A-numerical radius inequalities for semi-Hilbertian space operators

Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 578; pp. 159 - 183
Main Author Zamani, Ali
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.10.2019
American Elsevier Company, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper, we prove the following characterization of wA(T)wA(T)=supα2+β2=1⁡‖αT+T♯A2+βT−T♯A2i‖A, where T♯A is a distinguished A-adjoint operator of T. We then apply it to find upper and lower bounds for wA(T). In particular, we show that12‖T‖A≤max⁡{1−|cos⁡|A2T,22}wA(T)≤wA(T), where |cos⁡|AT denotes the A-cosine of angle of T. Some upper bounds for the A-numerical radius of commutators, anticommutators, and products of semi-Hilbertian space operators are also given.
AbstractList Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper, we prove the following characterization of wA(T) wA(T)=supα2+β2=1⁡‖αT+T♯A2+βT−T♯A2i‖A, where T♯A is a distinguished A-adjoint operator of T. We then apply it to find upper and lower bounds for wA(T). In particular, we show that 12‖T‖A≤max⁡{1−|cos⁡|A2T,22}wA(T)≤wA(T), where |cos⁡|AT denotes the A-cosine of angle of T. Some upper bounds for the A-numerical radius of commutators, anticommutators, and products of semi-Hilbertian space operators are also given.
Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper, we prove the following characterization of wA(T)wA(T)=supα2+β2=1⁡‖αT+T♯A2+βT−T♯A2i‖A, where T♯A is a distinguished A-adjoint operator of T. We then apply it to find upper and lower bounds for wA(T). In particular, we show that12‖T‖A≤max⁡{1−|cos⁡|A2T,22}wA(T)≤wA(T), where |cos⁡|AT denotes the A-cosine of angle of T. Some upper bounds for the A-numerical radius of commutators, anticommutators, and products of semi-Hilbertian space operators are also given.
Author Zamani, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Zamani
  fullname: Zamani, Ali
  email: zamani.ali85@yahoo.com
  organization: Department of Mathematics, Farhangian University, Tehran, Iran
BookMark eNp9kD1PwzAQhi1UJNrCD2CLxJzgjzi2xVRVQJEqscBsOc5FcpTare0g8e8JKhNDl7vlfd7TPSu08MEDQvcEVwST5nGoRmMqiomqMK8woVdoSaRgJZG8WaAlxrQumVD8Bq1SGjDGtcB0ibab0k8HiM6asYimc1MqnIfTZEaXHaSiD7FIcHDlzo0txOyML9LRWCjCEaLJIaZbdN2bMcHd316jz5fnj-2u3L-_vm03-9KyRuayBUYZF_OwphYCBG-h7YwE3EEjWwW1FY1SshcKaN13RPCeQd2ZugfCqWJr9HDuPcZwmiBlPYQp-vmkpowoQaSkdE6Rc8rGkFKEXh-jO5j4rQnWv670oGdX-teVxlzPrmZG_GOsyya74HM0brxIPp1JmB__chB1sg68hc5FsFl3wV2gfwDvEoXi
CitedBy_id crossref_primary_10_1007_s43036_020_00099_x
crossref_primary_10_1007_s00025_024_02325_x
crossref_primary_10_1007_s10440_023_00624_z
crossref_primary_10_1007_s43036_020_00056_8
crossref_primary_10_1515_gmj_2022_2204
crossref_primary_10_15672_hujms_1142554
crossref_primary_10_1515_ms_2022_0067
crossref_primary_10_1016_j_kjs_2025_100370
crossref_primary_10_1007_s40995_023_01545_0
crossref_primary_10_1080_03081087_2021_1971599
crossref_primary_10_2298_FIL2312837G
crossref_primary_10_1007_s43036_020_00102_5
crossref_primary_10_1080_03081087_2020_1810201
crossref_primary_10_1007_s43036_022_00239_5
crossref_primary_10_3390_math11102293
crossref_primary_10_1016_j_laa_2020_06_015
crossref_primary_10_1080_03081087_2019_1698510
crossref_primary_10_2298_FIL2310043J
crossref_primary_10_1080_03081087_2024_2332607
crossref_primary_10_2298_FIL2320925T
crossref_primary_10_1016_j_laa_2020_08_032
crossref_primary_10_1216_rmj_2020_50_2265
crossref_primary_10_15672_hujms_1126384
crossref_primary_10_1007_s00009_022_02127_x
crossref_primary_10_1016_j_laa_2024_01_023
crossref_primary_10_1515_gmj_2023_2057
crossref_primary_10_30755_NSJOM_15867
crossref_primary_10_1016_j_jmaa_2020_124546
crossref_primary_10_3390_axioms12070712
crossref_primary_10_1007_s43034_021_00137_6
crossref_primary_10_1007_s13370_024_01186_5
crossref_primary_10_1016_j_laa_2023_06_024
crossref_primary_10_1007_s13226_024_00663_8
crossref_primary_10_1007_s43034_021_00156_3
crossref_primary_10_1007_s00009_022_02117_z
crossref_primary_10_1007_s41980_020_00388_4
crossref_primary_10_1080_03081087_2020_1774487
crossref_primary_10_1007_s00025_021_01439_w
crossref_primary_10_1007_s43037_022_00185_7
crossref_primary_10_1016_j_laa_2024_09_008
crossref_primary_10_1080_03081087_2023_2266104
crossref_primary_10_1080_03081087_2022_2050883
crossref_primary_10_15672_hujms_730574
crossref_primary_10_1016_j_laa_2020_01_015
crossref_primary_10_1007_s43034_021_00161_6
crossref_primary_10_1016_j_cam_2023_115070
crossref_primary_10_1007_s00009_020_01665_6
crossref_primary_10_1007_s41980_024_00926_4
crossref_primary_10_1016_j_laa_2022_10_019
crossref_primary_10_1007_s00013_020_01482_z
crossref_primary_10_1080_01630563_2023_2221897
crossref_primary_10_2298_FIL2311443G
crossref_primary_10_3390_math12071122
crossref_primary_10_1007_s41980_020_00392_8
crossref_primary_10_3390_math10193576
crossref_primary_10_1007_s43037_020_00063_0
crossref_primary_10_1007_s43034_020_00064_y
crossref_primary_10_1007_s40574_021_00307_3
crossref_primary_10_3934_math_2025126
crossref_primary_10_1007_s41980_022_00727_7
crossref_primary_10_2298_FIL2204415B
crossref_primary_10_1080_03081087_2020_1781037
crossref_primary_10_1007_s12215_021_00623_9
crossref_primary_10_1007_s43037_023_00265_2
crossref_primary_10_1016_j_laa_2023_02_020
Cites_doi 10.1215/17358787-2019-0019
10.1016/j.laa.2008.12.021
10.7153/jmi-2018-12-33
10.15352/bjma/1240336213
10.1215/20088752-2019-0001
10.1016/j.laa.2018.06.021
10.4064/sm178-1-5
10.4064/sm227-2-1
10.1016/j.laa.2014.12.016
10.1080/01630563.2011.580875
10.1007/s00020-011-1893-0
10.4064/sm182-2-3
10.1080/03081087.2018.1484422
10.1007/s11117-018-0613-2
10.1215/20088752-2017-0029
10.1080/03081087.2013.839669
10.4064/sm168-1-5
10.1016/j.laa.2018.05.021
10.1216/RMJ-2015-45-4-1055
10.1080/03081087.2012.667094
10.1016/j.laa.2016.01.026
10.1016/j.laa.2010.09.012
10.1007/s40840-015-0201-6
10.1007/s00020-008-1613-6
10.1080/03081087.2016.1228818
10.1007/978-3-319-01448-7
10.1016/j.laa.2007.09.031
10.1016/j.laa.2019.01.019
10.1063/1.4926977
10.1016/j.laa.2010.08.034
10.15352/aot.1804-1359
10.1016/j.laa.2017.02.019
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright American Elsevier Company, Inc. Oct 1, 2019
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright American Elsevier Company, Inc. Oct 1, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.laa.2019.05.012
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 183
ExternalDocumentID 10_1016_j_laa_2019_05_012
S0024379519302216
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BNPGV
CITATION
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
SEW
SSH
T9H
WUQ
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-be32357323ca477e75bebda8e0de68b9e4c76998f79e24fd175f3e4da4fe15293
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Sun Jul 13 05:39:54 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Tue Jul 01 03:18:07 EDT 2025
Fri Feb 23 02:32:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords secondary
Semi-inner product
A-numerical radius
A-adjoint operator
primary
Positive operator
Inequality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-be32357323ca477e75bebda8e0de68b9e4c76998f79e24fd175f3e4da4fe15293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.laa.2019.05.012
PQID 2319718822
PQPubID 2047554
PageCount 25
ParticipantIDs proquest_journals_2319718822
crossref_primary_10_1016_j_laa_2019_05_012
crossref_citationtrail_10_1016_j_laa_2019_05_012
elsevier_sciencedirect_doi_10_1016_j_laa_2019_05_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2019
Publisher Elsevier Inc
American Elsevier Company, Inc
Publisher_xml – name: Elsevier Inc
– name: American Elsevier Company, Inc
References Hajmohamadi, Lashkaripour, Bakherad (br0190) 2018; 12
Majdak, Secelean, Suciu (br0240) 2013; 61
El-Haddad, Kittaneh (br0120) 2007; 182
Sattari, Moslehian, Shebrawi (br0280) 2017; 20
Bourhim, Mabrouk (br0090) 2017; 65
Zamani (br0340) 2019; 23
Moslehian, Kian, Xu (br0250) 2019
Abu-Omar, Kittaneh (br0030) 2019; 569
Faghih-Ahmadi (br0130) 2016; 39
Baklouti, Feki, Ould, Mahmoud (br0070) 2019
Zamani (br0330) 2017; 2
Dragomir (br0100) 2007; 1
Baklouti, Feki, Ahmed (br0080) 2018; 555
Dragomir (br0110) 2013
Gau, Wu (br0160) 2018; 554
Abu-Omar, Kittaneh (br0020) 2015; 227
Gonzalez (br0180) 2011; 434
Kittaneh (br0220) 2005; 168
Kittaneh, Moslehian, Yamazaki (br0230) 2015; 471
Fongi, Gonzalez (br0140) 2016; 495
Abu-Omar, Kittaneh (br0010) 2015; 45
Gau, Wang, Wu (br0150) 2015; 63
Suciu (br0310) 2009; 430
Yamazaki (br0320) 2007; 178
Zamani, Moslehian, Chien, Nakazato (br0360) 2019
Arias, Corach, Gonzalez (br0050) 2008; 428
Shebrawi (br0290) 2017; 523
Ahmed, Saddi (br0300) 2012; 436
Zamani (br0350) 2019
Hirzallah, Kittaneh, Shebrawi (br0210) 2011; 32
Arias, Corach, Gonzalez (br0040) 2008; 62
Moslehian, Sattari (br0260) 2016; 57
Sahoo, Das, Mishra (br0270) 2019; 4
Gustafson, Rao (br0170) 1997
Hirzallah, Kittaneh, Shebrawi (br0200) 2011; 71
Bakherad, Shebrawi (br0060) 2018; 9
Hirzallah (10.1016/j.laa.2019.05.012_br0210) 2011; 32
Faghih-Ahmadi (10.1016/j.laa.2019.05.012_br0130) 2016; 39
Majdak (10.1016/j.laa.2019.05.012_br0240) 2013; 61
Yamazaki (10.1016/j.laa.2019.05.012_br0320) 2007; 178
Zamani (10.1016/j.laa.2019.05.012_br0350) 2019
Zamani (10.1016/j.laa.2019.05.012_br0360) 2019
Dragomir (10.1016/j.laa.2019.05.012_br0110) 2013
Fongi (10.1016/j.laa.2019.05.012_br0140) 2016; 495
Hirzallah (10.1016/j.laa.2019.05.012_br0200) 2011; 71
Kittaneh (10.1016/j.laa.2019.05.012_br0230) 2015; 471
Arias (10.1016/j.laa.2019.05.012_br0040) 2008; 62
Abu-Omar (10.1016/j.laa.2019.05.012_br0020) 2015; 227
Ahmed (10.1016/j.laa.2019.05.012_br0300) 2012; 436
Sahoo (10.1016/j.laa.2019.05.012_br0270) 2019; 4
Moslehian (10.1016/j.laa.2019.05.012_br0250) 2019
Abu-Omar (10.1016/j.laa.2019.05.012_br0010) 2015; 45
Arias (10.1016/j.laa.2019.05.012_br0050) 2008; 428
Gau (10.1016/j.laa.2019.05.012_br0160) 2018; 554
Kittaneh (10.1016/j.laa.2019.05.012_br0220) 2005; 168
Gau (10.1016/j.laa.2019.05.012_br0150) 2015; 63
Gustafson (10.1016/j.laa.2019.05.012_br0170) 1997
Baklouti (10.1016/j.laa.2019.05.012_br0070) 2019
Zamani (10.1016/j.laa.2019.05.012_br0340) 2019; 23
Sattari (10.1016/j.laa.2019.05.012_br0280) 2017; 20
Bakherad (10.1016/j.laa.2019.05.012_br0060) 2018; 9
Hajmohamadi (10.1016/j.laa.2019.05.012_br0190) 2018; 12
Zamani (10.1016/j.laa.2019.05.012_br0330) 2017; 2
El-Haddad (10.1016/j.laa.2019.05.012_br0120) 2007; 182
Moslehian (10.1016/j.laa.2019.05.012_br0260) 2016; 57
Suciu (10.1016/j.laa.2019.05.012_br0310) 2009; 430
Dragomir (10.1016/j.laa.2019.05.012_br0100) 2007; 1
Shebrawi (10.1016/j.laa.2019.05.012_br0290) 2017; 523
Gonzalez (10.1016/j.laa.2019.05.012_br0180) 2011; 434
Abu-Omar (10.1016/j.laa.2019.05.012_br0030) 2019; 569
Bourhim (10.1016/j.laa.2019.05.012_br0090) 2017; 65
Baklouti (10.1016/j.laa.2019.05.012_br0080) 2018; 555
References_xml – year: 2019
  ident: br0070
  article-title: Joint normality of operators in semi-Hilbertian spaces
  publication-title: Linear Multilinear Algebra
– volume: 65
  start-page: 1108
  year: 2017
  end-page: 1116
  ident: br0090
  article-title: Numerical radius and product of elements in
  publication-title: Linear Multilinear Algebra
– volume: 32
  start-page: 739
  year: 2011
  end-page: 749
  ident: br0210
  article-title: Numerical radius inequalities for commutators of Hilbert space operators
  publication-title: Numer. Funct. Anal. Optim.
– year: 2019
  ident: br0250
  article-title: Positivity of
  publication-title: Banach J. Math. Anal.
– volume: 428
  start-page: 1460
  year: 2008
  end-page: 1475
  ident: br0050
  article-title: Partial isometries in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
– volume: 471
  start-page: 46
  year: 2015
  end-page: 53
  ident: br0230
  article-title: Cartesian decomposition and numerical radius inequalities
  publication-title: Linear Algebra Appl.
– year: 1997
  ident: br0170
  article-title: Numerical Range. The Field of Values of Linear Operators and Matrices
  publication-title: Universitext
– volume: 23
  start-page: 397
  year: 2019
  end-page: 411
  ident: br0340
  article-title: Characterization of numerical radius parallelism in
  publication-title: Positivity
– volume: 62
  start-page: 11
  year: 2008
  end-page: 28
  ident: br0040
  article-title: Metric properties of projections in semi-Hilbertian spaces
  publication-title: Integral Equations Operator Theory
– volume: 71
  start-page: 129
  year: 2011
  end-page: 147
  ident: br0200
  article-title: Numerical radius inequalities for certain
  publication-title: Integral Equations Operator Theory
– year: 2019
  ident: br0350
  article-title: Birkhoff–James orthogonality of operators in semi-Hilbertian spaces and its applications
  publication-title: Ann. Funct. Anal.
– volume: 178
  start-page: 83
  year: 2007
  end-page: 89
  ident: br0320
  article-title: On upper and lower bounds of the numerical radius and an equality condition
  publication-title: Studia Math.
– volume: 45
  start-page: 1055
  year: 2015
  end-page: 1064
  ident: br0010
  article-title: Upper and lower bounds for the numerical radius with an application to involution operators
  publication-title: Rocky Mountain J. Math.
– volume: 523
  start-page: 1
  year: 2017
  end-page: 12
  ident: br0290
  article-title: Numerical radius inequalities for certain
  publication-title: Linear Algebra Appl.
– volume: 430
  start-page: 2474
  year: 2009
  end-page: 2487
  ident: br0310
  article-title: Quasi-isometries in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
– volume: 434
  start-page: 370
  year: 2011
  end-page: 378
  ident: br0180
  article-title: Operator norm inequalities in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
– volume: 1
  start-page: 154
  year: 2007
  end-page: 175
  ident: br0100
  article-title: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces
  publication-title: Banach J. Math. Anal.
– volume: 39
  start-page: 901
  year: 2016
  end-page: 911
  ident: br0130
  article-title: Powers of
  publication-title: Bull. Malays. Math. Sci. Soc.
– volume: 495
  start-page: 324
  year: 2016
  end-page: 343
  ident: br0140
  article-title: Partial isometries and pseudoinverses in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
– volume: 182
  start-page: 133
  year: 2007
  end-page: 140
  ident: br0120
  article-title: Numerical radius inequalities for Hilbert space operators. II
  publication-title: Studia Math.
– volume: 554
  start-page: 51
  year: 2018
  end-page: 67
  ident: br0160
  article-title: Equality of three numerical radius inequalities
  publication-title: Linear Algebra Appl.
– volume: 57
  year: 2016
  ident: br0260
  article-title: Inequalities for operator space numerical radius of
  publication-title: J. Math. Phys.
– volume: 168
  start-page: 73
  year: 2005
  end-page: 80
  ident: br0220
  article-title: Numerical radius inequalities for Hilbert space operators
  publication-title: Studia Math.
– year: 2013
  ident: br0110
  article-title: Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces
  publication-title: Springer Briefs in Math.
– volume: 12
  start-page: 447
  year: 2018
  end-page: 457
  ident: br0190
  article-title: Some generalizations of numerical radius on off-diagonal part of
  publication-title: J. Math. Inequal.
– volume: 20
  start-page: 129
  year: 2017
  end-page: 144
  ident: br0280
  article-title: Extension of Euclidean operator radius inequalities
  publication-title: Math. Scand.
– volume: 2
  start-page: 98
  year: 2017
  end-page: 107
  ident: br0330
  article-title: Some lower bounds for the numerical radius of Hilbert space operators
  publication-title: Adv. Oper. Theory
– volume: 61
  start-page: 139
  year: 2013
  end-page: 159
  ident: br0240
  article-title: Ergodic properties of operators in some semi-Hilbertian spaces
  publication-title: Linear Multilinear Algebra
– volume: 569
  start-page: 323
  year: 2019
  end-page: 334
  ident: br0030
  article-title: A generalization of the numerical radius
  publication-title: Linear Algebra Appl.
– volume: 9
  start-page: 297
  year: 2018
  end-page: 309
  ident: br0060
  article-title: Upper bounds for numerical radius inequalities involving off-diagonal operator matrices
  publication-title: Ann. Funct. Anal.
– volume: 63
  start-page: 1916
  year: 2015
  end-page: 1936
  ident: br0150
  article-title: Numerical radii for tensor products of matrices
  publication-title: Linear Multilinear Algebra
– volume: 436
  start-page: 3930
  year: 2012
  end-page: 3942
  ident: br0300
  article-title: -
  publication-title: Linear Algebra Appl.
– volume: 227
  start-page: 97
  year: 2015
  end-page: 109
  ident: br0020
  article-title: Notes on some spectral radius and numerical radius inequalities
  publication-title: Studia Math.
– volume: 4
  start-page: 197
  year: 2019
  end-page: 214
  ident: br0270
  article-title: Numerical radius inequalities for operator matrices
  publication-title: Adv. Oper. Theory
– year: 2019
  ident: br0360
  article-title: Norm-parallelism and the Davis–Wielandt radius of Hilbert space operators
  publication-title: Linear Multilinear Algebra
– volume: 555
  start-page: 266
  year: 2018
  end-page: 284
  ident: br0080
  article-title: Joint numerical ranges of operators in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
– year: 2019
  ident: 10.1016/j.laa.2019.05.012_br0250
  article-title: Positivity of 2×2 block matrices of operators
  publication-title: Banach J. Math. Anal.
  doi: 10.1215/17358787-2019-0019
– volume: 430
  start-page: 2474
  year: 2009
  ident: 10.1016/j.laa.2019.05.012_br0310
  article-title: Quasi-isometries in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2008.12.021
– year: 2019
  ident: 10.1016/j.laa.2019.05.012_br0070
  article-title: Joint normality of operators in semi-Hilbertian spaces
  publication-title: Linear Multilinear Algebra
– volume: 12
  start-page: 447
  issue: 2
  year: 2018
  ident: 10.1016/j.laa.2019.05.012_br0190
  article-title: Some generalizations of numerical radius on off-diagonal part of 2×2 operator matrices
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-2018-12-33
– volume: 1
  start-page: 154
  issue: 2
  year: 2007
  ident: 10.1016/j.laa.2019.05.012_br0100
  article-title: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces
  publication-title: Banach J. Math. Anal.
  doi: 10.15352/bjma/1240336213
– year: 2019
  ident: 10.1016/j.laa.2019.05.012_br0350
  article-title: Birkhoff–James orthogonality of operators in semi-Hilbertian spaces and its applications
  publication-title: Ann. Funct. Anal.
  doi: 10.1215/20088752-2019-0001
– volume: 555
  start-page: 266
  year: 2018
  ident: 10.1016/j.laa.2019.05.012_br0080
  article-title: Joint numerical ranges of operators in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.06.021
– volume: 178
  start-page: 83
  issue: 1
  year: 2007
  ident: 10.1016/j.laa.2019.05.012_br0320
  article-title: On upper and lower bounds of the numerical radius and an equality condition
  publication-title: Studia Math.
  doi: 10.4064/sm178-1-5
– volume: 227
  start-page: 97
  issue: 2
  year: 2015
  ident: 10.1016/j.laa.2019.05.012_br0020
  article-title: Notes on some spectral radius and numerical radius inequalities
  publication-title: Studia Math.
  doi: 10.4064/sm227-2-1
– volume: 471
  start-page: 46
  year: 2015
  ident: 10.1016/j.laa.2019.05.012_br0230
  article-title: Cartesian decomposition and numerical radius inequalities
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2014.12.016
– volume: 32
  start-page: 739
  issue: 7
  year: 2011
  ident: 10.1016/j.laa.2019.05.012_br0210
  article-title: Numerical radius inequalities for commutators of Hilbert space operators
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2011.580875
– volume: 71
  start-page: 129
  issue: 1
  year: 2011
  ident: 10.1016/j.laa.2019.05.012_br0200
  article-title: Numerical radius inequalities for certain 2×2 operator matrices
  publication-title: Integral Equations Operator Theory
  doi: 10.1007/s00020-011-1893-0
– volume: 182
  start-page: 133
  issue: 2
  year: 2007
  ident: 10.1016/j.laa.2019.05.012_br0120
  article-title: Numerical radius inequalities for Hilbert space operators. II
  publication-title: Studia Math.
  doi: 10.4064/sm182-2-3
– year: 2019
  ident: 10.1016/j.laa.2019.05.012_br0360
  article-title: Norm-parallelism and the Davis–Wielandt radius of Hilbert space operators
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2018.1484422
– volume: 23
  start-page: 397
  issue: 2
  year: 2019
  ident: 10.1016/j.laa.2019.05.012_br0340
  article-title: Characterization of numerical radius parallelism in C⁎-algebras
  publication-title: Positivity
  doi: 10.1007/s11117-018-0613-2
– volume: 9
  start-page: 297
  issue: 3
  year: 2018
  ident: 10.1016/j.laa.2019.05.012_br0060
  article-title: Upper bounds for numerical radius inequalities involving off-diagonal operator matrices
  publication-title: Ann. Funct. Anal.
  doi: 10.1215/20088752-2017-0029
– volume: 63
  start-page: 1916
  issue: 10
  year: 2015
  ident: 10.1016/j.laa.2019.05.012_br0150
  article-title: Numerical radii for tensor products of matrices
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2013.839669
– volume: 168
  start-page: 73
  issue: 1
  year: 2005
  ident: 10.1016/j.laa.2019.05.012_br0220
  article-title: Numerical radius inequalities for Hilbert space operators
  publication-title: Studia Math.
  doi: 10.4064/sm168-1-5
– volume: 20
  start-page: 129
  year: 2017
  ident: 10.1016/j.laa.2019.05.012_br0280
  article-title: Extension of Euclidean operator radius inequalities
  publication-title: Math. Scand.
– volume: 554
  start-page: 51
  year: 2018
  ident: 10.1016/j.laa.2019.05.012_br0160
  article-title: Equality of three numerical radius inequalities
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.05.021
– volume: 45
  start-page: 1055
  issue: 4
  year: 2015
  ident: 10.1016/j.laa.2019.05.012_br0010
  article-title: Upper and lower bounds for the numerical radius with an application to involution operators
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2015-45-4-1055
– volume: 61
  start-page: 139
  issue: 2
  year: 2013
  ident: 10.1016/j.laa.2019.05.012_br0240
  article-title: Ergodic properties of operators in some semi-Hilbertian spaces
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2012.667094
– volume: 2
  start-page: 98
  year: 2017
  ident: 10.1016/j.laa.2019.05.012_br0330
  article-title: Some lower bounds for the numerical radius of Hilbert space operators
  publication-title: Adv. Oper. Theory
– volume: 495
  start-page: 324
  year: 2016
  ident: 10.1016/j.laa.2019.05.012_br0140
  article-title: Partial isometries and pseudoinverses in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2016.01.026
– volume: 436
  start-page: 3930
  year: 2012
  ident: 10.1016/j.laa.2019.05.012_br0300
  article-title: A-m-isometric operators in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.09.012
– volume: 39
  start-page: 901
  issue: 3
  year: 2016
  ident: 10.1016/j.laa.2019.05.012_br0130
  article-title: Powers of A-m-isometric operators and their supercyclicity
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-015-0201-6
– volume: 62
  start-page: 11
  issue: 1
  year: 2008
  ident: 10.1016/j.laa.2019.05.012_br0040
  article-title: Metric properties of projections in semi-Hilbertian spaces
  publication-title: Integral Equations Operator Theory
  doi: 10.1007/s00020-008-1613-6
– year: 1997
  ident: 10.1016/j.laa.2019.05.012_br0170
  article-title: Numerical Range. The Field of Values of Linear Operators and Matrices
– volume: 65
  start-page: 1108
  issue: 6
  year: 2017
  ident: 10.1016/j.laa.2019.05.012_br0090
  article-title: Numerical radius and product of elements in C⁎-algebras
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2016.1228818
– year: 2013
  ident: 10.1016/j.laa.2019.05.012_br0110
  article-title: Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces
  doi: 10.1007/978-3-319-01448-7
– volume: 428
  start-page: 1460
  issue: 7
  year: 2008
  ident: 10.1016/j.laa.2019.05.012_br0050
  article-title: Partial isometries in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2007.09.031
– volume: 569
  start-page: 323
  year: 2019
  ident: 10.1016/j.laa.2019.05.012_br0030
  article-title: A generalization of the numerical radius
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2019.01.019
– volume: 57
  issue: 1
  year: 2016
  ident: 10.1016/j.laa.2019.05.012_br0260
  article-title: Inequalities for operator space numerical radius of 2×2 block matrices
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4926977
– volume: 434
  start-page: 370
  year: 2011
  ident: 10.1016/j.laa.2019.05.012_br0180
  article-title: Operator norm inequalities in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.08.034
– volume: 4
  start-page: 197
  issue: 1
  year: 2019
  ident: 10.1016/j.laa.2019.05.012_br0270
  article-title: Numerical radius inequalities for operator matrices
  publication-title: Adv. Oper. Theory
  doi: 10.15352/aot.1804-1359
– volume: 523
  start-page: 1
  year: 2017
  ident: 10.1016/j.laa.2019.05.012_br0290
  article-title: Numerical radius inequalities for certain 2×2 operator matrices II
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2017.02.019
SSID ssj0004702
Score 2.5561848
Snippet Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms A-adjoint operator
A-numerical radius
Commutators
Hilbert space
Inequality
Linear algebra
Lower bounds
Operators
Positive operator
Semi-inner product
Trigonometric functions
Upper bounds
Title A-numerical radius inequalities for semi-Hilbertian space operators
URI https://dx.doi.org/10.1016/j.laa.2019.05.012
https://www.proquest.com/docview/2319718822
Volume 578
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3E6Rw-ehLh-pE17nMPRKdvJwW6hSV6hUruxblf_dl_6MVFwBy-FlKSUX5L3fo-89wsh91LpUHsqoJ4KJWVaR1S62qUKqYTveAGo1NQ7T2dBPGcvC3_RIaO2FsakVTa2v7bplbVu3gwaNAerLDM1vpWYnqEg6IgcI7vNGDer_PHzO82DcbtRDGfU9G5PNqscrzwx0kNOVIt3un_5pl9WunI941Ny0nBGa1j_1hnpQHFOjqc7wdXygoyGtNjWhy-5tU50ti0t5I91ySQGwxZyU6uEj4zGWV7lUieFhcZEgbVcQXXUXl6S-fj5bRTT5n4ERDIIN1SCZ8Rq8KESxjlwX4LUSQi2hiCUETDFAwynUh6By1KNTCH1gOmEpYBuO_KuyEGxLOCaWE6KGznxHS59FwNmP5SO9FyMpTgPgKesS-wWGaEa8XBzh0Uu2iyxd4FgCgOmsH2BYHbJw27IqlbO2NeZtXCLH9Mv0LLvG9Zrp0Y0e68UyFgj9LjIfG7-99VbcmRadcpejxxs1lu4Q-qxkf1qbfXJ4XDyGs-wNVk8fQFp1thD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFA0yLtSF-MS3WehGiDNt06ZduBAfjDozKwV3sUluoTLWwc4gbvwpf9CbNlUUdCG46aJtSjhJ7zmX3JwQsqe0iU2gIxboWDFuTMKUb3ymUUqEXhCBzux-5_4g6t7wy9vwdoq8NXthbFmli_11TK-itbvTdmi2R3lu9_hWZnpWgiAReZGrrLyCl2fM28qji1Mc5H3fPz-7Pukyd7QAdiKKx0xBYH1e8KJTLgSIUIEyaQwdA1GsEuBaRJiJZCIBn2cGSTYLgJuUZ4CMZx2YMO5PcwwX9tiEw9fPuhIuOs6inDPbvWYptSoqG6bW68hLardQ_ycy_EYLFdedL5B5J1LpcY3DIpmCYonM9T8cXstlcnLMikm92jOkT6nJJyVFwVrv0cTsm6IYpiU85KybD6vi7bSgGL000McRVGv75Qq5-RfUVkmreCxgjVAvw8iRhp5QoY8ZehgrTwU-Jm9CRCAyvk46DTJSO7dye2jGUDZlafcSwZQWTNkJJYK5Tg4-moxqq47fXuYN3PLLfJNIJb8122qGRrqfvZQokROkeJRaG3_76i6Z6V73e7J3MbjaJLP2SV0vuEVa46cJbKPuGaudap5RcvffE_sdexoTxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A-numerical+radius+inequalities+for+semi-Hilbertian+space+operators&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Zamani%2C+Ali&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=578&rft.spage=159&rft.epage=183&rft_id=info:doi/10.1016%2Fj.laa.2019.05.012&rft.externalDocID=S0024379519302216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon