Aircraft fault-tolerant trajectory control using Incremental Nonlinear Dynamic Inversion
This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear dynamic inversion with online model identification, can be applied. However, since there are a number of unknown aerodynamic...
Saved in:
Published in | Control engineering practice Vol. 57; pp. 126 - 141 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0967-0661 1873-6939 |
DOI | 10.1016/j.conengprac.2016.09.010 |
Cover
Abstract | This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear dynamic inversion with online model identification, can be applied. However, since there are a number of unknown aerodynamic derivatives, the tuning of parameter update law gains is time-consuming. Methods with online model identification require excitation and the selection of a threshold. Furthermore, to deal with highly nonlinear aircraft dynamics, the aerodynamic model structure needs to be designed. In this paper, a novel aircraft trajectory controller, which uses the Incremental Nonlinear Dynamic Inversion, is proposed to achieve fault-tolerant trajectory control. The detailed control law design of four loops is presented. The idea is to design the loops with uncertainties using the incremental approach. The tuning of the approach is straightforward and there is no requirement for excitation and selection of a threshold. The performance of the proposed controller is compared with existing approaches using three scenarios. The results show that the proposed trajectory controller can follow the reference even when there are model uncertainties and actuator faults.
•A novel aircraft trajectory controller with four control loops is proposed.•The approach does not require designing parameter update laws or online model identification.•The approach does not require additional effort for designing the aerodynamic model structure.•The approach is robust to model uncertainties as well as structural and actuator faults.•The performance of the proposed approach is compared to existing approaches. |
---|---|
AbstractList | This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear dynamic inversion with online model identification, can be applied. However, since there are a number of unknown aerodynamic derivatives, the tuning of parameter update law gains is time-consuming. Methods with online model identification require excitation and the selection of a threshold. Furthermore, to deal with highly nonlinear aircraft dynamics, the aerodynamic model structure needs to be designed. In this paper, a novel aircraft trajectory controller, which uses the Incremental Nonlinear Dynamic Inversion, is proposed to achieve fault-tolerant trajectory control. The detailed control law design of four loops is presented. The idea is to design the loops with uncertainties using the incremental approach. The tuning of the approach is straightforward and there is no requirement for excitation and selection of a threshold. The performance of the proposed controller is compared with existing approaches using three scenarios. The results show that the proposed trajectory controller can follow the reference even when there are model uncertainties and actuator faults.
•A novel aircraft trajectory controller with four control loops is proposed.•The approach does not require designing parameter update laws or online model identification.•The approach does not require additional effort for designing the aerodynamic model structure.•The approach is robust to model uncertainties as well as structural and actuator faults.•The performance of the proposed approach is compared to existing approaches. |
Author | Chu, Qiping Lu, Peng de Visser, Cornelis van Kampen, Erik-Jan |
Author_xml | – sequence: 1 givenname: Peng surname: Lu fullname: Lu, Peng email: P.Lu-1@tudelft.nl – sequence: 2 givenname: Erik-Jan surname: van Kampen fullname: van Kampen, Erik-Jan email: E.vanKampen@tudelft.nl – sequence: 3 givenname: Cornelis surname: de Visser fullname: de Visser, Cornelis email: c.c.devisser@tudelft.nl – sequence: 4 givenname: Qiping surname: Chu fullname: Chu, Qiping email: q.p.chu@tudelft.nl |
BookMark | eNqNkN1KAzEQhYNUsK2-Q15g12R_ks2NUOtfoeiNgnchO5uULNukZNNC396UCoI3ejVwZs4ZzjdDE-edRghTklNC2W2fQxLcZhcU5EVSciJyQskFmtKGlxkTpZigKRGMZ4QxeoVm49iTdCgEnaLPhQ0QlInYqP0Qs-gHHZSLOAbVa4g-HHF6EIMf8H60boNXDoLeahfVgF-9G6zTKuCHo1NbC2l70GG03l2jS6OGUd98zzn6eHp8X75k67fn1XKxzqBkTcyAmFrwRtSq6oqmaIsW6lYAGM5aTSgwCrWuCDHc1HVVVpwXnLZtSUUHRlSsnKPmnAvBj2PQRu6C3apwlJTIEyHZyx9C8kRIEiEToWS9-2UFG1W0p7rKDv8JuD8H6FTwYHWQI1jtQHc2JHay8_bvkC-V0o3o |
CitedBy_id | crossref_primary_10_1007_s11071_022_07904_7 crossref_primary_10_1002_rnc_3951 crossref_primary_10_1007_s11075_018_0564_5 crossref_primary_10_1016_j_robot_2022_104292 crossref_primary_10_1002_rnc_6503 crossref_primary_10_1016_j_ast_2022_107898 crossref_primary_10_1016_j_isatra_2019_02_037 crossref_primary_10_1016_j_paerosci_2021_100696 crossref_primary_10_3390_electronics12143079 crossref_primary_10_1016_j_conengprac_2021_104938 crossref_primary_10_1016_j_ast_2022_107979 crossref_primary_10_1016_j_ast_2018_08_002 crossref_primary_10_1109_TFUZZ_2024_3356577 crossref_primary_10_1016_j_ast_2020_105986 crossref_primary_10_1109_ACCESS_2021_3092164 crossref_primary_10_1155_2021_7411673 crossref_primary_10_3390_aerospace10010049 crossref_primary_10_3390_aerospace9010034 crossref_primary_10_2514_1_G004246 crossref_primary_10_1016_j_cja_2020_02_020 crossref_primary_10_2514_1_G003472 crossref_primary_10_2514_1_G003791 crossref_primary_10_1088_1742_6596_2472_1_012043 crossref_primary_10_1155_2021_4945642 crossref_primary_10_1155_2018_6315856 crossref_primary_10_1177_01423312221114687 crossref_primary_10_1016_j_ast_2023_108472 crossref_primary_10_1016_j_ast_2019_105300 crossref_primary_10_1016_j_isatra_2022_10_021 crossref_primary_10_2514_1_G008215 crossref_primary_10_1016_j_ast_2022_107601 crossref_primary_10_23919_JSEE_2022_000018 crossref_primary_10_1109_ACCESS_2024_3425462 crossref_primary_10_3390_app132212225 crossref_primary_10_1142_S0217984919503111 crossref_primary_10_1007_s11071_023_08849_1 crossref_primary_10_3390_aerospace9070352 crossref_primary_10_2514_1_G005785 crossref_primary_10_2514_1_G002079 crossref_primary_10_1016_j_isatra_2021_03_011 crossref_primary_10_1016_j_ast_2024_109336 crossref_primary_10_1016_j_neucom_2021_08_069 crossref_primary_10_1002_acs_3548 crossref_primary_10_1016_j_ast_2019_105514 crossref_primary_10_2514_1_G007254 crossref_primary_10_2514_1_I010846 crossref_primary_10_1016_j_ast_2022_107950 crossref_primary_10_1109_TAES_2022_3168247 crossref_primary_10_1002_rnc_6570 crossref_primary_10_1016_j_ast_2022_107959 crossref_primary_10_1007_s40435_020_00740_w crossref_primary_10_3390_aerospace8040108 crossref_primary_10_1016_j_ast_2018_05_059 crossref_primary_10_1061__ASCE_AS_1943_5525_0001495 crossref_primary_10_1016_j_ast_2020_106013 crossref_primary_10_1038_s41467_024_55157_2 crossref_primary_10_1109_TCST_2018_2868038 crossref_primary_10_2514_1_G003497 crossref_primary_10_1051_jnwpu_20213950995 crossref_primary_10_1016_j_ast_2023_108490 crossref_primary_10_1017_aer_2019_1 crossref_primary_10_1016_j_actaastro_2022_10_056 crossref_primary_10_2514_1_G008112 crossref_primary_10_3390_aerospace10090786 crossref_primary_10_2514_1_G007984 crossref_primary_10_1016_j_conengprac_2017_12_011 crossref_primary_10_1061_JAEEEZ_ASENG_5066 crossref_primary_10_3390_aerospace10050448 crossref_primary_10_1016_j_cja_2021_05_025 crossref_primary_10_3390_aerospace11120990 crossref_primary_10_2514_1_G006417 crossref_primary_10_2514_1_G005921 crossref_primary_10_1016_j_ast_2019_105530 crossref_primary_10_2514_1_G003980 crossref_primary_10_1016_j_isatra_2020_07_035 crossref_primary_10_1109_ACCESS_2020_3035436 crossref_primary_10_3390_act13040130 |
Cites_doi | 10.1109/TAC.2009.2015562 10.2514/1.47256 10.1016/j.conengprac.2013.12.011 10.1177/0954410011421717 10.1016/j.conengprac.2013.03.009 10.2514/1.38785 10.1016/S0005-1098(97)00209-4 10.2514/2.4229 10.2514/1.49978 10.1016/j.conengprac.2013.05.007 10.1016/j.conengprac.2014.12.007 10.1016/j.conengprac.2010.12.008 10.1109/TAES.2003.1261125 10.2514/1.50683 10.1016/j.paerosci.2012.02.004 10.1109/87.987075 10.1109/7.976972 10.1016/S0005-1098(01)00007-3 10.1016/j.conengprac.2016.01.012 10.1109/TCST.2004.826956 10.2514/1.47442 10.2514/6.2015-1762 10.2514/1.25834 10.1109/TCST.2011.2121907 10.2514/1.13030 10.1016/j.arcontrol.2008.03.008 10.2514/6.2015-1312 10.2514/1.46108 10.1016/0167-6911(92)90111-5 10.1016/j.conengprac.2008.11.006 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conengprac.2016.09.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-6939 |
EndPage | 141 |
ExternalDocumentID | 10_1016_j_conengprac_2016_09_010 S0967066116302118 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c368t-c0f597895a4d282b2bc5b9ccf76be01c61c5e400f7f5543477271bb319dcf9463 |
IEDL.DBID | AIKHN |
ISSN | 0967-0661 |
IngestDate | Tue Jul 01 00:39:01 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Fri Feb 23 02:35:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nonlinear flight control Trajectory control Fault-tolerant control Model identification Incremental Nonlinear Dynamic Inversion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-c0f597895a4d282b2bc5b9ccf76be01c61c5e400f7f5543477271bb319dcf9463 |
OpenAccessLink | http://resolver.tudelft.nl/uuid:051aee7e-458b-43c6-9a65-9818b67ec279 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_conengprac_2016_09_010 crossref_citationtrail_10_1016_j_conengprac_2016_09_010 elsevier_sciencedirect_doi_10_1016_j_conengprac_2016_09_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 2016-12-00 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationTitle | Control engineering practice |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Krstic, Kanellakopoulos, Kokotovic (bib14) 1995 (pp. 1–17), AIAA 2015-1312, Kissimmee, Florida. Lu, van Kampen, de Visser, Chu (bib21) 2016; 49 Tol, Visser, Sun, Kampen, Chu (bib36) 2016 Khalil (bib12) 2002 Almeida, Leißling (bib1) 2010; 33 Sonneveldt, Van Oort, Chu, Mulder (bib34) 2009; 32 Lombaerts, Van Oort, Chu, Mulder, Joosten (bib17) 2010; 33 Zolghadri (bib41) 2012; 53 Dong, Farrell, Polycarpou, Djapic, Sharma (bib7) 2012; 20 Stevens, Lewis (bib35) 1992 Farrell, Polycarpou, Sharma, Dong (bib9) 2009; 54 (pp. 1033–1054). (pp. 1–15), AIAA 2015-1762, Kissimmee, Florida. Levant (bib15) 1998; 34 Smeur, Chu, Croon (bib32) 2016 Castaldi, Geri, Bonfe, Simani, Benini (bib4) 2010; 18 Maximilian, M., Dauer, J.C., & Holzapfel, F. (2013). Adaptive trajectory controller for generic fixed-wing unmanned aircraft. In Singh, Steinberg, Page (bib31) 2003; 39 Krstić, Kanellakopoulos, Kokotović (bib13) 1992; 19 Ren, Beard (bib27) 2004; 12 Zolghadri, Henry, Cieslak, Efimov, Goupil (bib42) 2014 Yang, Wang, Soh (bib39) 2001; 37 Alwi, Edwards, Stroosma, Mulder (bib2) 2010; 33 Farrell, Sharma, Polycarpou (bib8) 2005; 28 Castaldi, Mimmo, Simani (bib5) 2014; 32 Lu, Van Eykeren, van Kampen, de Visser, Chu (bib20) 2015; 36 Freeman, Seiler, Balas (bib10) 2013; 21 Simplício, Pavel, van Kampen, Chu (bib30) 2013; 21 Shtessel, Buffington, Banda (bib28) 2002; 10 Lu, P., & van Kampen, E. (2015). Active fault-tolerant control system using incremental backstepping approach. In (pp. 236–255). van der Linden (bib37) 1998 Lu, P. (2016). Fault diagnosis and fault-tolerant control for aircraft subjected to sensor and actuator faults (Ph.D. thesis). Delft University of Technology. Dobrokhodov, Kaminer, Kitsios, Xargay, Hovakimyan, Cao (bib6) 2011; 34 Kaminer, Pascoal, Hallberg, Silvestre (bib11) 1998; 21 Lu, P., van Kampen, E., & Chu, Q. (2015). Robustness and tuning of incremental backstepping. In (pp. 398–403). Sonneveldt, Chu, Mulder (bib33) 2007; 30 Zhang, Jiang (bib40) 2008 Sieberling, Chu, Mulder (bib29) 2010; 33 Marzat, Piet-Lahanier, Damongeot, Walter (bib23) 2012; 226 Patton, R.J. (1997). Fault-tolerant control systems: The 1997 situation. In Lombaerts, Chu, Mulder, Joosten (bib16) 2011; 19 Venkataraman, R., Lukatsi, M., Vanek, B., & Seiler, P. (2015). Reliability assessment reliability assessment of actuator architectures for unmanned aircraft. In Mclean (bib25) 1990 Bacon, Ostroff, Joshi (bib3) 2001; 37 Singh (10.1016/j.conengprac.2016.09.010_bib31) 2003; 39 Zolghadri (10.1016/j.conengprac.2016.09.010_bib42) 2014 Levant (10.1016/j.conengprac.2016.09.010_bib15) 1998; 34 Alwi (10.1016/j.conengprac.2016.09.010_bib2) 2010; 33 Krstić (10.1016/j.conengprac.2016.09.010_bib13) 1992; 19 Zhang (10.1016/j.conengprac.2016.09.010_bib40) 2008 Krstic (10.1016/j.conengprac.2016.09.010_bib14) 1995 Lombaerts (10.1016/j.conengprac.2016.09.010_bib16) 2011; 19 10.1016/j.conengprac.2016.09.010_bib26 Dobrokhodov (10.1016/j.conengprac.2016.09.010_bib6) 2011; 34 10.1016/j.conengprac.2016.09.010_bib24 Castaldi (10.1016/j.conengprac.2016.09.010_bib5) 2014; 32 10.1016/j.conengprac.2016.09.010_bib22 Ren (10.1016/j.conengprac.2016.09.010_bib27) 2004; 12 Bacon (10.1016/j.conengprac.2016.09.010_bib3) 2001; 37 Tol (10.1016/j.conengprac.2016.09.010_bib36) 2016 Zolghadri (10.1016/j.conengprac.2016.09.010_bib41) 2012; 53 Mclean (10.1016/j.conengprac.2016.09.010_bib25) 1990 Sieberling (10.1016/j.conengprac.2016.09.010_bib29) 2010; 33 Dong (10.1016/j.conengprac.2016.09.010_bib7) 2012; 20 Marzat (10.1016/j.conengprac.2016.09.010_bib23) 2012; 226 Stevens (10.1016/j.conengprac.2016.09.010_bib35) 1992 Freeman (10.1016/j.conengprac.2016.09.010_bib10) 2013; 21 Lu (10.1016/j.conengprac.2016.09.010_bib21) 2016; 49 Castaldi (10.1016/j.conengprac.2016.09.010_bib4) 2010; 18 10.1016/j.conengprac.2016.09.010_bib19 10.1016/j.conengprac.2016.09.010_bib18 Simplício (10.1016/j.conengprac.2016.09.010_bib30) 2013; 21 10.1016/j.conengprac.2016.09.010_bib38 Kaminer (10.1016/j.conengprac.2016.09.010_bib11) 1998; 21 Lombaerts (10.1016/j.conengprac.2016.09.010_bib17) 2010; 33 Khalil (10.1016/j.conengprac.2016.09.010_bib12) 2002 Sonneveldt (10.1016/j.conengprac.2016.09.010_bib33) 2007; 30 van der Linden (10.1016/j.conengprac.2016.09.010_bib37) 1998 Almeida (10.1016/j.conengprac.2016.09.010_bib1) 2010; 33 Sonneveldt (10.1016/j.conengprac.2016.09.010_bib34) 2009; 32 Lu (10.1016/j.conengprac.2016.09.010_bib20) 2015; 36 Shtessel (10.1016/j.conengprac.2016.09.010_bib28) 2002; 10 Farrell (10.1016/j.conengprac.2016.09.010_bib9) 2009; 54 Yang (10.1016/j.conengprac.2016.09.010_bib39) 2001; 37 Farrell (10.1016/j.conengprac.2016.09.010_bib8) 2005; 28 Smeur (10.1016/j.conengprac.2016.09.010_bib32) 2016 |
References_xml | – reference: Lu, P., & van Kampen, E. (2015). Active fault-tolerant control system using incremental backstepping approach. In – volume: 34 start-page: 1311 year: 2011 end-page: 1328 ident: bib6 article-title: Experimental validation of L1 adaptive control publication-title: Journal of Guidance, Control, and Dynamics – volume: 19 start-page: 540 year: 2011 end-page: 554 ident: bib16 article-title: Modular flight control reconfiguration design and simulation publication-title: Control Engineering Practice – reference: Lu, P. (2016). Fault diagnosis and fault-tolerant control for aircraft subjected to sensor and actuator faults (Ph.D. thesis). Delft University of Technology. – reference: Venkataraman, R., Lukatsi, M., Vanek, B., & Seiler, P. (2015). Reliability assessment reliability assessment of actuator architectures for unmanned aircraft. In – volume: 226 start-page: 1329 year: 2012 end-page: 1360 ident: bib23 article-title: Model-based fault diagnosis for aerospace systems: A survey – reference: (pp. 1–15), AIAA 2015-1762, Kissimmee, Florida. – volume: 33 year: 2010 ident: bib1 article-title: Fault-tolerant model predictive control with flight-test results publication-title: Journal of Guidance, Control, and Dynamics – volume: 28 start-page: 1089 year: 2005 end-page: 1102 ident: bib8 article-title: Backstepping-based flight control with adaptive function approximation publication-title: Journal of Guidance, Control, and Dynamics – year: 1995 ident: bib14 article-title: Nonlinear and adaptive control design – reference: Maximilian, M., Dauer, J.C., & Holzapfel, F. (2013). Adaptive trajectory controller for generic fixed-wing unmanned aircraft. In – volume: 39 start-page: 1250 year: 2003 end-page: 1262 ident: bib31 article-title: Nonlinear adaptive and sliding mode flight path control of F/A-18 model publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 18 start-page: 449 year: 2010 end-page: 459 ident: bib4 article-title: Design of residual generators and adaptive filters for the FDI of aircraft model sensors publication-title: Control Engineering Practice – start-page: 1 year: 2016 end-page: 20 ident: bib36 article-title: Multivariate spline-based adaptive control of high-performance aircraft with aerodynamic uncertainties publication-title: Journal of Guidance, Control and Dynamics – volume: 36 start-page: 39 year: 2015 end-page: 57 ident: bib20 article-title: Double-model adaptive fault detection and diagnosis applied to real flight data publication-title: Control Engineering Practice – volume: 37 start-page: 717 year: 2001 end-page: 725 ident: bib39 article-title: Reliable H infinity controller design for linear systems publication-title: Automatica – volume: 34 start-page: 379 year: 1998 end-page: 384 ident: bib15 article-title: Robust exact differentiation via sliding mode technique publication-title: Automatica – volume: 10 start-page: 288 year: 2002 end-page: 296 ident: bib28 article-title: Tailless aircraft flight control using multiple time scale reconfigurable sliding modes publication-title: IEEE Transactions on Control Systems Technology – start-page: 229 year: 2008 end-page: 252 ident: bib40 article-title: Bibliographical review on reconfigurable fault-tolerant control systems publication-title: Annual Reviews in Control – year: 2002 ident: bib12 article-title: Nonlinear systems – volume: 32 start-page: 25 year: 2009 end-page: 39 ident: bib34 article-title: Nonlinear adaptive trajectory control applied to an F-16 model publication-title: Journal of Guidance, Control, and Dynamics – volume: 54 start-page: 1391 year: 2009 end-page: 1395 ident: bib9 article-title: Command filtering backstepping publication-title: IEEE Transactions on Automatic Control – volume: 53 start-page: 18 year: 2012 end-page: 29 ident: bib41 article-title: Advanced model-based fdir techniques for aerospace systems, Today challenges and opportunities publication-title: Progress in Aerospace Sciences – year: 1992 ident: bib35 article-title: Aircraft control and simulation – volume: 32 start-page: 227 year: 2014 end-page: 235 ident: bib5 article-title: Differential geometry based active fault tolerant control for aircraft publication-title: Control Engineering Practice – year: 1998 ident: bib37 article-title: DASMAT—Delft University aircraft simulation model and analysis tool – volume: 49 start-page: 112 year: 2016 end-page: 128 ident: bib21 article-title: Nonlinear aircraft sensor fault reconstruction in the presence of disturbances validated by real flight data publication-title: Control Engineering Practice – reference: (pp. 236–255). – reference: (pp. 1–17), AIAA 2015-1312, Kissimmee, Florida. – volume: 21 start-page: 1065 year: 2013 end-page: 1077 ident: bib30 article-title: An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion publication-title: Control Engineering Practice – volume: 30 year: 2007 ident: bib33 article-title: Nonlinear flight control design using constrained adaptive backstepping publication-title: Journal of Guidance, Control, and Dynamics – volume: 33 start-page: 677 year: 2010 end-page: 694 ident: bib2 article-title: Evaluation of a sliding mode fault-tolerant controller for the el al incident publication-title: Journal of Guidance, Control, and Dynamics – reference: Lu, P., van Kampen, E., & Chu, Q. (2015). Robustness and tuning of incremental backstepping. In – volume: 33 start-page: 1732 year: 2010 end-page: 1742 ident: bib29 article-title: Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction publication-title: Journal of Guidance, Control, and Dynamics – reference: (pp. 398–403). – volume: 19 start-page: 177 year: 1992 end-page: 185 ident: bib13 article-title: Adaptive nonlinear control without overparametrization publication-title: Systems & Control Letters – volume: 12 start-page: 706 year: 2004 end-page: 716 ident: bib27 article-title: Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints publication-title: IEEE Transactions on Control Systems Technology – volume: 37 start-page: 1373 year: 2001 end-page: 1383 ident: bib3 article-title: Reconfigurable NDI Controller using inertial sensor failure detection & isolation publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 21 start-page: 29 year: 1998 end-page: 38 ident: bib11 article-title: Trajectory tracking for autonomous vehicles publication-title: Journal of Guidance, Control, and Dynamics – volume: 21 start-page: 1290 year: 2013 end-page: 1301 ident: bib10 article-title: Air data system fault modeling and detection publication-title: Control Engineering Practice – reference: Patton, R.J. (1997). Fault-tolerant control systems: The 1997 situation. In – reference: (pp. 1033–1054). – start-page: 1 year: 2016 end-page: 12 ident: bib32 article-title: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles publication-title: Journal of Guidance, Control, and Dynamics – year: 2014 ident: bib42 article-title: . – year: 1990 ident: bib25 article-title: Automatic flight control systems – volume: 20 start-page: 566 year: 2012 end-page: 580 ident: bib7 article-title: Command filtered adaptive backstepping publication-title: IEEE Transactions on Control Systems Technology – volume: 33 start-page: 707 year: 2010 end-page: 723 ident: bib17 article-title: Online aerodynamic model structure selection and parameter estimation for fault-tolerant control publication-title: Journal of Guidance, Control and Dynamics – volume: 54 start-page: 1391 year: 2009 ident: 10.1016/j.conengprac.2016.09.010_bib9 article-title: Command filtering backstepping publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2009.2015562 – year: 2002 ident: 10.1016/j.conengprac.2016.09.010_bib12 – volume: 33 start-page: 707 year: 2010 ident: 10.1016/j.conengprac.2016.09.010_bib17 article-title: Online aerodynamic model structure selection and parameter estimation for fault-tolerant control publication-title: Journal of Guidance, Control and Dynamics doi: 10.2514/1.47256 – volume: 32 start-page: 227 year: 2014 ident: 10.1016/j.conengprac.2016.09.010_bib5 article-title: Differential geometry based active fault tolerant control for aircraft publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.12.011 – start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2016.09.010_bib36 article-title: Multivariate spline-based adaptive control of high-performance aircraft with aerodynamic uncertainties publication-title: Journal of Guidance, Control and Dynamics – volume: 226 start-page: 1329 year: 2012 ident: 10.1016/j.conengprac.2016.09.010_bib23 article-title: Model-based fault diagnosis for aerospace systems: A survey publication-title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering doi: 10.1177/0954410011421717 – year: 1995 ident: 10.1016/j.conengprac.2016.09.010_bib14 – volume: 21 start-page: 1065 year: 2013 ident: 10.1016/j.conengprac.2016.09.010_bib30 article-title: An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.03.009 – volume: 32 start-page: 25 year: 2009 ident: 10.1016/j.conengprac.2016.09.010_bib34 article-title: Nonlinear adaptive trajectory control applied to an F-16 model publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.38785 – volume: 34 start-page: 379 year: 1998 ident: 10.1016/j.conengprac.2016.09.010_bib15 article-title: Robust exact differentiation via sliding mode technique publication-title: Automatica doi: 10.1016/S0005-1098(97)00209-4 – start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2016.09.010_bib32 article-title: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles publication-title: Journal of Guidance, Control, and Dynamics – volume: 21 start-page: 29 year: 1998 ident: 10.1016/j.conengprac.2016.09.010_bib11 article-title: Trajectory tracking for autonomous vehicles publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/2.4229 – ident: 10.1016/j.conengprac.2016.09.010_bib26 – volume: 33 start-page: 1732 year: 2010 ident: 10.1016/j.conengprac.2016.09.010_bib29 article-title: Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.49978 – volume: 21 start-page: 1290 year: 2013 ident: 10.1016/j.conengprac.2016.09.010_bib10 article-title: Air data system fault modeling and detection publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.05.007 – volume: 36 start-page: 39 year: 2015 ident: 10.1016/j.conengprac.2016.09.010_bib20 article-title: Double-model adaptive fault detection and diagnosis applied to real flight data publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2014.12.007 – volume: 19 start-page: 540 year: 2011 ident: 10.1016/j.conengprac.2016.09.010_bib16 article-title: Modular flight control reconfiguration design and simulation publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2010.12.008 – volume: 39 start-page: 1250 year: 2003 ident: 10.1016/j.conengprac.2016.09.010_bib31 article-title: Nonlinear adaptive and sliding mode flight path control of F/A-18 model publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2003.1261125 – volume: 34 start-page: 1311 year: 2011 ident: 10.1016/j.conengprac.2016.09.010_bib6 article-title: Experimental validation of L1 adaptive control publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.50683 – volume: 53 start-page: 18 year: 2012 ident: 10.1016/j.conengprac.2016.09.010_bib41 article-title: Advanced model-based fdir techniques for aerospace systems, Today challenges and opportunities publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2012.02.004 – volume: 10 start-page: 288 year: 2002 ident: 10.1016/j.conengprac.2016.09.010_bib28 article-title: Tailless aircraft flight control using multiple time scale reconfigurable sliding modes publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/87.987075 – ident: 10.1016/j.conengprac.2016.09.010_bib24 – ident: 10.1016/j.conengprac.2016.09.010_bib22 – year: 1998 ident: 10.1016/j.conengprac.2016.09.010_bib37 – ident: 10.1016/j.conengprac.2016.09.010_bib38 – volume: 37 start-page: 1373 year: 2001 ident: 10.1016/j.conengprac.2016.09.010_bib3 article-title: Reconfigurable NDI Controller using inertial sensor failure detection & isolation publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/7.976972 – volume: 37 start-page: 717 year: 2001 ident: 10.1016/j.conengprac.2016.09.010_bib39 article-title: Reliable H infinity controller design for linear systems publication-title: Automatica doi: 10.1016/S0005-1098(01)00007-3 – volume: 49 start-page: 112 year: 2016 ident: 10.1016/j.conengprac.2016.09.010_bib21 article-title: Nonlinear aircraft sensor fault reconstruction in the presence of disturbances validated by real flight data publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2016.01.012 – volume: 12 start-page: 706 year: 2004 ident: 10.1016/j.conengprac.2016.09.010_bib27 article-title: Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2004.826956 – volume: 33 start-page: 677 year: 2010 ident: 10.1016/j.conengprac.2016.09.010_bib2 article-title: Evaluation of a sliding mode fault-tolerant controller for the el al incident publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.47442 – ident: 10.1016/j.conengprac.2016.09.010_bib19 doi: 10.2514/6.2015-1762 – volume: 30 year: 2007 ident: 10.1016/j.conengprac.2016.09.010_bib33 article-title: Nonlinear flight control design using constrained adaptive backstepping publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.25834 – volume: 20 start-page: 566 year: 2012 ident: 10.1016/j.conengprac.2016.09.010_bib7 article-title: Command filtered adaptive backstepping publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2011.2121907 – volume: 28 start-page: 1089 year: 2005 ident: 10.1016/j.conengprac.2016.09.010_bib8 article-title: Backstepping-based flight control with adaptive function approximation publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.13030 – start-page: 229 year: 2008 ident: 10.1016/j.conengprac.2016.09.010_bib40 article-title: Bibliographical review on reconfigurable fault-tolerant control systems publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2008.03.008 – ident: 10.1016/j.conengprac.2016.09.010_bib18 doi: 10.2514/6.2015-1312 – year: 1990 ident: 10.1016/j.conengprac.2016.09.010_bib25 – volume: 33 year: 2010 ident: 10.1016/j.conengprac.2016.09.010_bib1 article-title: Fault-tolerant model predictive control with flight-test results publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.46108 – year: 1992 ident: 10.1016/j.conengprac.2016.09.010_bib35 – volume: 19 start-page: 177 year: 1992 ident: 10.1016/j.conengprac.2016.09.010_bib13 article-title: Adaptive nonlinear control without overparametrization publication-title: Systems & Control Letters doi: 10.1016/0167-6911(92)90111-5 – year: 2014 ident: 10.1016/j.conengprac.2016.09.010_bib42 – volume: 18 start-page: 449 year: 2010 ident: 10.1016/j.conengprac.2016.09.010_bib4 article-title: Design of residual generators and adaptive filters for the FDI of aircraft model sensors publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2008.11.006 |
SSID | ssj0016991 |
Score | 2.5156965 |
Snippet | This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 126 |
SubjectTerms | Fault-tolerant control Incremental Nonlinear Dynamic Inversion Model identification Nonlinear flight control Trajectory control |
Title | Aircraft fault-tolerant trajectory control using Incremental Nonlinear Dynamic Inversion |
URI | https://dx.doi.org/10.1016/j.conengprac.2016.09.010 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIryqDywhjZx4jRiqgpVAakLVOoW2Y5dtapKFaUDC7-dc-yUIiGBxJZEuSg623efz9_dAdyEoUiSjDJP65h65qTJ62VceUGG4DsM4ijgJdtizEaT8GkaTWswqHJhDK3S2X5r00tr7Z50nDY76_m884LgO0aH6SOiQEfl9-rQDGjCogY0-4_Po_H2MIEltnEevm8S7n1H6LE0L9x1qtXMpCQZnhcri56adNqfvNSO5xkewoGDjKRv_-oIamp1DPs7hQRPYNqf5zLnuiCab5aFV7wtFTqhghQ5X5Rx-XfiSOnEMN1nBO2CjQzil8e2XAbPyb3tT09M9Y0yjnYKk-HD62DkuZ4JnqSsV3iyq3GL0EsiHma4mxKBkJFIpNQxE6rrS-bLSOG61bGOTFYpguvYFwIXYiZ1EjJ6Bo0VquQcCOUh44JGWnG8ohlHbCfQpwZK8JiKrAVxpaNUuoLipq_FMq2YY4v0S7up0W7aTVLUbgv8reTaFtX4g8xdNQzptwmSou3_VfriX9KXsGfuLIvlChpFvlHXiEUK0Yb67YffdjPuEzpF4cY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1tIkTOxFTVagKlC60UjfLduyqVVWqKB1Y-O2c4wSKhAQSW5Tkouhi3313-e4OoeswlEmSEuoZw4hn_zR5cSq0F6QAvsOARYEo2BYD2huFj-NoXEOdqhbG0ipL2-9semGtyzPNUpvN5XTafAHwzcBh-oAowFH58QbaDCPCLK_v5v2T5-HTxI3Ng7ttub1f0nkcyQtiTr2Y2IIky_KiRctTW0z7k49a8zvdPbRbAkbcdu-0j2p6cYB21toIHqJxe5qpTJgcG7Ga517-OtfggnKcZ2JWZOXfcElJx5bnPsFgFVxeEJ48cM0yRIbv3HR6bHtvFFm0IzTq3g87Pa-cmOApQuPcUy0DAUKcRCJMIZaSgVSRTJQyjErd8hX1VaRh1xpmIltTCtCa-VLCNkyVSUJKjlF9ASo5QZiIkApJIqMFHJFUALKT4FEDLQUjMm0gVumIq7KduJ1qMecVb2zGv7TLrXZ5K-Gg3QbyPyWXrqXGH2Ruq8_Avy0PDpb_V-nTf0lfoa3e8LnP-w-DpzO0ba84Pss5qufZSl8AKsnlZbHqPgAoRuKR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+fault-tolerant+trajectory+control+using+Incremental+Nonlinear+Dynamic+Inversion&rft.jtitle=Control+engineering+practice&rft.au=Lu%2C+Peng&rft.au=van+Kampen%2C+Erik-Jan&rft.au=de+Visser%2C+Cornelis&rft.au=Chu%2C+Qiping&rft.date=2016-12-01&rft.issn=0967-0661&rft.volume=57&rft.spage=126&rft.epage=141&rft_id=info:doi/10.1016%2Fj.conengprac.2016.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2016_09_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |