Edge learning using a fully integrated neuro-inspired memristor chip
Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. W...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 381; no. 6663; pp. 1205 - 1211 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
15.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition.
Memristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von Neumann bottleneck” of conventional computing architecture. In particular, memristor technology could realize time- and energy-efficient on-chip learning for various edge intelligence applications, although fully on-chip learning implementation remains challenging. To address this problem, Zhang
et al
. proposed a memristor-featured sign- and threshold-based learning (STELLAR) architecture. They fabricated a full-system-integrated chip consisting of multiple memristor arrays and all of the necessary complementary metal-oxide semiconductor peripheral circuits to support complete on-chip learning. The authors further demonstrated end-to-end on-chip improvement learning across various tasks, including motion control, image classification, and speech recognition, achieving software-comparable accuracy and low hardware cost. The present work is an important step in the field of computation-in-memory. —Yury Suleymanov
A memristor-based chip supporting efficient fully on-chip learning for edge intelligence applications was developed. |
---|---|
AbstractList | Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition.
Memristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von Neumann bottleneck” of conventional computing architecture. In particular, memristor technology could realize time- and energy-efficient on-chip learning for various edge intelligence applications, although fully on-chip learning implementation remains challenging. To address this problem, Zhang
et al
. proposed a memristor-featured sign- and threshold-based learning (STELLAR) architecture. They fabricated a full-system-integrated chip consisting of multiple memristor arrays and all of the necessary complementary metal-oxide semiconductor peripheral circuits to support complete on-chip learning. The authors further demonstrated end-to-end on-chip improvement learning across various tasks, including motion control, image classification, and speech recognition, achieving software-comparable accuracy and low hardware cost. The present work is an important step in the field of computation-in-memory. —Yury Suleymanov
A memristor-based chip supporting efficient fully on-chip learning for edge intelligence applications was developed. Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition.Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition. Editor’s summaryMemristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von Neumann bottleneck” of conventional computing architecture. In particular, memristor technology could realize time- and energy-efficient on-chip learning for various edge intelligence applications, although fully on-chip learning implementation remains challenging. To address this problem, Zhang et al. proposed a memristor-featured sign- and threshold-based learning (STELLAR) architecture. They fabricated a full-system-integrated chip consisting of multiple memristor arrays and all of the necessary complementary metal-oxide semiconductor peripheral circuits to support complete on-chip learning. The authors further demonstrated end-to-end on-chip improvement learning across various tasks, including motion control, image classification, and speech recognition, achieving software-comparable accuracy and low hardware cost. The present work is an important step in the field of computation-in-memory. —Yury Suleymanov |
Author | Qian, He Tang, Jianshi Li, Yuankun Zhu, Zhenhua Wang, Yu Yao, Peng Zhang, Wenbin Qin, Qi Gao, Bin Cai, Yi Wu, Dong Liu, Qi Wu, Huaqiang Li, Jiaming Wu, Dabin Zhang, Qingtian |
Author_xml | – sequence: 1 givenname: Wenbin orcidid: 0009-0001-7607-3682 surname: Zhang fullname: Zhang, Wenbin organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 2 givenname: Peng orcidid: 0000-0003-0172-4310 surname: Yao fullname: Yao, Peng organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 3 givenname: Bin orcidid: 0000-0002-2417-983X surname: Gao fullname: Gao, Bin organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 4 givenname: Qi orcidid: 0009-0001-4269-3381 surname: Liu fullname: Liu, Qi organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 5 givenname: Dong surname: Wu fullname: Wu, Dong organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 6 givenname: Qingtian orcidid: 0000-0003-2732-3419 surname: Zhang fullname: Zhang, Qingtian organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 7 givenname: Yuankun surname: Li fullname: Li, Yuankun organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 8 givenname: Qi orcidid: 0000-0001-9932-9057 surname: Qin fullname: Qin, Qi organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 9 givenname: Jiaming surname: Li fullname: Li, Jiaming organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 10 givenname: Zhenhua orcidid: 0009-0007-9259-7180 surname: Zhu fullname: Zhu, Zhenhua organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 11 givenname: Yi surname: Cai fullname: Cai, Yi organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 12 givenname: Dabin orcidid: 0009-0002-6800-9207 surname: Wu fullname: Wu, Dabin organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 13 givenname: Jianshi orcidid: 0000-0001-8369-0067 surname: Tang fullname: Tang, Jianshi organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 14 givenname: He surname: Qian fullname: Qian, He organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 15 givenname: Yu surname: Wang fullname: Wang, Yu organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 16 givenname: Huaqiang orcidid: 0000-0001-8359-7997 surname: Wu fullname: Wu, Huaqiang organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China |
BookMark | eNp1kD1rwzAQhkVJoUnauauhSxcnsr41ljT9gECXdjaKck4VbMmV5CH_vg7JVOhyx3HPexzPDE188IDQfYUXVUXEMlkH3sLC7IAyRa_QtMKal5pgOkFTjKkoFZb8Bs1SOmA87jSdouf1bg9FCyZ65_fFkE7VFM3QtsfC-Qz7aDLsCg9DDKXzqXdxHDvooks5xMJ-u_4WXTemTXB36XP09bL-XL2Vm4_X99XTprRUqFxuudwqpbSVTHJQVFdCS6I5UCNJgysgrMENltpSIpnggllhG0G01FJoTukcPZ7v9jH8DJBy3blkoW2NhzCkmijBpWJEixF9-IMewhD9-N2JYlxLxdlI8TNlY0gpQlNbl012wedoXFtXuD65rS9u64vbMbf8k-uj60w8_pv4BeGDf68 |
CitedBy_id | crossref_primary_10_1007_s11071_024_10329_z crossref_primary_10_1126_sciadv_adr2082 crossref_primary_10_1016_j_eswa_2024_126205 crossref_primary_10_1002_admt_202302238 crossref_primary_10_1021_acs_nanolett_3c05092 crossref_primary_10_1039_D4MH01676A crossref_primary_10_1016_j_scib_2023_11_042 crossref_primary_10_1038_s41467_024_45312_0 crossref_primary_10_1021_acsami_4c09593 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1002_advs_202309538 crossref_primary_10_1002_adfm_202411331 crossref_primary_10_1016_j_mtnano_2024_100543 crossref_primary_10_1109_TVLSI_2024_3521394 crossref_primary_10_1016_j_scib_2025_03_051 crossref_primary_10_1063_5_0238783 crossref_primary_10_3390_electronics13020356 crossref_primary_10_1142_S0217984925500460 crossref_primary_10_34133_adi_0044 crossref_primary_10_1007_s11433_024_2403_x crossref_primary_10_1039_D4MH01348D crossref_primary_10_1021_acs_nanolett_4c04783 crossref_primary_10_1126_sciadv_adp3710 crossref_primary_10_1038_s41928_024_01312_y crossref_primary_10_1038_s41928_024_01315_9 crossref_primary_10_1126_sciadv_adr6733 crossref_primary_10_1002_elt2_46 crossref_primary_10_1016_j_chaos_2024_115191 crossref_primary_10_3390_s25051533 crossref_primary_10_1002_smtd_202402218 crossref_primary_10_1109_TCSI_2024_3365175 crossref_primary_10_1140_epjs_s11734_024_01369_y crossref_primary_10_1021_acs_jpclett_4c00488 crossref_primary_10_1109_TED_2024_3479160 crossref_primary_10_1002_adfm_202412375 crossref_primary_10_1021_acs_chemrev_4c00071 crossref_primary_10_1109_TIT_2024_3454059 crossref_primary_10_1038_s43588_024_00753_x crossref_primary_10_1021_acsaelm_4c00427 crossref_primary_10_1039_D3TC04510B crossref_primary_10_1016_j_nanoen_2024_109861 crossref_primary_10_1016_j_nanoen_2025_110698 crossref_primary_10_1126_sciadv_adj2908 crossref_primary_10_1021_acs_nanolett_4c02136 crossref_primary_10_1002_adfm_202423548 crossref_primary_10_1002_adma_202312094 crossref_primary_10_1021_acs_nanolett_4c04434 crossref_primary_10_1021_acs_nanolett_4c01606 crossref_primary_10_1038_s41467_024_48133_3 crossref_primary_10_1134_S2635167623601535 crossref_primary_10_1002_adma_202311288 crossref_primary_10_1002_aisy_202401068 crossref_primary_10_26599_NR_2025_94907043 crossref_primary_10_1016_j_jmat_2025_101051 crossref_primary_10_1109_JIOT_2024_3448350 crossref_primary_10_1038_s41467_025_57183_0 crossref_primary_10_1016_j_jmat_2024_03_011 crossref_primary_10_1088_1361_6528_ad61ee crossref_primary_10_1177_09506608251318108 crossref_primary_10_1002_cpe_7997 crossref_primary_10_1038_s41928_024_01318_6 crossref_primary_10_1038_s44335_024_00010_4 crossref_primary_10_3390_electronics13234665 crossref_primary_10_1007_s40820_024_01368_7 crossref_primary_10_1038_s41467_024_52982_3 crossref_primary_10_1038_d41586_023_03267_0 crossref_primary_10_1038_s41467_025_56254_6 crossref_primary_10_1021_acsmaterialslett_4c00448 crossref_primary_10_1109_TVT_2024_3447714 crossref_primary_10_34133_research_0427 crossref_primary_10_1016_j_nanoen_2024_109684 crossref_primary_10_1109_TED_2024_3456775 crossref_primary_10_1021_acs_nanolett_4c03084 crossref_primary_10_1002_adma_202411463 crossref_primary_10_1038_s44287_024_00031_y crossref_primary_10_1109_TCSII_2024_3442873 crossref_primary_10_1016_j_jmst_2024_12_078 crossref_primary_10_3389_fnins_2025_1516971 crossref_primary_10_1002_advs_202409291 crossref_primary_10_1109_TED_2024_3497917 crossref_primary_10_1088_2634_4386_ad9b4a crossref_primary_10_1016_j_microrel_2025_115630 crossref_primary_10_1039_D4TC05075D crossref_primary_10_1016_j_device_2024_100546 crossref_primary_10_1039_D3CS00918A crossref_primary_10_1038_s41467_025_58004_0 crossref_primary_10_1002_advs_202411925 crossref_primary_10_1002_advs_202407440 crossref_primary_10_1007_s11390_023_4002_3 crossref_primary_10_1109_TED_2024_3450437 crossref_primary_10_3390_chips3040014 crossref_primary_10_1038_s41467_024_46246_3 crossref_primary_10_1134_S2635167624601657 crossref_primary_10_1016_j_mssp_2024_108480 crossref_primary_10_1038_s41928_024_01277_y crossref_primary_10_1038_s44335_024_00006_0 crossref_primary_10_1002_adfm_202315954 crossref_primary_10_1063_5_0180651 crossref_primary_10_1088_2634_4386_ad6732 crossref_primary_10_1049_ell2_13245 crossref_primary_10_1088_1674_4926_23120037 crossref_primary_10_1109_TGRS_2024_3434432 crossref_primary_10_1088_2631_7990_ad88bb crossref_primary_10_1002_adfm_202404625 crossref_primary_10_1126_science_ade3483 crossref_primary_10_1016_j_mee_2024_112281 crossref_primary_10_1002_adfm_202418113 crossref_primary_10_1021_acs_jpclett_4c03367 crossref_primary_10_1002_aisy_202500028 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1016_j_chip_2024_100093 crossref_primary_10_1126_science_adl1203 crossref_primary_10_1016_j_cej_2024_155651 crossref_primary_10_1002_aelm_202400732 crossref_primary_10_1038_s43588_024_00744_y crossref_primary_10_1109_LED_2024_3362829 crossref_primary_10_1016_j_mtbio_2024_101096 crossref_primary_10_1016_j_nanoen_2024_109949 crossref_primary_10_1109_LED_2024_3521924 crossref_primary_10_1109_TED_2023_3339115 crossref_primary_10_1016_j_cossms_2024_101199 crossref_primary_10_1109_TED_2024_3439308 crossref_primary_10_3390_electronics13132639 crossref_primary_10_1109_TVLSI_2024_3519748 crossref_primary_10_1380_vss_67_527 crossref_primary_10_1016_j_device_2024_100645 crossref_primary_10_1002_adma_202409017 crossref_primary_10_1016_j_measurement_2024_116532 crossref_primary_10_3389_fphy_2024_1396178 crossref_primary_10_1002_adfm_202416288 crossref_primary_10_1016_j_mssp_2024_109037 crossref_primary_10_1002_adma_202412549 crossref_primary_10_1109_ACCESS_2024_3444796 crossref_primary_10_1109_TCSI_2024_3430290 crossref_primary_10_1063_5_0210317 crossref_primary_10_1109_TED_2024_3404916 crossref_primary_10_1002_jsid_2044 crossref_primary_10_1038_s44287_024_00037_6 crossref_primary_10_1109_TCE_2024_3367728 crossref_primary_10_1063_5_0168089 crossref_primary_10_1016_j_cpc_2024_109375 crossref_primary_10_1002_adma_202310704 |
Cites_doi | 10.1126/science.ade3483 10.1109/HPCA.2017.55 10.1038/s41928-019-0221-6 10.1145/3007787.3001140 10.1145/3079856.3080231 10.1109/JPROC.2018.2882603 10.1038/nature14539 10.1109/VLSITechnology18217.2020.9265066 10.1109/ISSCC42615.2023.10067610 10.1038/s41928-017-0006-8 10.1038/s41928-020-00505-5 10.1109/FCCM48280.2020.00024 10.1038/s41467-018-04484-2 10.1145/3079856.3080246 10.1109/JIOT.2016.2579198 10.1038/s41565-020-0655-z 10.1109/JSSC.2021.3066400 10.1038/s41586-018-0180-5 10.1109/ISSCC19947.2020.9062979 10.1109/ISSCC.2014.6757323 10.1038/s41928-020-0435-7 10.1038/s41928-021-00676-9 10.1126/science.abj9979 10.23919/VLSICircuits52068.2021.9492362 10.1038/nnano.2015.29 10.1109/CVPR.2018.00810 10.1038/s41928-019-0288-0 10.1109/VLSIC.2012.6243840 10.1126/science.aaw5581 10.1038/323533a0 10.1016/j.neunet.2018.08.012 10.1038/s41467-020-16108-9 10.1038/s42256-018-0001-4 10.1109/ISSCC19947.2020.9062953 10.1186/s40537-016-0043-6 10.1109/TCAD.2018.2789723 10.1109/VLSIT.2018.8510690 10.1109/5.726791 10.1038/nature14441 10.1038/s41928-019-0270-x 10.1109/TED.2015.2439635 10.1038/s41928-018-0092-2 10.1038/ncomms15199 10.1109/IEDM.2017.8268372 10.1609/aaai.v34i09.7123 10.1109/JPROC.2020.3004543 10.1038/s41586-020-1942-4 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.ade3483 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1211 |
ExternalDocumentID | 10_1126_science_ade3483 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c368t-b57b8889c7475e8391697295e3a72f01e24f0f079c32746564c6cf62979769533 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 10:33:28 EDT 2025 Sat Aug 23 12:30:07 EDT 2025 Tue Jul 01 03:13:58 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6663 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-b57b8889c7475e8391697295e3a72f01e24f0f079c32746564c6cf62979769533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0001-4269-3381 0009-0002-6800-9207 0000-0001-9932-9057 0000-0001-8359-7997 0000-0002-2417-983X 0009-0007-9259-7180 0000-0003-0172-4310 0000-0001-8369-0067 0009-0001-7607-3682 0000-0003-2732-3419 |
PQID | 2864597854 |
PQPubID | 1256 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2865784296 proquest_journals_2864597854 crossref_citationtrail_10_1126_science_ade3483 crossref_primary_10_1126_science_ade3483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-15 20230915 |
PublicationDateYYYYMMDD | 2023-09-15 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2023 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_43_2 doi: 10.1126/science.ade3483 – ident: e_1_3_2_51_2 – ident: e_1_3_2_36_2 doi: 10.1109/HPCA.2017.55 – ident: e_1_3_2_22_2 doi: 10.1038/s41928-019-0221-6 – ident: e_1_3_2_35_2 doi: 10.1145/3007787.3001140 – ident: e_1_3_2_50_2 doi: 10.1145/3079856.3080231 – ident: e_1_3_2_49_2 doi: 10.1109/JPROC.2018.2882603 – ident: e_1_3_2_4_2 doi: 10.1038/nature14539 – ident: e_1_3_2_39_2 doi: 10.1109/VLSITechnology18217.2020.9265066 – ident: e_1_3_2_42_2 doi: 10.1109/ISSCC42615.2023.10067610 – ident: e_1_3_2_10_2 doi: 10.1038/s41928-017-0006-8 – ident: e_1_3_2_5_2 – ident: e_1_3_2_14_2 doi: 10.1038/s41928-020-00505-5 – ident: e_1_3_2_44_2 doi: 10.1126/science.ade3483 – ident: e_1_3_2_48_2 doi: 10.1109/FCCM48280.2020.00024 – ident: e_1_3_2_21_2 doi: 10.1038/s41467-018-04484-2 – ident: e_1_3_2_45_2 doi: 10.1145/3079856.3080246 – ident: e_1_3_2_2_2 doi: 10.1109/JIOT.2016.2579198 – ident: e_1_3_2_17_2 doi: 10.1038/s41565-020-0655-z – ident: e_1_3_2_37_2 doi: 10.1109/JSSC.2021.3066400 – ident: e_1_3_2_16_2 doi: 10.1038/s41586-018-0180-5 – ident: e_1_3_2_13_2 doi: 10.1109/ISSCC19947.2020.9062979 – ident: e_1_3_2_6_2 doi: 10.1109/ISSCC.2014.6757323 – ident: e_1_3_2_18_2 doi: 10.1038/s41928-020-0435-7 – ident: e_1_3_2_40_2 doi: 10.1038/s41928-021-00676-9 – ident: e_1_3_2_52_2 – ident: e_1_3_2_11_2 doi: 10.1126/science.abj9979 – ident: e_1_3_2_38_2 doi: 10.23919/VLSICircuits52068.2021.9492362 – ident: e_1_3_2_7_2 doi: 10.1038/nnano.2015.29 – ident: e_1_3_2_53_2 doi: 10.1109/CVPR.2018.00810 – ident: e_1_3_2_15_2 doi: 10.1038/s41928-019-0288-0 – ident: e_1_3_2_54_2 – ident: e_1_3_2_46_2 doi: 10.1109/VLSIC.2012.6243840 – ident: e_1_3_2_26_2 doi: 10.1126/science.aaw5581 – ident: e_1_3_2_3_2 doi: 10.1038/323533a0 – ident: e_1_3_2_31_2 doi: 10.1016/j.neunet.2018.08.012 – ident: e_1_3_2_47_2 doi: 10.1038/s41467-020-16108-9 – ident: e_1_3_2_23_2 doi: 10.1038/s42256-018-0001-4 – ident: e_1_3_2_12_2 doi: 10.1109/ISSCC19947.2020.9062953 – ident: e_1_3_2_41_2 doi: 10.1186/s40537-016-0043-6 – ident: e_1_3_2_29_2 doi: 10.1109/TCAD.2018.2789723 – ident: e_1_3_2_33_2 doi: 10.1109/VLSIT.2018.8510690 – ident: e_1_3_2_34_2 doi: 10.1109/5.726791 – ident: e_1_3_2_19_2 doi: 10.1038/nature14441 – ident: e_1_3_2_25_2 doi: 10.1038/s41928-019-0270-x – ident: e_1_3_2_27_2 doi: 10.1109/TED.2015.2439635 – ident: e_1_3_2_9_2 doi: 10.1038/s41928-018-0092-2 – ident: e_1_3_2_20_2 doi: 10.1038/ncomms15199 – ident: e_1_3_2_28_2 doi: 10.1109/IEDM.2017.8268372 – ident: e_1_3_2_8_2 doi: 10.1609/aaai.v34i09.7123 – ident: e_1_3_2_32_2 – ident: e_1_3_2_30_2 doi: 10.1109/JPROC.2020.3004543 – ident: e_1_3_2_24_2 doi: 10.1038/s41586-020-1942-4 |
SSID | ssj0009593 |
Score | 2.7185318 |
Snippet | Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural... Editor’s summaryMemristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1205 |
SubjectTerms | CMOS Computer architecture Energy efficiency Image classification Influence of Technology Learning Memristors Motion control Speech recognition |
Title | Edge learning using a fully integrated neuro-inspired memristor chip |
URI | https://www.proquest.com/docview/2864597854 https://www.proquest.com/docview/2865784296 |
Volume | 381 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbymAvY-02lq0dGuyho7g4kj-kx6RNKCPrGCQsezKyLUGgdUqbPHR__e4k-SMjhXYvJpHlxOh-Ot1Jd78j5AssoylXogyiMjbgoCQ8kFzJoEy1lklRlrzEE93vl8nFPPq2iBdtKK_NLlnnp8WfnXkl_yNVaAO5YpbsEyTb_Cg0wGeQL1xBwnB9lIzHmGt1VW9ubKzbr05wR_2-5YEoTyxnZbCs8FAdvl7ra0socIuZ3Ddd67Se6GB1Nic5Hfk1IYlDFzhQxxH4xzqbCs029C9d5csGf7_VysUE--US435c06jtNF1usOXnsrshwThGT7iUTK9DQyz_yEKnt_SONq94uSvW4hEGfhTvaNIBs-nYO1R8pyilRi5NHgnermb1Cf7lj2wyn06z2Xgxe072GHgRrEf2hqPz0eRfVubm7Tz3Uyerqv6DbbNle9W2psjsNXnlfQg6dIDYJ890dUBeuKqi9wdk38vjjh57UvGvb8g5YoXWWKEWK1RRixXaYoVuY4U2WKGIlbdkPhnPzi4CX0EjKHgi1kEep7kQQhbgNMZaYJK1BG8q1lylzIQDzSITmjCVBWcpMudFRVKYhMkUrFQMPH5HetWq0u8JlSYSoKJLZgZFBHNYchMrmMk5N6UKle6T03qAssLTy2OVk6vMupksyfyIZn5E--S4eeDGMas83PWwHvHMT7-7jAnkQUpFHPXJ5-Y2KEc88VKVXm1sH1iRwORKPjyiz0fyssXzIemtbzf6CEzOdf7JA-cvryiE5w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+learning+using+a+fully+integrated+neuro-inspired+memristor+chip&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Wenbin&rft.au=Yao%2C+Peng&rft.au=Gao%2C+Bin&rft.au=Liu%2C+Qi&rft.date=2023-09-15&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=381&rft.issue=6663&rft.spage=1205&rft_id=info:doi/10.1126%2Fscience.ade3483&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |