A-numerical radius inequalities for semi-Hilbertian space operators
Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper...
Saved in:
Published in | Linear algebra and its applications Vol. 578; pp. 159 - 183 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.10.2019
American Elsevier Company, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper, we prove the following characterization of wA(T)wA(T)=supα2+β2=1‖αT+T♯A2+βT−T♯A2i‖A, where T♯A is a distinguished A-adjoint operator of T. We then apply it to find upper and lower bounds for wA(T). In particular, we show that12‖T‖A≤max{1−|cos|A2T,22}wA(T)≤wA(T), where |cos|AT denotes the A-cosine of angle of T. Some upper bounds for the A-numerical radius of commutators, anticommutators, and products of semi-Hilbertian space operators are also given. |
---|---|
AbstractList | Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper, we prove the following characterization of wA(T) wA(T)=supα2+β2=1‖αT+T♯A2+βT−T♯A2i‖A, where T♯A is a distinguished A-adjoint operator of T. We then apply it to find upper and lower bounds for wA(T). In particular, we show that 12‖T‖A≤max{1−|cos|A2T,22}wA(T)≤wA(T), where |cos|AT denotes the A-cosine of angle of T. Some upper bounds for the A-numerical radius of commutators, anticommutators, and products of semi-Hilbertian space operators are also given. Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and wA(T) denote the A-operator semi-norm and the A-numerical radius of an operator T in semi-Hilbertian space (H,‖⋅‖A), respectively. In this paper, we prove the following characterization of wA(T)wA(T)=supα2+β2=1‖αT+T♯A2+βT−T♯A2i‖A, where T♯A is a distinguished A-adjoint operator of T. We then apply it to find upper and lower bounds for wA(T). In particular, we show that12‖T‖A≤max{1−|cos|A2T,22}wA(T)≤wA(T), where |cos|AT denotes the A-cosine of angle of T. Some upper bounds for the A-numerical radius of commutators, anticommutators, and products of semi-Hilbertian space operators are also given. |
Author | Zamani, Ali |
Author_xml | – sequence: 1 givenname: Ali surname: Zamani fullname: Zamani, Ali email: zamani.ali85@yahoo.com organization: Department of Mathematics, Farhangian University, Tehran, Iran |
BookMark | eNp9kD1PwzAQhi1UJNrCD2CLxJzgjzi2xVRVQJEqscBsOc5FcpTare0g8e8JKhNDl7vlfd7TPSu08MEDQvcEVwST5nGoRmMqiomqMK8woVdoSaRgJZG8WaAlxrQumVD8Bq1SGjDGtcB0ibab0k8HiM6asYimc1MqnIfTZEaXHaSiD7FIcHDlzo0txOyML9LRWCjCEaLJIaZbdN2bMcHd316jz5fnj-2u3L-_vm03-9KyRuayBUYZF_OwphYCBG-h7YwE3EEjWwW1FY1SshcKaN13RPCeQd2ZugfCqWJr9HDuPcZwmiBlPYQp-vmkpowoQaSkdE6Rc8rGkFKEXh-jO5j4rQnWv670oGdX-teVxlzPrmZG_GOsyya74HM0brxIPp1JmB__chB1sg68hc5FsFl3wV2gfwDvEoXi |
CitedBy_id | crossref_primary_10_1007_s43036_020_00099_x crossref_primary_10_1007_s00025_024_02325_x crossref_primary_10_1007_s10440_023_00624_z crossref_primary_10_1007_s43036_020_00056_8 crossref_primary_10_1515_gmj_2022_2204 crossref_primary_10_15672_hujms_1142554 crossref_primary_10_1515_ms_2022_0067 crossref_primary_10_1016_j_kjs_2025_100370 crossref_primary_10_1007_s40995_023_01545_0 crossref_primary_10_1080_03081087_2021_1971599 crossref_primary_10_2298_FIL2312837G crossref_primary_10_1007_s43036_020_00102_5 crossref_primary_10_1080_03081087_2020_1810201 crossref_primary_10_1007_s43036_022_00239_5 crossref_primary_10_3390_math11102293 crossref_primary_10_1016_j_laa_2020_06_015 crossref_primary_10_1080_03081087_2019_1698510 crossref_primary_10_2298_FIL2310043J crossref_primary_10_1080_03081087_2024_2332607 crossref_primary_10_2298_FIL2320925T crossref_primary_10_1016_j_laa_2020_08_032 crossref_primary_10_1216_rmj_2020_50_2265 crossref_primary_10_15672_hujms_1126384 crossref_primary_10_1007_s00009_022_02127_x crossref_primary_10_1016_j_laa_2024_01_023 crossref_primary_10_1515_gmj_2023_2057 crossref_primary_10_30755_NSJOM_15867 crossref_primary_10_1016_j_jmaa_2020_124546 crossref_primary_10_3390_axioms12070712 crossref_primary_10_1007_s43034_021_00137_6 crossref_primary_10_1007_s13370_024_01186_5 crossref_primary_10_1016_j_laa_2023_06_024 crossref_primary_10_1007_s13226_024_00663_8 crossref_primary_10_1007_s43034_021_00156_3 crossref_primary_10_1007_s00009_022_02117_z crossref_primary_10_1007_s41980_020_00388_4 crossref_primary_10_1080_03081087_2020_1774487 crossref_primary_10_1007_s00025_021_01439_w crossref_primary_10_1007_s43037_022_00185_7 crossref_primary_10_1016_j_laa_2024_09_008 crossref_primary_10_1080_03081087_2023_2266104 crossref_primary_10_1080_03081087_2022_2050883 crossref_primary_10_15672_hujms_730574 crossref_primary_10_1016_j_laa_2020_01_015 crossref_primary_10_1007_s43034_021_00161_6 crossref_primary_10_1016_j_cam_2023_115070 crossref_primary_10_1007_s00009_020_01665_6 crossref_primary_10_1007_s41980_024_00926_4 crossref_primary_10_1016_j_laa_2022_10_019 crossref_primary_10_1007_s00013_020_01482_z crossref_primary_10_1080_01630563_2023_2221897 crossref_primary_10_2298_FIL2311443G crossref_primary_10_3390_math12071122 crossref_primary_10_1007_s41980_020_00392_8 crossref_primary_10_3390_math10193576 crossref_primary_10_1007_s43037_020_00063_0 crossref_primary_10_1007_s43034_020_00064_y crossref_primary_10_1007_s40574_021_00307_3 crossref_primary_10_3934_math_2025126 crossref_primary_10_1007_s41980_022_00727_7 crossref_primary_10_2298_FIL2204415B crossref_primary_10_1080_03081087_2020_1781037 crossref_primary_10_1007_s12215_021_00623_9 crossref_primary_10_1007_s43037_023_00265_2 crossref_primary_10_1016_j_laa_2023_02_020 |
Cites_doi | 10.1215/17358787-2019-0019 10.1016/j.laa.2008.12.021 10.7153/jmi-2018-12-33 10.15352/bjma/1240336213 10.1215/20088752-2019-0001 10.1016/j.laa.2018.06.021 10.4064/sm178-1-5 10.4064/sm227-2-1 10.1016/j.laa.2014.12.016 10.1080/01630563.2011.580875 10.1007/s00020-011-1893-0 10.4064/sm182-2-3 10.1080/03081087.2018.1484422 10.1007/s11117-018-0613-2 10.1215/20088752-2017-0029 10.1080/03081087.2013.839669 10.4064/sm168-1-5 10.1016/j.laa.2018.05.021 10.1216/RMJ-2015-45-4-1055 10.1080/03081087.2012.667094 10.1016/j.laa.2016.01.026 10.1016/j.laa.2010.09.012 10.1007/s40840-015-0201-6 10.1007/s00020-008-1613-6 10.1080/03081087.2016.1228818 10.1007/978-3-319-01448-7 10.1016/j.laa.2007.09.031 10.1016/j.laa.2019.01.019 10.1063/1.4926977 10.1016/j.laa.2010.08.034 10.15352/aot.1804-1359 10.1016/j.laa.2017.02.019 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright American Elsevier Company, Inc. Oct 1, 2019 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright American Elsevier Company, Inc. Oct 1, 2019 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.laa.2019.05.012 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-1856 |
EndPage | 183 |
ExternalDocumentID | 10_1016_j_laa_2019_05_012 S0024379519302216 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L 5VS AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BNPGV CITATION FA8 FGOYB G-2 HZ~ MVM OHT R2- SEW SSH T9H WUQ 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-be32357323ca477e75bebda8e0de68b9e4c76998f79e24fd175f3e4da4fe15293 |
IEDL.DBID | .~1 |
ISSN | 0024-3795 |
IngestDate | Sun Jul 13 05:39:54 EDT 2025 Thu Apr 24 23:12:16 EDT 2025 Tue Jul 01 03:18:07 EDT 2025 Fri Feb 23 02:32:06 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | secondary Semi-inner product A-numerical radius A-adjoint operator primary Positive operator Inequality |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-be32357323ca477e75bebda8e0de68b9e4c76998f79e24fd175f3e4da4fe15293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1016/j.laa.2019.05.012 |
PQID | 2319718822 |
PQPubID | 2047554 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2319718822 crossref_primary_10_1016_j_laa_2019_05_012 crossref_citationtrail_10_1016_j_laa_2019_05_012 elsevier_sciencedirect_doi_10_1016_j_laa_2019_05_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2019 |
Publisher | Elsevier Inc American Elsevier Company, Inc |
Publisher_xml | – name: Elsevier Inc – name: American Elsevier Company, Inc |
References | Hajmohamadi, Lashkaripour, Bakherad (br0190) 2018; 12 Majdak, Secelean, Suciu (br0240) 2013; 61 El-Haddad, Kittaneh (br0120) 2007; 182 Sattari, Moslehian, Shebrawi (br0280) 2017; 20 Bourhim, Mabrouk (br0090) 2017; 65 Zamani (br0340) 2019; 23 Moslehian, Kian, Xu (br0250) 2019 Abu-Omar, Kittaneh (br0030) 2019; 569 Faghih-Ahmadi (br0130) 2016; 39 Baklouti, Feki, Ould, Mahmoud (br0070) 2019 Zamani (br0330) 2017; 2 Dragomir (br0100) 2007; 1 Baklouti, Feki, Ahmed (br0080) 2018; 555 Dragomir (br0110) 2013 Gau, Wu (br0160) 2018; 554 Abu-Omar, Kittaneh (br0020) 2015; 227 Gonzalez (br0180) 2011; 434 Kittaneh (br0220) 2005; 168 Kittaneh, Moslehian, Yamazaki (br0230) 2015; 471 Fongi, Gonzalez (br0140) 2016; 495 Abu-Omar, Kittaneh (br0010) 2015; 45 Gau, Wang, Wu (br0150) 2015; 63 Suciu (br0310) 2009; 430 Yamazaki (br0320) 2007; 178 Zamani, Moslehian, Chien, Nakazato (br0360) 2019 Arias, Corach, Gonzalez (br0050) 2008; 428 Shebrawi (br0290) 2017; 523 Ahmed, Saddi (br0300) 2012; 436 Zamani (br0350) 2019 Hirzallah, Kittaneh, Shebrawi (br0210) 2011; 32 Arias, Corach, Gonzalez (br0040) 2008; 62 Moslehian, Sattari (br0260) 2016; 57 Sahoo, Das, Mishra (br0270) 2019; 4 Gustafson, Rao (br0170) 1997 Hirzallah, Kittaneh, Shebrawi (br0200) 2011; 71 Bakherad, Shebrawi (br0060) 2018; 9 Hirzallah (10.1016/j.laa.2019.05.012_br0210) 2011; 32 Faghih-Ahmadi (10.1016/j.laa.2019.05.012_br0130) 2016; 39 Majdak (10.1016/j.laa.2019.05.012_br0240) 2013; 61 Yamazaki (10.1016/j.laa.2019.05.012_br0320) 2007; 178 Zamani (10.1016/j.laa.2019.05.012_br0350) 2019 Zamani (10.1016/j.laa.2019.05.012_br0360) 2019 Dragomir (10.1016/j.laa.2019.05.012_br0110) 2013 Fongi (10.1016/j.laa.2019.05.012_br0140) 2016; 495 Hirzallah (10.1016/j.laa.2019.05.012_br0200) 2011; 71 Kittaneh (10.1016/j.laa.2019.05.012_br0230) 2015; 471 Arias (10.1016/j.laa.2019.05.012_br0040) 2008; 62 Abu-Omar (10.1016/j.laa.2019.05.012_br0020) 2015; 227 Ahmed (10.1016/j.laa.2019.05.012_br0300) 2012; 436 Sahoo (10.1016/j.laa.2019.05.012_br0270) 2019; 4 Moslehian (10.1016/j.laa.2019.05.012_br0250) 2019 Abu-Omar (10.1016/j.laa.2019.05.012_br0010) 2015; 45 Arias (10.1016/j.laa.2019.05.012_br0050) 2008; 428 Gau (10.1016/j.laa.2019.05.012_br0160) 2018; 554 Kittaneh (10.1016/j.laa.2019.05.012_br0220) 2005; 168 Gau (10.1016/j.laa.2019.05.012_br0150) 2015; 63 Gustafson (10.1016/j.laa.2019.05.012_br0170) 1997 Baklouti (10.1016/j.laa.2019.05.012_br0070) 2019 Zamani (10.1016/j.laa.2019.05.012_br0340) 2019; 23 Sattari (10.1016/j.laa.2019.05.012_br0280) 2017; 20 Bakherad (10.1016/j.laa.2019.05.012_br0060) 2018; 9 Hajmohamadi (10.1016/j.laa.2019.05.012_br0190) 2018; 12 Zamani (10.1016/j.laa.2019.05.012_br0330) 2017; 2 El-Haddad (10.1016/j.laa.2019.05.012_br0120) 2007; 182 Moslehian (10.1016/j.laa.2019.05.012_br0260) 2016; 57 Suciu (10.1016/j.laa.2019.05.012_br0310) 2009; 430 Dragomir (10.1016/j.laa.2019.05.012_br0100) 2007; 1 Shebrawi (10.1016/j.laa.2019.05.012_br0290) 2017; 523 Gonzalez (10.1016/j.laa.2019.05.012_br0180) 2011; 434 Abu-Omar (10.1016/j.laa.2019.05.012_br0030) 2019; 569 Bourhim (10.1016/j.laa.2019.05.012_br0090) 2017; 65 Baklouti (10.1016/j.laa.2019.05.012_br0080) 2018; 555 |
References_xml | – year: 2019 ident: br0070 article-title: Joint normality of operators in semi-Hilbertian spaces publication-title: Linear Multilinear Algebra – volume: 65 start-page: 1108 year: 2017 end-page: 1116 ident: br0090 article-title: Numerical radius and product of elements in publication-title: Linear Multilinear Algebra – volume: 32 start-page: 739 year: 2011 end-page: 749 ident: br0210 article-title: Numerical radius inequalities for commutators of Hilbert space operators publication-title: Numer. Funct. Anal. Optim. – year: 2019 ident: br0250 article-title: Positivity of publication-title: Banach J. Math. Anal. – volume: 428 start-page: 1460 year: 2008 end-page: 1475 ident: br0050 article-title: Partial isometries in semi-Hilbertian spaces publication-title: Linear Algebra Appl. – volume: 471 start-page: 46 year: 2015 end-page: 53 ident: br0230 article-title: Cartesian decomposition and numerical radius inequalities publication-title: Linear Algebra Appl. – year: 1997 ident: br0170 article-title: Numerical Range. The Field of Values of Linear Operators and Matrices publication-title: Universitext – volume: 23 start-page: 397 year: 2019 end-page: 411 ident: br0340 article-title: Characterization of numerical radius parallelism in publication-title: Positivity – volume: 62 start-page: 11 year: 2008 end-page: 28 ident: br0040 article-title: Metric properties of projections in semi-Hilbertian spaces publication-title: Integral Equations Operator Theory – volume: 71 start-page: 129 year: 2011 end-page: 147 ident: br0200 article-title: Numerical radius inequalities for certain publication-title: Integral Equations Operator Theory – year: 2019 ident: br0350 article-title: Birkhoff–James orthogonality of operators in semi-Hilbertian spaces and its applications publication-title: Ann. Funct. Anal. – volume: 178 start-page: 83 year: 2007 end-page: 89 ident: br0320 article-title: On upper and lower bounds of the numerical radius and an equality condition publication-title: Studia Math. – volume: 45 start-page: 1055 year: 2015 end-page: 1064 ident: br0010 article-title: Upper and lower bounds for the numerical radius with an application to involution operators publication-title: Rocky Mountain J. Math. – volume: 523 start-page: 1 year: 2017 end-page: 12 ident: br0290 article-title: Numerical radius inequalities for certain publication-title: Linear Algebra Appl. – volume: 430 start-page: 2474 year: 2009 end-page: 2487 ident: br0310 article-title: Quasi-isometries in semi-Hilbertian spaces publication-title: Linear Algebra Appl. – volume: 434 start-page: 370 year: 2011 end-page: 378 ident: br0180 article-title: Operator norm inequalities in semi-Hilbertian spaces publication-title: Linear Algebra Appl. – volume: 1 start-page: 154 year: 2007 end-page: 175 ident: br0100 article-title: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces publication-title: Banach J. Math. Anal. – volume: 39 start-page: 901 year: 2016 end-page: 911 ident: br0130 article-title: Powers of publication-title: Bull. Malays. Math. Sci. Soc. – volume: 495 start-page: 324 year: 2016 end-page: 343 ident: br0140 article-title: Partial isometries and pseudoinverses in semi-Hilbertian spaces publication-title: Linear Algebra Appl. – volume: 182 start-page: 133 year: 2007 end-page: 140 ident: br0120 article-title: Numerical radius inequalities for Hilbert space operators. II publication-title: Studia Math. – volume: 554 start-page: 51 year: 2018 end-page: 67 ident: br0160 article-title: Equality of three numerical radius inequalities publication-title: Linear Algebra Appl. – volume: 57 year: 2016 ident: br0260 article-title: Inequalities for operator space numerical radius of publication-title: J. Math. Phys. – volume: 168 start-page: 73 year: 2005 end-page: 80 ident: br0220 article-title: Numerical radius inequalities for Hilbert space operators publication-title: Studia Math. – year: 2013 ident: br0110 article-title: Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces publication-title: Springer Briefs in Math. – volume: 12 start-page: 447 year: 2018 end-page: 457 ident: br0190 article-title: Some generalizations of numerical radius on off-diagonal part of publication-title: J. Math. Inequal. – volume: 20 start-page: 129 year: 2017 end-page: 144 ident: br0280 article-title: Extension of Euclidean operator radius inequalities publication-title: Math. Scand. – volume: 2 start-page: 98 year: 2017 end-page: 107 ident: br0330 article-title: Some lower bounds for the numerical radius of Hilbert space operators publication-title: Adv. Oper. Theory – volume: 61 start-page: 139 year: 2013 end-page: 159 ident: br0240 article-title: Ergodic properties of operators in some semi-Hilbertian spaces publication-title: Linear Multilinear Algebra – volume: 569 start-page: 323 year: 2019 end-page: 334 ident: br0030 article-title: A generalization of the numerical radius publication-title: Linear Algebra Appl. – volume: 9 start-page: 297 year: 2018 end-page: 309 ident: br0060 article-title: Upper bounds for numerical radius inequalities involving off-diagonal operator matrices publication-title: Ann. Funct. Anal. – volume: 63 start-page: 1916 year: 2015 end-page: 1936 ident: br0150 article-title: Numerical radii for tensor products of matrices publication-title: Linear Multilinear Algebra – volume: 436 start-page: 3930 year: 2012 end-page: 3942 ident: br0300 article-title: - publication-title: Linear Algebra Appl. – volume: 227 start-page: 97 year: 2015 end-page: 109 ident: br0020 article-title: Notes on some spectral radius and numerical radius inequalities publication-title: Studia Math. – volume: 4 start-page: 197 year: 2019 end-page: 214 ident: br0270 article-title: Numerical radius inequalities for operator matrices publication-title: Adv. Oper. Theory – year: 2019 ident: br0360 article-title: Norm-parallelism and the Davis–Wielandt radius of Hilbert space operators publication-title: Linear Multilinear Algebra – volume: 555 start-page: 266 year: 2018 end-page: 284 ident: br0080 article-title: Joint numerical ranges of operators in semi-Hilbertian spaces publication-title: Linear Algebra Appl. – year: 2019 ident: 10.1016/j.laa.2019.05.012_br0250 article-title: Positivity of 2×2 block matrices of operators publication-title: Banach J. Math. Anal. doi: 10.1215/17358787-2019-0019 – volume: 430 start-page: 2474 year: 2009 ident: 10.1016/j.laa.2019.05.012_br0310 article-title: Quasi-isometries in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2008.12.021 – year: 2019 ident: 10.1016/j.laa.2019.05.012_br0070 article-title: Joint normality of operators in semi-Hilbertian spaces publication-title: Linear Multilinear Algebra – volume: 12 start-page: 447 issue: 2 year: 2018 ident: 10.1016/j.laa.2019.05.012_br0190 article-title: Some generalizations of numerical radius on off-diagonal part of 2×2 operator matrices publication-title: J. Math. Inequal. doi: 10.7153/jmi-2018-12-33 – volume: 1 start-page: 154 issue: 2 year: 2007 ident: 10.1016/j.laa.2019.05.012_br0100 article-title: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces publication-title: Banach J. Math. Anal. doi: 10.15352/bjma/1240336213 – year: 2019 ident: 10.1016/j.laa.2019.05.012_br0350 article-title: Birkhoff–James orthogonality of operators in semi-Hilbertian spaces and its applications publication-title: Ann. Funct. Anal. doi: 10.1215/20088752-2019-0001 – volume: 555 start-page: 266 year: 2018 ident: 10.1016/j.laa.2019.05.012_br0080 article-title: Joint numerical ranges of operators in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.06.021 – volume: 178 start-page: 83 issue: 1 year: 2007 ident: 10.1016/j.laa.2019.05.012_br0320 article-title: On upper and lower bounds of the numerical radius and an equality condition publication-title: Studia Math. doi: 10.4064/sm178-1-5 – volume: 227 start-page: 97 issue: 2 year: 2015 ident: 10.1016/j.laa.2019.05.012_br0020 article-title: Notes on some spectral radius and numerical radius inequalities publication-title: Studia Math. doi: 10.4064/sm227-2-1 – volume: 471 start-page: 46 year: 2015 ident: 10.1016/j.laa.2019.05.012_br0230 article-title: Cartesian decomposition and numerical radius inequalities publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2014.12.016 – volume: 32 start-page: 739 issue: 7 year: 2011 ident: 10.1016/j.laa.2019.05.012_br0210 article-title: Numerical radius inequalities for commutators of Hilbert space operators publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2011.580875 – volume: 71 start-page: 129 issue: 1 year: 2011 ident: 10.1016/j.laa.2019.05.012_br0200 article-title: Numerical radius inequalities for certain 2×2 operator matrices publication-title: Integral Equations Operator Theory doi: 10.1007/s00020-011-1893-0 – volume: 182 start-page: 133 issue: 2 year: 2007 ident: 10.1016/j.laa.2019.05.012_br0120 article-title: Numerical radius inequalities for Hilbert space operators. II publication-title: Studia Math. doi: 10.4064/sm182-2-3 – year: 2019 ident: 10.1016/j.laa.2019.05.012_br0360 article-title: Norm-parallelism and the Davis–Wielandt radius of Hilbert space operators publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2018.1484422 – volume: 23 start-page: 397 issue: 2 year: 2019 ident: 10.1016/j.laa.2019.05.012_br0340 article-title: Characterization of numerical radius parallelism in C⁎-algebras publication-title: Positivity doi: 10.1007/s11117-018-0613-2 – volume: 9 start-page: 297 issue: 3 year: 2018 ident: 10.1016/j.laa.2019.05.012_br0060 article-title: Upper bounds for numerical radius inequalities involving off-diagonal operator matrices publication-title: Ann. Funct. Anal. doi: 10.1215/20088752-2017-0029 – volume: 63 start-page: 1916 issue: 10 year: 2015 ident: 10.1016/j.laa.2019.05.012_br0150 article-title: Numerical radii for tensor products of matrices publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2013.839669 – volume: 168 start-page: 73 issue: 1 year: 2005 ident: 10.1016/j.laa.2019.05.012_br0220 article-title: Numerical radius inequalities for Hilbert space operators publication-title: Studia Math. doi: 10.4064/sm168-1-5 – volume: 20 start-page: 129 year: 2017 ident: 10.1016/j.laa.2019.05.012_br0280 article-title: Extension of Euclidean operator radius inequalities publication-title: Math. Scand. – volume: 554 start-page: 51 year: 2018 ident: 10.1016/j.laa.2019.05.012_br0160 article-title: Equality of three numerical radius inequalities publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.05.021 – volume: 45 start-page: 1055 issue: 4 year: 2015 ident: 10.1016/j.laa.2019.05.012_br0010 article-title: Upper and lower bounds for the numerical radius with an application to involution operators publication-title: Rocky Mountain J. Math. doi: 10.1216/RMJ-2015-45-4-1055 – volume: 61 start-page: 139 issue: 2 year: 2013 ident: 10.1016/j.laa.2019.05.012_br0240 article-title: Ergodic properties of operators in some semi-Hilbertian spaces publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2012.667094 – volume: 2 start-page: 98 year: 2017 ident: 10.1016/j.laa.2019.05.012_br0330 article-title: Some lower bounds for the numerical radius of Hilbert space operators publication-title: Adv. Oper. Theory – volume: 495 start-page: 324 year: 2016 ident: 10.1016/j.laa.2019.05.012_br0140 article-title: Partial isometries and pseudoinverses in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2016.01.026 – volume: 436 start-page: 3930 year: 2012 ident: 10.1016/j.laa.2019.05.012_br0300 article-title: A-m-isometric operators in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.09.012 – volume: 39 start-page: 901 issue: 3 year: 2016 ident: 10.1016/j.laa.2019.05.012_br0130 article-title: Powers of A-m-isometric operators and their supercyclicity publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-015-0201-6 – volume: 62 start-page: 11 issue: 1 year: 2008 ident: 10.1016/j.laa.2019.05.012_br0040 article-title: Metric properties of projections in semi-Hilbertian spaces publication-title: Integral Equations Operator Theory doi: 10.1007/s00020-008-1613-6 – year: 1997 ident: 10.1016/j.laa.2019.05.012_br0170 article-title: Numerical Range. The Field of Values of Linear Operators and Matrices – volume: 65 start-page: 1108 issue: 6 year: 2017 ident: 10.1016/j.laa.2019.05.012_br0090 article-title: Numerical radius and product of elements in C⁎-algebras publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2016.1228818 – year: 2013 ident: 10.1016/j.laa.2019.05.012_br0110 article-title: Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces doi: 10.1007/978-3-319-01448-7 – volume: 428 start-page: 1460 issue: 7 year: 2008 ident: 10.1016/j.laa.2019.05.012_br0050 article-title: Partial isometries in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2007.09.031 – volume: 569 start-page: 323 year: 2019 ident: 10.1016/j.laa.2019.05.012_br0030 article-title: A generalization of the numerical radius publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2019.01.019 – volume: 57 issue: 1 year: 2016 ident: 10.1016/j.laa.2019.05.012_br0260 article-title: Inequalities for operator space numerical radius of 2×2 block matrices publication-title: J. Math. Phys. doi: 10.1063/1.4926977 – volume: 434 start-page: 370 year: 2011 ident: 10.1016/j.laa.2019.05.012_br0180 article-title: Operator norm inequalities in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.08.034 – volume: 4 start-page: 197 issue: 1 year: 2019 ident: 10.1016/j.laa.2019.05.012_br0270 article-title: Numerical radius inequalities for operator matrices publication-title: Adv. Oper. Theory doi: 10.15352/aot.1804-1359 – volume: 523 start-page: 1 year: 2017 ident: 10.1016/j.laa.2019.05.012_br0290 article-title: Numerical radius inequalities for certain 2×2 operator matrices II publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2017.02.019 |
SSID | ssj0004702 |
Score | 2.5561848 |
Snippet | Let A be a positive bounded operator on a Hilbert space (H,〈⋅,⋅〉). The semi-inner product 〈x,y〉A:=〈Ax,y〉, x,y∈H induces a semi-norm ‖⋅‖A on H. Let ‖T‖A and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 159 |
SubjectTerms | A-adjoint operator A-numerical radius Commutators Hilbert space Inequality Linear algebra Lower bounds Operators Positive operator Semi-inner product Trigonometric functions Upper bounds |
Title | A-numerical radius inequalities for semi-Hilbertian space operators |
URI | https://dx.doi.org/10.1016/j.laa.2019.05.012 https://www.proquest.com/docview/2319718822 |
Volume | 578 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3E6Rw-ehLh-pE17nMPRKdvJwW6hSV6hUruxblf_dl_6MVFwBy-FlKSUX5L3fo-89wsh91LpUHsqoJ4KJWVaR1S62qUKqYTveAGo1NQ7T2dBPGcvC3_RIaO2FsakVTa2v7bplbVu3gwaNAerLDM1vpWYnqEg6IgcI7vNGDer_PHzO82DcbtRDGfU9G5PNqscrzwx0kNOVIt3un_5pl9WunI941Ny0nBGa1j_1hnpQHFOjqc7wdXygoyGtNjWhy-5tU50ti0t5I91ySQGwxZyU6uEj4zGWV7lUieFhcZEgbVcQXXUXl6S-fj5bRTT5n4ERDIIN1SCZ8Rq8KESxjlwX4LUSQi2hiCUETDFAwynUh6By1KNTCH1gOmEpYBuO_KuyEGxLOCaWE6KGznxHS59FwNmP5SO9FyMpTgPgKesS-wWGaEa8XBzh0Uu2iyxd4FgCgOmsH2BYHbJw27IqlbO2NeZtXCLH9Mv0LLvG9Zrp0Y0e68UyFgj9LjIfG7-99VbcmRadcpejxxs1lu4Q-qxkf1qbfXJ4XDyGs-wNVk8fQFp1thD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFA0yLtSF-MS3WehGiDNt06ZduBAfjDozKwV3sUluoTLWwc4gbvwpf9CbNlUUdCG46aJtSjhJ7zmX3JwQsqe0iU2gIxboWDFuTMKUb3ymUUqEXhCBzux-5_4g6t7wy9vwdoq8NXthbFmli_11TK-itbvTdmi2R3lu9_hWZnpWgiAReZGrrLyCl2fM28qji1Mc5H3fPz-7Pukyd7QAdiKKx0xBYH1e8KJTLgSIUIEyaQwdA1GsEuBaRJiJZCIBn2cGSTYLgJuUZ4CMZx2YMO5PcwwX9tiEw9fPuhIuOs6inDPbvWYptSoqG6bW68hLardQ_ycy_EYLFdedL5B5J1LpcY3DIpmCYonM9T8cXstlcnLMikm92jOkT6nJJyVFwVrv0cTsm6IYpiU85KybD6vi7bSgGL000McRVGv75Qq5-RfUVkmreCxgjVAvw8iRhp5QoY8ZehgrTwU-Jm9CRCAyvk46DTJSO7dye2jGUDZlafcSwZQWTNkJJYK5Tg4-moxqq47fXuYN3PLLfJNIJb8122qGRrqfvZQokROkeJRaG3_76i6Z6V73e7J3MbjaJLP2SV0vuEVa46cJbKPuGaudap5RcvffE_sdexoTxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A-numerical+radius+inequalities+for+semi-Hilbertian+space+operators&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Zamani%2C+Ali&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=578&rft.spage=159&rft.epage=183&rft_id=info:doi/10.1016%2Fj.laa.2019.05.012&rft.externalDocID=S0024379519302216 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |