear systems
  publication-title: Automatica
– volume: 34
  start-page: 379
  year: 1998
  end-page: 384
  ident: bib15
  article-title: Robust exact differentiation via sliding mode technique
  publication-title: Automatica
– volume: 10
  start-page: 288
  year: 2002
  end-page: 296
  ident: bib28
  article-title: Tailless aircraft flight control using multiple time scale reconfigurable sliding modes
  publication-title: IEEE Transactions on Control Systems Technology
– start-page: 229
  year: 2008
  end-page: 252
  ident: bib40
  article-title: Bibliographical review on reconfigurable fault-tolerant control systems
  publication-title: Annual Reviews in Control
– year: 2002
  ident: bib12
  article-title: Nonlinear systems
– volume: 32
  start-page: 25
  year: 2009
  end-page: 39
  ident: bib34
  article-title: Nonlinear adaptive trajectory control applied to an F-16 model
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 54
  start-page: 1391
  year: 2009
  end-page: 1395
  ident: bib9
  article-title: Command filtering backstepping
  publication-title: IEEE Transactions on Automatic Control
– volume: 53
  start-page: 18
  year: 2012
  end-page: 29
  ident: bib41
  article-title: Advanced model-based fdir techniques for aerospace systems, Today challenges and opportunities
  publication-title: Progress in Aerospace Sciences
– year: 1992
  ident: bib35
  article-title: Aircraft control and simulation
– volume: 32
  start-page: 227
  year: 2014
  end-page: 235
  ident: bib5
  article-title: Differential geometry based active fault tolerant control for aircraft
  publication-title: Control Engineering Practice
– year: 1998
  ident: bib37
  article-title: DASMAT—Delft University aircraft simulation model and analysis tool
– volume: 49
  start-page: 112
  year: 2016
  end-page: 128
  ident: bib21
  article-title: Nonlinear aircraft sensor fault reconstruction in the presence of disturbances validated by real flight data
  publication-title: Control Engineering Practice
– reference: (pp. 236–255).
– reference: (pp. 1–17), AIAA 2015-1312, Kissimmee, Florida.
– volume: 21
  start-page: 1065
  year: 2013
  end-page: 1077
  ident: bib30
  article-title: An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion
  publication-title: Control Engineering Practice
– volume: 30
  year: 2007
  ident: bib33
  article-title: Nonlinear flight control design using constrained adaptive backstepping
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 33
  start-page: 677
  year: 2010
  end-page: 694
  ident: bib2
  article-title: Evaluation of a sliding mode fault-tolerant controller for the el al incident
  publication-title: Journal of Guidance, Control, and Dynamics
– reference: Lu, P., van Kampen, E., & Chu, Q. (2015). Robustness and tuning of incremental backstepping. In
– volume: 33
  start-page: 1732
  year: 2010
  end-page: 1742
  ident: bib29
  article-title: Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction
  publication-title: Journal of Guidance, Control, and Dynamics
– reference: (pp. 398–403).
– volume: 19
  start-page: 177
  year: 1992
  end-page: 185
  ident: bib13
  article-title: Adaptive nonlinear control without overparametrization
  publication-title: Systems & Control Letters
– volume: 12
  start-page: 706
  year: 2004
  end-page: 716
  ident: bib27
  article-title: Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 37
  start-page: 1373
  year: 2001
  end-page: 1383
  ident: bib3
  article-title: Reconfigurable NDI Controller using inertial sensor failure detection & isolation
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 21
  start-page: 29
  year: 1998
  end-page: 38
  ident: bib11
  article-title: Trajectory tracking for autonomous vehicles
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 21
  start-page: 1290
  year: 2013
  end-page: 1301
  ident: bib10
  article-title: Air data system fault modeling and detection
  publication-title: Control Engineering Practice
– reference: Patton, R.J. (1997). Fault-tolerant control systems: The 1997 situation. In
– reference: (pp. 1033–1054).
– start-page: 1
  year: 2016
  end-page: 12
  ident: bib32
  article-title: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles
  publication-title: Journal of Guidance, Control, and Dynamics
– year: 2014
  ident: bib42
  article-title: .
– year: 1990
  ident: bib25
  article-title: Automatic flight control systems
– volume: 20
  start-page: 566
  year: 2012
  end-page: 580
  ident: bib7
  article-title: Command filtered adaptive backstepping
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 33
  start-page: 707
  year: 2010
  end-page: 723
  ident: bib17
  article-title: Online aerodynamic model structure selection and parameter estimation for fault-tolerant control
  publication-title: Journal of Guidance, Control and Dynamics
– volume: 54
  start-page: 1391
  year: 2009
  ident: 10.1016/j.conengprac.2016.09.010_bib9
  article-title: Command filtering backstepping
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2009.2015562
– year: 2002
  ident: 10.1016/j.conengprac.2016.09.010_bib12
– volume: 33
  start-page: 707
  year: 2010
  ident: 10.1016/j.conengprac.2016.09.010_bib17
  article-title: Online aerodynamic model structure selection and parameter estimation for fault-tolerant control
  publication-title: Journal of Guidance, Control and Dynamics
  doi: 10.2514/1.47256
– volume: 32
  start-page: 227
  year: 2014
  ident: 10.1016/j.conengprac.2016.09.010_bib5
  article-title: Differential geometry based active fault tolerant control for aircraft
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.12.011
– start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2016.09.010_bib36
  article-title: Multivariate spline-based adaptive control of high-performance aircraft with aerodynamic uncertainties
  publication-title: Journal of Guidance, Control and Dynamics
– volume: 226
  start-page: 1329
  year: 2012
  ident: 10.1016/j.conengprac.2016.09.010_bib23
  article-title: Model-based fault diagnosis for aerospace systems: A survey
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
  doi: 10.1177/0954410011421717
– year: 1995
  ident: 10.1016/j.conengprac.2016.09.010_bib14
– volume: 21
  start-page: 1065
  year: 2013
  ident: 10.1016/j.conengprac.2016.09.010_bib30
  article-title: An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.03.009
– volume: 32
  start-page: 25
  year: 2009
  ident: 10.1016/j.conengprac.2016.09.010_bib34
  article-title: Nonlinear adaptive trajectory control applied to an F-16 model
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.38785
– volume: 34
  start-page: 379
  year: 1998
  ident: 10.1016/j.conengprac.2016.09.010_bib15
  article-title: Robust exact differentiation via sliding mode technique
  publication-title: Automatica
  doi: 10.1016/S0005-1098(97)00209-4
– start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2016.09.010_bib32
  article-title: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 21
  start-page: 29
  year: 1998
  ident: 10.1016/j.conengprac.2016.09.010_bib11
  article-title: Trajectory tracking for autonomous vehicles
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/2.4229
– ident: 10.1016/j.conengprac.2016.09.010_bib26
– volume: 33
  start-page: 1732
  year: 2010
  ident: 10.1016/j.conengprac.2016.09.010_bib29
  article-title: Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.49978
– volume: 21
  start-page: 1290
  year: 2013
  ident: 10.1016/j.conengprac.2016.09.010_bib10
  article-title: Air data system fault modeling and detection
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.05.007
– volume: 36
  start-page: 39
  year: 2015
  ident: 10.1016/j.conengprac.2016.09.010_bib20
  article-title: Double-model adaptive fault detection and diagnosis applied to real flight data
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2014.12.007
– volume: 19
  start-page: 540
  year: 2011
  ident: 10.1016/j.conengprac.2016.09.010_bib16
  article-title: Modular flight control reconfiguration design and simulation
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2010.12.008
– volume: 39
  start-page: 1250
  year: 2003
  ident: 10.1016/j.conengprac.2016.09.010_bib31
  article-title: Nonlinear adaptive and sliding mode flight path control of F/A-18 model
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2003.1261125
– volume: 34
  start-page: 1311
  year: 2011
  ident: 10.1016/j.conengprac.2016.09.010_bib6
  article-title: Experimental validation of L1 adaptive control
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.50683
– volume: 53
  start-page: 18
  year: 2012
  ident: 10.1016/j.conengprac.2016.09.010_bib41
  article-title: Advanced model-based fdir techniques for aerospace systems, Today challenges and opportunities
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/j.paerosci.2012.02.004
– volume: 10
  start-page: 288
  year: 2002
  ident: 10.1016/j.conengprac.2016.09.010_bib28
  article-title: Tailless aircraft flight control using multiple time scale reconfigurable sliding modes
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/87.987075
– ident: 10.1016/j.conengprac.2016.09.010_bib24
– ident: 10.1016/j.conengprac.2016.09.010_bib22
– year: 1998
  ident: 10.1016/j.conengprac.2016.09.010_bib37
– ident: 10.1016/j.conengprac.2016.09.010_bib38
– volume: 37
  start-page: 1373
  year: 2001
  ident: 10.1016/j.conengprac.2016.09.010_bib3
  article-title: Reconfigurable NDI Controller using inertial sensor failure detection & isolation
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/7.976972
– volume: 37
  start-page: 717
  year: 2001
  ident: 10.1016/j.conengprac.2016.09.010_bib39
  article-title: Reliable H infinity controller design for linear systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00007-3
– volume: 49
  start-page: 112
  year: 2016
  ident: 10.1016/j.conengprac.2016.09.010_bib21
  article-title: Nonlinear aircraft sensor fault reconstruction in the presence of disturbances validated by real flight data
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2016.01.012
– volume: 12
  start-page: 706
  year: 2004
  ident: 10.1016/j.conengprac.2016.09.010_bib27
  article-title: Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2004.826956
– volume: 33
  start-page: 677
  year: 2010
  ident: 10.1016/j.conengprac.2016.09.010_bib2
  article-title: Evaluation of a sliding mode fault-tolerant controller for the el al incident
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.47442
– ident: 10.1016/j.conengprac.2016.09.010_bib19
  doi: 10.2514/6.2015-1762
– volume: 30
  year: 2007
  ident: 10.1016/j.conengprac.2016.09.010_bib33
  article-title: Nonlinear flight control design using constrained adaptive backstepping
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.25834
– volume: 20
  start-page: 566
  year: 2012
  ident: 10.1016/j.conengprac.2016.09.010_bib7
  article-title: Command filtered adaptive backstepping
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2011.2121907
– volume: 28
  start-page: 1089
  year: 2005
  ident: 10.1016/j.conengprac.2016.09.010_bib8
  article-title: Backstepping-based flight control with adaptive function approximation
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.13030
– start-page: 229
  year: 2008
  ident: 10.1016/j.conengprac.2016.09.010_bib40
  article-title: Bibliographical review on reconfigurable fault-tolerant control systems
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2008.03.008
– ident: 10.1016/j.conengprac.2016.09.010_bib18
  doi: 10.2514/6.2015-1312
– year: 1990
  ident: 10.1016/j.conengprac.2016.09.010_bib25
– volume: 33
  year: 2010
  ident: 10.1016/j.conengprac.2016.09.010_bib1
  article-title: Fault-tolerant model predictive control with flight-test results
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.46108
– year: 1992
  ident: 10.1016/j.conengprac.2016.09.010_bib35
– volume: 19
  start-page: 177
  year: 1992
  ident: 10.1016/j.conengprac.2016.09.010_bib13
  article-title: Adaptive nonlinear control without overparametrization
  publication-title: Systems & Control Letters
  doi: 10.1016/0167-6911(92)90111-5
– year: 2014
  ident: 10.1016/j.conengprac.2016.09.010_bib42
– volume: 18
  start-page: 449
  year: 2010
  ident: 10.1016/j.conengprac.2016.09.010_bib4
  article-title: Design of residual generators and adaptive filters for the FDI of aircraft model sensors
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2008.11.006
SSID ssj0016991
Score 2.5156965
Snippet This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126
SubjectTerms Fault-tolerant control
Incremental Nonlinear Dynamic Inversion
Model identification
Nonlinear flight control
Trajectory control
Title Aircraft fault-tolerant trajectory control using Incremental Nonlinear Dynamic Inversion
URI https://dx.doi.org/10.1016/j.conengprac.2016.09.010
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIryqDywhjZx4jRiqgpVAakLVOoW2Y5dtapKFaUDC7-dc-yUIiGBxJZEuSg623efz9_dAdyEoUiSjDJP65h65qTJ62VceUGG4DsM4ijgJdtizEaT8GkaTWswqHJhDK3S2X5r00tr7Z50nDY76_m884LgO0aH6SOiQEfl9-rQDGjCogY0-4_Po_H2MIEltnEevm8S7n1H6LE0L9x1qtXMpCQZnhcri56adNqfvNSO5xkewoGDjKRv_-oIamp1DPs7hQRPYNqf5zLnuiCab5aFV7wtFTqhghQ5X5Rx-XfiSOnEMN1nBO2CjQzil8e2XAbPyb3tT09M9Y0yjnYKk-HD62DkuZ4JnqSsV3iyq3GL0EsiHma4mxKBkJFIpNQxE6rrS-bLSOG61bGOTFYpguvYFwIXYiZ1EjJ6Bo0VquQcCOUh44JGWnG8ohlHbCfQpwZK8JiKrAVxpaNUuoLipq_FMq2YY4v0S7up0W7aTVLUbgv8reTaFtX4g8xdNQzptwmSou3_VfriX9KXsGfuLIvlChpFvlHXiEUK0Yb67YffdjPuEzpF4cY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1tIkTOxFTVagKlC60UjfLduyqVVWqKB1Y-O2c4wSKhAQSW5Tkouhi3313-e4OoeswlEmSEuoZw4hn_zR5cSq0F6QAvsOARYEo2BYD2huFj-NoXEOdqhbG0ipL2-9semGtyzPNUpvN5XTafAHwzcBh-oAowFH58QbaDCPCLK_v5v2T5-HTxI3Ng7ttub1f0nkcyQtiTr2Y2IIky_KiRctTW0z7k49a8zvdPbRbAkbcdu-0j2p6cYB21toIHqJxe5qpTJgcG7Ga517-OtfggnKcZ2JWZOXfcElJx5bnPsFgFVxeEJ48cM0yRIbv3HR6bHtvFFm0IzTq3g87Pa-cmOApQuPcUy0DAUKcRCJMIZaSgVSRTJQyjErd8hX1VaRh1xpmIltTCtCa-VLCNkyVSUJKjlF9ASo5QZiIkApJIqMFHJFUALKT4FEDLQUjMm0gVumIq7KduJ1qMecVb2zGv7TLrXZ5K-Gg3QbyPyWXrqXGH2Ruq8_Avy0PDpb_V-nTf0lfoa3e8LnP-w-DpzO0ba84Pss5qufZSl8AKsnlZbHqPgAoRuKR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+fault-tolerant+trajectory+control+using+Incremental+Nonlinear+Dynamic+Inversion&rft.jtitle=Control+engineering+practice&rft.au=Lu%2C+Peng&rft.au=van+Kampen%2C+Erik-Jan&rft.au=de+Visser%2C+Cornelis&rft.au=Chu%2C+Qiping&rft.date=2016-12-01&rft.issn=0967-0661&rft.volume=57&rft.spage=126&rft.epage=141&rft_id=info:doi/10.1016%2Fj.conengprac.2016.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2016_09_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon