A short de novo synthesis of nucleoside analogs
Nucleotide analogs are valuable tools and therapeutics because of their ability to interfere with processes such as DNA synthesis, which are vital to rapidly dividing cells and replicating viruses. These molecules are challenging to synthesize chemically. Meanwell et al. developed a “ribose last” sy...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 369; no. 6504; pp. 725 - 730 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
07.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nucleotide analogs are valuable tools and therapeutics because of their ability to interfere with processes such as DNA synthesis, which are vital to rapidly dividing cells and replicating viruses. These molecules are challenging to synthesize chemically. Meanwell
et al.
developed a “ribose last” synthetic strategy in which a fluorinated acyclic nucleic acid is formed by an
l
- or
d
-proline–catalyzed aldol reaction (see the Perspective by Miller). This intermediate can then be cyclized to yield the nucleic acid analog in one pot with control of anomeric conformation based on cyclization conditions. Nucleotide analogs accessible by this strategy include those with modifications at C2′ and C4′, purines and pyrimidines, and locked and protected products.
Science
, this issue p.
725
; see also p.
623
Proline catalysis enables rapid and flexible nucleoside analog synthesis.
Nucleoside analogs are commonly used in the treatment of cancer and viral infections. Their syntheses benefit from decades of research but are often protracted, unamenable to diversification, and reliant on a limited pool of chiral carbohydrate starting materials. We present a process for rapidly constructing nucleoside analogs from simple achiral materials. Using only proline catalysis, heteroaryl-substituted acetaldehydes are fluorinated and then directly engaged in enantioselective aldol reactions in a one-pot reaction. A subsequent intramolecular fluoride displacement reaction provides a functionalized nucleoside analog. The versatility of this process is highlighted in multigram syntheses of
d
- or
l
-nucleoside analogs, locked nucleic acids, iminonucleosides, and C2′- and C4′-modified nucleoside analogs. This de novo synthesis creates opportunities for the preparation of diversity libraries and will support efforts in both drug discovery and development. |
---|---|
AbstractList | Short path to a complex ringNucleotide analogs are valuable tools and therapeutics because of their ability to interfere with processes such as DNA synthesis, which are vital to rapidly dividing cells and replicating viruses. These molecules are challenging to synthesize chemically. Meanwell et al. developed a “ribose last” synthetic strategy in which a fluorinated acyclic nucleic acid is formed by an l- or d-proline–catalyzed aldol reaction (see the Perspective by Miller). This intermediate can then be cyclized to yield the nucleic acid analog in one pot with control of anomeric conformation based on cyclization conditions. Nucleotide analogs accessible by this strategy include those with modifications at C2′ and C4′, purines and pyrimidines, and locked and protected products.Science, this issue p. 725; see also p. 623Nucleoside analogs are commonly used in the treatment of cancer and viral infections. Their syntheses benefit from decades of research but are often protracted, unamenable to diversification, and reliant on a limited pool of chiral carbohydrate starting materials. We present a process for rapidly constructing nucleoside analogs from simple achiral materials. Using only proline catalysis, heteroaryl-substituted acetaldehydes are fluorinated and then directly engaged in enantioselective aldol reactions in a one-pot reaction. A subsequent intramolecular fluoride displacement reaction provides a functionalized nucleoside analog. The versatility of this process is highlighted in multigram syntheses of d- or l-nucleoside analogs, locked nucleic acids, iminonucleosides, and C2′- and C4′-modified nucleoside analogs. This de novo synthesis creates opportunities for the preparation of diversity libraries and will support efforts in both drug discovery and development. Nucleotide analogs are valuable tools and therapeutics because of their ability to interfere with processes such as DNA synthesis, which are vital to rapidly dividing cells and replicating viruses. These molecules are challenging to synthesize chemically. Meanwell et al. developed a “ribose last” synthetic strategy in which a fluorinated acyclic nucleic acid is formed by an l - or d -proline–catalyzed aldol reaction (see the Perspective by Miller). This intermediate can then be cyclized to yield the nucleic acid analog in one pot with control of anomeric conformation based on cyclization conditions. Nucleotide analogs accessible by this strategy include those with modifications at C2′ and C4′, purines and pyrimidines, and locked and protected products. Science , this issue p. 725 ; see also p. 623 Proline catalysis enables rapid and flexible nucleoside analog synthesis. Nucleoside analogs are commonly used in the treatment of cancer and viral infections. Their syntheses benefit from decades of research but are often protracted, unamenable to diversification, and reliant on a limited pool of chiral carbohydrate starting materials. We present a process for rapidly constructing nucleoside analogs from simple achiral materials. Using only proline catalysis, heteroaryl-substituted acetaldehydes are fluorinated and then directly engaged in enantioselective aldol reactions in a one-pot reaction. A subsequent intramolecular fluoride displacement reaction provides a functionalized nucleoside analog. The versatility of this process is highlighted in multigram syntheses of d - or l -nucleoside analogs, locked nucleic acids, iminonucleosides, and C2′- and C4′-modified nucleoside analogs. This de novo synthesis creates opportunities for the preparation of diversity libraries and will support efforts in both drug discovery and development. |
Author | Silverman, Steven M. Wang, Yang Campeau, Louis-Charles Meanwell, Michael Lehmann, Johannes Britton, Robert Adluri, Bharanishashank Cohen, Ryan |
Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0002-4217-8478 surname: Meanwell fullname: Meanwell, Michael organization: Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada – sequence: 2 givenname: Steven M. surname: Silverman fullname: Silverman, Steven M. organization: Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA – sequence: 3 givenname: Johannes orcidid: 0000-0003-3090-5276 surname: Lehmann fullname: Lehmann, Johannes organization: Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada – sequence: 4 givenname: Bharanishashank orcidid: 0000-0003-3994-2321 surname: Adluri fullname: Adluri, Bharanishashank organization: Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada – sequence: 5 givenname: Yang orcidid: 0000-0003-2054-9394 surname: Wang fullname: Wang, Yang organization: Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada – sequence: 6 givenname: Ryan orcidid: 0000-0002-3112-6410 surname: Cohen fullname: Cohen, Ryan organization: Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA – sequence: 7 givenname: Louis-Charles orcidid: 0000-0002-2373-802X surname: Campeau fullname: Campeau, Louis-Charles organization: Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA – sequence: 8 givenname: Robert orcidid: 0000-0002-9335-0047 surname: Britton fullname: Britton, Robert organization: Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada |
BookMark | eNpdkDtrwzAUhUVJoUnauauhSxfHV8_IYwh9QaBLOwtJkRoHR0p97UL-fV2SqdMZzsfh8M3IJOUUCLmnsKCUqQp9E5IPC-scZ5xekSmFWpY1Az4hUwCuSg1LeUNmiHuAsav5lFSrAne564ttKFL-yQWeUr8L2GCRY5EG34aMzVjaZNv8hbfkOtoWw90l5-Tz-elj_Vpu3l_e1qtN6bnSfeliXUut6ygZWAnRe8a9jdJr5ZynQVohhQhMOCe5oooysbTaSiq32ipB-Zw8nnePXf4eAvbm0KAPbWtTyAMaJjjVVALoEX34h-7z0I13zxRwsRyFzEl1pnyXEbsQzbFrDrY7GQrmT6C5CDQXgfwXCTZlwQ |
CitedBy_id | crossref_primary_10_1039_D4CC00984C crossref_primary_10_1098_rsob_220287 crossref_primary_10_1039_D1OB02097H crossref_primary_10_1055_s_0040_1706364 crossref_primary_10_1016_j_copbio_2022_102873 crossref_primary_10_1002_ange_202319836 crossref_primary_10_1002_ange_202114619 crossref_primary_10_1039_D0CS01430C crossref_primary_10_1016_j_carres_2023_108889 crossref_primary_10_1021_jacsau_2c00481 crossref_primary_10_1002_chem_202104311 crossref_primary_10_3390_molecules25235513 crossref_primary_10_3390_molecules28062449 crossref_primary_10_1016_j_copbio_2022_102829 crossref_primary_10_1038_s41596_022_00705_7 crossref_primary_10_1007_s00253_021_11608_0 crossref_primary_10_1002_anie_202114619 crossref_primary_10_1016_j_biopha_2022_114037 crossref_primary_10_1021_acs_oprd_0c00476 crossref_primary_10_1002_nadc_20204102784 crossref_primary_10_1021_acs_joc_1c02592 crossref_primary_10_1039_D1SC01978C crossref_primary_10_1139_cjc_2022_0275 crossref_primary_10_1021_jacsau_3c00581 crossref_primary_10_2174_1389200224666230601091346 crossref_primary_10_1038_s42004_021_00520_3 crossref_primary_10_1055_a_2213_2408 crossref_primary_10_1126_science_abd1283 crossref_primary_10_1021_jacs_1c12106 crossref_primary_10_1002_chem_202301725 crossref_primary_10_1002_smll_202106130 crossref_primary_10_1021_acscatal_1c02589 crossref_primary_10_1021_acs_oprd_1c00175 crossref_primary_10_1016_j_bmcl_2021_128405 crossref_primary_10_1021_jacs_3c14434 crossref_primary_10_1039_D3CC01606D crossref_primary_10_1016_j_bmcl_2022_128605 crossref_primary_10_1016_j_jpba_2021_114555 crossref_primary_10_1021_acs_jmedchem_3c00761 crossref_primary_10_1039_D1QO01936H crossref_primary_10_1021_acscatal_3c04436 crossref_primary_10_1038_s41467_024_47711_9 crossref_primary_10_1021_acs_orglett_1c02998 crossref_primary_10_1038_s41467_024_49147_7 crossref_primary_10_1038_s41467_020_20035_0 crossref_primary_10_1371_journal_pone_0273256 crossref_primary_10_1002_anie_202319836 crossref_primary_10_1002_cpz1_741 crossref_primary_10_1080_17460441_2022_2039620 crossref_primary_10_1039_D2OB01761J crossref_primary_10_1039_D0SC06815B crossref_primary_10_3390_medicina59061107 crossref_primary_10_3390_molecules28207043 crossref_primary_10_1007_s00044_023_03096_w crossref_primary_10_1080_15257770_2024_2333495 crossref_primary_10_1002_hlca_202300080 crossref_primary_10_1039_D2OB01814D crossref_primary_10_1080_15257770_2022_2096898 crossref_primary_10_1002_adsc_202301509 |
Cites_doi | 10.1021/acscatal.7b02353 10.1016/j.tetlet.2007.04.105 10.1038/s41467-018-05702-7 10.1038/onc.2008.316 10.1016/S0040-4020(00)00046-6 10.1126/science.aat0805 10.1107/S0021889803006721 10.1111/j.1574-6968.2001.tb10773.x 10.1002/anie.200500571 10.1021/ol401370b 10.1074/jbc.M705274200 10.1016/S1470-2045(02)00788-X 10.1021/jm301328h 10.1002/anie.201903400 10.1039/C2NP20108A 10.1107/S2053229614024218 10.1021/ja502205q 10.1107/S0021889807067908 10.1021/ja00987a036 10.1021/jm00281a014 10.1002/adsc.200600573 10.1021/acs.jmedchem.5b00258 10.1016/j.ejmech.2014.11.057 10.1021/acs.oprd.9b00187 10.1038/nrd4010 10.1021/acs.orglett.7b00091 10.1016/j.bmc.2010.02.059 10.1081/NCN-200067423 10.1002/tcr.20078 10.1016/j.antiviral.2018.11.016 10.1021/cr200106v 10.1039/c1cs15048k 10.1107/S0021889811043202 10.1002/chem.201200279 10.1021/acs.chemrev.6b00209 10.1002/med.21256 10.1021/acs.orglett.5b02332 10.1021/jm00006a004 10.1021/jp9916889 10.1002/9781118498088 10.1021/jo9714829 10.1039/C5CC02024G 10.1039/C9RA01399G 10.1021/acs.jmedchem.5b01157 10.1021/op200153s 10.1016/j.antiviral.2018.04.004 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abb3231 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 730 |
ExternalDocumentID | 10_1126_science_abb3231 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADDRP ADUKH AEGBM AENEX AEUPB AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF B-7 BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ RHF RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c368t-bf995889f520a50fcc23caf5c86bbc1e5a4544e24bb536161247a8a515d8a6413 |
ISSN | 0036-8075 |
IngestDate | Wed Dec 04 01:36:38 EST 2024 Thu Nov 21 04:21:57 EST 2024 Fri Dec 06 02:55:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6504 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-bf995889f520a50fcc23caf5c86bbc1e5a4544e24bb536161247a8a515d8a6413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4217-8478 0000-0003-3090-5276 0000-0002-2373-802X 0000-0002-9335-0047 0000-0003-2054-9394 0000-0002-3112-6410 0000-0003-3994-2321 |
PQID | 2431034732 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2431815008 proquest_journals_2431034732 crossref_primary_10_1126_science_abb3231 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-07 20200807 |
PublicationDateYYYYMMDD | 2020-08-07 |
PublicationDate_xml | – month: 08 year: 2020 text: 20200807 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_27_2 doi: 10.1021/acscatal.7b02353 – ident: e_1_3_2_44_2 doi: 10.1016/j.tetlet.2007.04.105 – ident: e_1_3_2_26_2 doi: 10.1038/s41467-018-05702-7 – ident: e_1_3_2_7_2 doi: 10.1038/onc.2008.316 – ident: e_1_3_2_40_2 doi: 10.1016/S0040-4020(00)00046-6 – ident: e_1_3_2_21_2 doi: 10.1126/science.aat0805 – ident: e_1_3_2_49_2 – ident: e_1_3_2_53_2 doi: 10.1107/S0021889803006721 – ident: e_1_3_2_16_2 doi: 10.1111/j.1574-6968.2001.tb10773.x – ident: e_1_3_2_30_2 doi: 10.1002/anie.200500571 – ident: e_1_3_2_24_2 doi: 10.1021/ol401370b – ident: e_1_3_2_10_2 doi: 10.1074/jbc.M705274200 – ident: e_1_3_2_3_2 doi: 10.1016/S1470-2045(02)00788-X – ident: e_1_3_2_17_2 doi: 10.1021/jm301328h – ident: e_1_3_2_23_2 doi: 10.1002/anie.201903400 – ident: e_1_3_2_36_2 – ident: e_1_3_2_28_2 doi: 10.1039/C2NP20108A – ident: e_1_3_2_50_2 doi: 10.1107/S2053229614024218 – ident: e_1_3_2_22_2 doi: 10.1021/ja502205q – ident: e_1_3_2_52_2 doi: 10.1107/S0021889807067908 – ident: e_1_3_2_43_2 doi: 10.1021/ja00987a036 – ident: e_1_3_2_13_2 doi: 10.1021/jm00281a014 – ident: e_1_3_2_25_2 doi: 10.1002/adsc.200600573 – ident: e_1_3_2_11_2 doi: 10.1021/acs.jmedchem.5b00258 – ident: e_1_3_2_14_2 doi: 10.1016/j.ejmech.2014.11.057 – ident: e_1_3_2_34_2 doi: 10.1021/acs.oprd.9b00187 – ident: e_1_3_2_2_2 – ident: e_1_3_2_5_2 doi: 10.1038/nrd4010 – ident: e_1_3_2_20_2 doi: 10.1021/acs.orglett.7b00091 – ident: e_1_3_2_42_2 doi: 10.1016/j.bmc.2010.02.059 – ident: e_1_3_2_41_2 doi: 10.1081/NCN-200067423 – ident: e_1_3_2_46_2 – ident: e_1_3_2_12_2 doi: 10.1002/tcr.20078 – ident: e_1_3_2_9_2 doi: 10.1016/j.antiviral.2018.11.016 – ident: e_1_3_2_45_2 – ident: e_1_3_2_48_2 doi: 10.1021/cr200106v – ident: e_1_3_2_35_2 doi: 10.1039/c1cs15048k – ident: e_1_3_2_51_2 doi: 10.1107/S0021889811043202 – ident: e_1_3_2_31_2 doi: 10.1002/chem.201200279 – ident: e_1_3_2_6_2 doi: 10.1021/acs.chemrev.6b00209 – ident: e_1_3_2_4_2 doi: 10.1002/med.21256 – ident: e_1_3_2_38_2 doi: 10.1021/acs.orglett.5b02332 – ident: e_1_3_2_39_2 doi: 10.1021/jm00006a004 – ident: e_1_3_2_47_2 doi: 10.1021/jp9916889 – ident: e_1_3_2_18_2 doi: 10.1002/9781118498088 – ident: e_1_3_2_29_2 doi: 10.1021/jo9714829 – ident: e_1_3_2_37_2 doi: 10.1039/C5CC02024G – ident: e_1_3_2_15_2 doi: 10.1039/C9RA01399G – ident: e_1_3_2_32_2 – ident: e_1_3_2_33_2 doi: 10.1021/acs.jmedchem.5b01157 – ident: e_1_3_2_19_2 doi: 10.1021/op200153s – ident: e_1_3_2_8_2 doi: 10.1016/j.antiviral.2018.04.004 |
SSID | ssj0009593 |
Score | 2.6024013 |
Snippet | Nucleotide analogs are valuable tools and therapeutics because of their ability to interfere with processes such as DNA synthesis, which are vital to rapidly... Short path to a complex ringNucleotide analogs are valuable tools and therapeutics because of their ability to interfere with processes such as DNA synthesis,... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 725 |
SubjectTerms | Aldehydes Analogs Carbohydrates Catalysis Chemical synthesis Conformation Deoxyribonucleic acid DNA DNA biosynthesis Enantiomers Fluorides Fluorination Nucleic acids Nucleoside analogs Nucleosides Nucleotide analogs Nucleotides Proline Purines Pyrimidines Replication Ribose Viruses |
Title | A short de novo synthesis of nucleoside analogs |
URI | https://www.proquest.com/docview/2431034732 https://search.proquest.com/docview/2431815008 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaKqReEFAqlkflShxAq0DWj9g5RhTYlhZV6iLtLbIdR5ySqrsgwa9nHDvZrAqo9BJFefgw33j8-THfIHRgihJoqBhFwsQqYtyySJqRjZgw1KREpbQRnv9xlYyv2bcpny6qjTbZJXN9bB6ezCv5H1ThGeDqsmRfgWzXKDyAe8AXroAwXP8J42w4uwH6PCzssKrvaic_AHwuSIxUTqm4dtU4h6pySzSzPhFt-zQQzG7TpgdVd_ow82cE2iMD4bd2_SAsFxB_WE10AE8W-SqvabYfQoOCsR9AfNSMXcFHEtN-WKW-BEvwHyCCrBcnBeG9IVf4rZm_o3mv_qQ9VlpTEoaMJd3scfYr__nlPP_-9eryLXrnJBFdFYWL6ehZ-eUg8tRLn2qbX-Yny8Nzwzkm62gtTBZw5pHfQG9stYlWffnQ-020Ecw2w4dBPfzoAzrJcOMUuLDYOQXunALXJV44BQ5OsYWuz88mp-MoVMWIDE3kPNJlmnIp05KTWPG4NIZQo0puZKI1dDOuGGfMEqY1pwkQesKEkgp4ayFVApzlI1qp6spuIwx8tySWacIMY6qQGmAhBTfcylQYIQfosLVF_tuLn-TNpJEkeTBbHsw2QHutrfLQQ2Y5Ya6KHROUDNDn7jXEL7cppSpb3_pvJMxKYrnzchO76P3Cn_fQyvzPrd0HQjjXnxqsHwH0V2Jp |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+short+de+novo+synthesis+of+nucleoside+analogs&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.date=2020-08-07&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=369&rft.issue=6504&rft.spage=725&rft.epage=730&rft_id=info:doi/10.1126%2Fscience.abb3231&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |