Edge learning using a fully integrated neuro-inspired memristor chip

Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. W...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 381; no. 6663; pp. 1205 - 1211
Main Authors Zhang, Wenbin, Yao, Peng, Gao, Bin, Liu, Qi, Wu, Dong, Zhang, Qingtian, Li, Yuankun, Qin, Qi, Li, Jiaming, Zhu, Zhenhua, Cai, Yi, Wu, Dabin, Tang, Jianshi, Qian, He, Wang, Yu, Wu, Huaqiang
Format Journal Article
LanguageEnglish
Published Washington The American Association for the Advancement of Science 15.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition. Memristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von Neumann bottleneck” of conventional computing architecture. In particular, memristor technology could realize time- and energy-efficient on-chip learning for various edge intelligence applications, although fully on-chip learning implementation remains challenging. To address this problem, Zhang et al . proposed a memristor-featured sign- and threshold-based learning (STELLAR) architecture. They fabricated a full-system-integrated chip consisting of multiple memristor arrays and all of the necessary complementary metal-oxide semiconductor peripheral circuits to support complete on-chip learning. The authors further demonstrated end-to-end on-chip improvement learning across various tasks, including motion control, image classification, and speech recognition, achieving software-comparable accuracy and low hardware cost. The present work is an important step in the field of computation-in-memory. —Yury Suleymanov A memristor-based chip supporting efficient fully on-chip learning for edge intelligence applications was developed.
AbstractList Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition. Memristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von Neumann bottleneck” of conventional computing architecture. In particular, memristor technology could realize time- and energy-efficient on-chip learning for various edge intelligence applications, although fully on-chip learning implementation remains challenging. To address this problem, Zhang et al . proposed a memristor-featured sign- and threshold-based learning (STELLAR) architecture. They fabricated a full-system-integrated chip consisting of multiple memristor arrays and all of the necessary complementary metal-oxide semiconductor peripheral circuits to support complete on-chip learning. The authors further demonstrated end-to-end on-chip improvement learning across various tasks, including motion control, image classification, and speech recognition, achieving software-comparable accuracy and low hardware cost. The present work is an important step in the field of computation-in-memory. —Yury Suleymanov A memristor-based chip supporting efficient fully on-chip learning for edge intelligence applications was developed.
Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition.Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition.
Editor’s summaryMemristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von Neumann bottleneck” of conventional computing architecture. In particular, memristor technology could realize time- and energy-efficient on-chip learning for various edge intelligence applications, although fully on-chip learning implementation remains challenging. To address this problem, Zhang et al. proposed a memristor-featured sign- and threshold-based learning (STELLAR) architecture. They fabricated a full-system-integrated chip consisting of multiple memristor arrays and all of the necessary complementary metal-oxide semiconductor peripheral circuits to support complete on-chip learning. The authors further demonstrated end-to-end on-chip improvement learning across various tasks, including motion control, image classification, and speech recognition, achieving software-comparable accuracy and low hardware cost. The present work is an important step in the field of computation-in-memory. —Yury Suleymanov
Author Qian, He
Tang, Jianshi
Li, Yuankun
Zhu, Zhenhua
Wang, Yu
Yao, Peng
Zhang, Wenbin
Qin, Qi
Gao, Bin
Cai, Yi
Wu, Dong
Liu, Qi
Wu, Huaqiang
Li, Jiaming
Wu, Dabin
Zhang, Qingtian
Author_xml – sequence: 1
  givenname: Wenbin
  orcidid: 0009-0001-7607-3682
  surname: Zhang
  fullname: Zhang, Wenbin
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 2
  givenname: Peng
  orcidid: 0000-0003-0172-4310
  surname: Yao
  fullname: Yao, Peng
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 3
  givenname: Bin
  orcidid: 0000-0002-2417-983X
  surname: Gao
  fullname: Gao, Bin
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 4
  givenname: Qi
  orcidid: 0009-0001-4269-3381
  surname: Liu
  fullname: Liu, Qi
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 5
  givenname: Dong
  surname: Wu
  fullname: Wu, Dong
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 6
  givenname: Qingtian
  orcidid: 0000-0003-2732-3419
  surname: Zhang
  fullname: Zhang, Qingtian
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 7
  givenname: Yuankun
  surname: Li
  fullname: Li, Yuankun
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 8
  givenname: Qi
  orcidid: 0000-0001-9932-9057
  surname: Qin
  fullname: Qin, Qi
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 9
  givenname: Jiaming
  surname: Li
  fullname: Li, Jiaming
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 10
  givenname: Zhenhua
  orcidid: 0009-0007-9259-7180
  surname: Zhu
  fullname: Zhu, Zhenhua
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 11
  givenname: Yi
  surname: Cai
  fullname: Cai, Yi
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 12
  givenname: Dabin
  orcidid: 0009-0002-6800-9207
  surname: Wu
  fullname: Wu, Dabin
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 13
  givenname: Jianshi
  orcidid: 0000-0001-8369-0067
  surname: Tang
  fullname: Tang, Jianshi
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 14
  givenname: He
  surname: Qian
  fullname: Qian, He
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 15
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 16
  givenname: Huaqiang
  orcidid: 0000-0001-8359-7997
  surname: Wu
  fullname: Wu, Huaqiang
  organization: School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
BookMark eNp1kD1rwzAQhkVJoUnauauhSxcnsr41ljT9gECXdjaKck4VbMmV5CH_vg7JVOhyx3HPexzPDE188IDQfYUXVUXEMlkH3sLC7IAyRa_QtMKal5pgOkFTjKkoFZb8Bs1SOmA87jSdouf1bg9FCyZ65_fFkE7VFM3QtsfC-Qz7aDLsCg9DDKXzqXdxHDvooks5xMJ-u_4WXTemTXB36XP09bL-XL2Vm4_X99XTprRUqFxuudwqpbSVTHJQVFdCS6I5UCNJgysgrMENltpSIpnggllhG0G01FJoTukcPZ7v9jH8DJBy3blkoW2NhzCkmijBpWJEixF9-IMewhD9-N2JYlxLxdlI8TNlY0gpQlNbl012wedoXFtXuD65rS9u64vbMbf8k-uj60w8_pv4BeGDf68
CitedBy_id crossref_primary_10_1007_s11071_024_10329_z
crossref_primary_10_1126_sciadv_adr2082
crossref_primary_10_1016_j_eswa_2024_126205
crossref_primary_10_1002_admt_202302238
crossref_primary_10_1021_acs_nanolett_3c05092
crossref_primary_10_1039_D4MH01676A
crossref_primary_10_1016_j_scib_2023_11_042
crossref_primary_10_1038_s41467_024_45312_0
crossref_primary_10_1021_acsami_4c09593
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1002_advs_202309538
crossref_primary_10_1002_adfm_202411331
crossref_primary_10_1016_j_mtnano_2024_100543
crossref_primary_10_1109_TVLSI_2024_3521394
crossref_primary_10_1016_j_scib_2025_03_051
crossref_primary_10_1063_5_0238783
crossref_primary_10_3390_electronics13020356
crossref_primary_10_1142_S0217984925500460
crossref_primary_10_34133_adi_0044
crossref_primary_10_1007_s11433_024_2403_x
crossref_primary_10_1039_D4MH01348D
crossref_primary_10_1021_acs_nanolett_4c04783
crossref_primary_10_1126_sciadv_adp3710
crossref_primary_10_1038_s41928_024_01312_y
crossref_primary_10_1038_s41928_024_01315_9
crossref_primary_10_1126_sciadv_adr6733
crossref_primary_10_1002_elt2_46
crossref_primary_10_1016_j_chaos_2024_115191
crossref_primary_10_3390_s25051533
crossref_primary_10_1002_smtd_202402218
crossref_primary_10_1109_TCSI_2024_3365175
crossref_primary_10_1140_epjs_s11734_024_01369_y
crossref_primary_10_1021_acs_jpclett_4c00488
crossref_primary_10_1109_TED_2024_3479160
crossref_primary_10_1002_adfm_202412375
crossref_primary_10_1021_acs_chemrev_4c00071
crossref_primary_10_1109_TIT_2024_3454059
crossref_primary_10_1038_s43588_024_00753_x
crossref_primary_10_1021_acsaelm_4c00427
crossref_primary_10_1039_D3TC04510B
crossref_primary_10_1016_j_nanoen_2024_109861
crossref_primary_10_1016_j_nanoen_2025_110698
crossref_primary_10_1126_sciadv_adj2908
crossref_primary_10_1021_acs_nanolett_4c02136
crossref_primary_10_1002_adfm_202423548
crossref_primary_10_1002_adma_202312094
crossref_primary_10_1021_acs_nanolett_4c04434
crossref_primary_10_1021_acs_nanolett_4c01606
crossref_primary_10_1038_s41467_024_48133_3
crossref_primary_10_1134_S2635167623601535
crossref_primary_10_1002_adma_202311288
crossref_primary_10_1002_aisy_202401068
crossref_primary_10_26599_NR_2025_94907043
crossref_primary_10_1016_j_jmat_2025_101051
crossref_primary_10_1109_JIOT_2024_3448350
crossref_primary_10_1038_s41467_025_57183_0
crossref_primary_10_1016_j_jmat_2024_03_011
crossref_primary_10_1088_1361_6528_ad61ee
crossref_primary_10_1177_09506608251318108
crossref_primary_10_1002_cpe_7997
crossref_primary_10_1038_s41928_024_01318_6
crossref_primary_10_1038_s44335_024_00010_4
crossref_primary_10_3390_electronics13234665
crossref_primary_10_1007_s40820_024_01368_7
crossref_primary_10_1038_s41467_024_52982_3
crossref_primary_10_1038_d41586_023_03267_0
crossref_primary_10_1038_s41467_025_56254_6
crossref_primary_10_1021_acsmaterialslett_4c00448
crossref_primary_10_1109_TVT_2024_3447714
crossref_primary_10_34133_research_0427
crossref_primary_10_1016_j_nanoen_2024_109684
crossref_primary_10_1109_TED_2024_3456775
crossref_primary_10_1021_acs_nanolett_4c03084
crossref_primary_10_1002_adma_202411463
crossref_primary_10_1038_s44287_024_00031_y
crossref_primary_10_1109_TCSII_2024_3442873
crossref_primary_10_1016_j_jmst_2024_12_078
crossref_primary_10_3389_fnins_2025_1516971
crossref_primary_10_1002_advs_202409291
crossref_primary_10_1109_TED_2024_3497917
crossref_primary_10_1088_2634_4386_ad9b4a
crossref_primary_10_1016_j_microrel_2025_115630
crossref_primary_10_1039_D4TC05075D
crossref_primary_10_1016_j_device_2024_100546
crossref_primary_10_1039_D3CS00918A
crossref_primary_10_1038_s41467_025_58004_0
crossref_primary_10_1002_advs_202411925
crossref_primary_10_1002_advs_202407440
crossref_primary_10_1007_s11390_023_4002_3
crossref_primary_10_1109_TED_2024_3450437
crossref_primary_10_3390_chips3040014
crossref_primary_10_1038_s41467_024_46246_3
crossref_primary_10_1134_S2635167624601657
crossref_primary_10_1016_j_mssp_2024_108480
crossref_primary_10_1038_s41928_024_01277_y
crossref_primary_10_1038_s44335_024_00006_0
crossref_primary_10_1002_adfm_202315954
crossref_primary_10_1063_5_0180651
crossref_primary_10_1088_2634_4386_ad6732
crossref_primary_10_1049_ell2_13245
crossref_primary_10_1088_1674_4926_23120037
crossref_primary_10_1109_TGRS_2024_3434432
crossref_primary_10_1088_2631_7990_ad88bb
crossref_primary_10_1002_adfm_202404625
crossref_primary_10_1126_science_ade3483
crossref_primary_10_1016_j_mee_2024_112281
crossref_primary_10_1002_adfm_202418113
crossref_primary_10_1021_acs_jpclett_4c03367
crossref_primary_10_1002_aisy_202500028
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1016_j_chip_2024_100093
crossref_primary_10_1126_science_adl1203
crossref_primary_10_1016_j_cej_2024_155651
crossref_primary_10_1002_aelm_202400732
crossref_primary_10_1038_s43588_024_00744_y
crossref_primary_10_1109_LED_2024_3362829
crossref_primary_10_1016_j_mtbio_2024_101096
crossref_primary_10_1016_j_nanoen_2024_109949
crossref_primary_10_1109_LED_2024_3521924
crossref_primary_10_1109_TED_2023_3339115
crossref_primary_10_1016_j_cossms_2024_101199
crossref_primary_10_1109_TED_2024_3439308
crossref_primary_10_3390_electronics13132639
crossref_primary_10_1109_TVLSI_2024_3519748
crossref_primary_10_1380_vss_67_527
crossref_primary_10_1016_j_device_2024_100645
crossref_primary_10_1002_adma_202409017
crossref_primary_10_1016_j_measurement_2024_116532
crossref_primary_10_3389_fphy_2024_1396178
crossref_primary_10_1002_adfm_202416288
crossref_primary_10_1016_j_mssp_2024_109037
crossref_primary_10_1002_adma_202412549
crossref_primary_10_1109_ACCESS_2024_3444796
crossref_primary_10_1109_TCSI_2024_3430290
crossref_primary_10_1063_5_0210317
crossref_primary_10_1109_TED_2024_3404916
crossref_primary_10_1002_jsid_2044
crossref_primary_10_1038_s44287_024_00037_6
crossref_primary_10_1109_TCE_2024_3367728
crossref_primary_10_1063_5_0168089
crossref_primary_10_1016_j_cpc_2024_109375
crossref_primary_10_1002_adma_202310704
Cites_doi 10.1126/science.ade3483
10.1109/HPCA.2017.55
10.1038/s41928-019-0221-6
10.1145/3007787.3001140
10.1145/3079856.3080231
10.1109/JPROC.2018.2882603
10.1038/nature14539
10.1109/VLSITechnology18217.2020.9265066
10.1109/ISSCC42615.2023.10067610
10.1038/s41928-017-0006-8
10.1038/s41928-020-00505-5
10.1109/FCCM48280.2020.00024
10.1038/s41467-018-04484-2
10.1145/3079856.3080246
10.1109/JIOT.2016.2579198
10.1038/s41565-020-0655-z
10.1109/JSSC.2021.3066400
10.1038/s41586-018-0180-5
10.1109/ISSCC19947.2020.9062979
10.1109/ISSCC.2014.6757323
10.1038/s41928-020-0435-7
10.1038/s41928-021-00676-9
10.1126/science.abj9979
10.23919/VLSICircuits52068.2021.9492362
10.1038/nnano.2015.29
10.1109/CVPR.2018.00810
10.1038/s41928-019-0288-0
10.1109/VLSIC.2012.6243840
10.1126/science.aaw5581
10.1038/323533a0
10.1016/j.neunet.2018.08.012
10.1038/s41467-020-16108-9
10.1038/s42256-018-0001-4
10.1109/ISSCC19947.2020.9062953
10.1186/s40537-016-0043-6
10.1109/TCAD.2018.2789723
10.1109/VLSIT.2018.8510690
10.1109/5.726791
10.1038/nature14441
10.1038/s41928-019-0270-x
10.1109/TED.2015.2439635
10.1038/s41928-018-0092-2
10.1038/ncomms15199
10.1109/IEDM.2017.8268372
10.1609/aaai.v34i09.7123
10.1109/JPROC.2020.3004543
10.1038/s41586-020-1942-4
ContentType Journal Article
Copyright Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.ade3483
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1211
ExternalDocumentID 10_1126_science_ade3483
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c368t-b57b8889c7475e8391697295e3a72f01e24f0f079c32746564c6cf62979769533
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 10:33:28 EDT 2025
Sat Aug 23 12:30:07 EDT 2025
Tue Jul 01 03:13:58 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6663
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-b57b8889c7475e8391697295e3a72f01e24f0f079c32746564c6cf62979769533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-4269-3381
0009-0002-6800-9207
0000-0001-9932-9057
0000-0001-8359-7997
0000-0002-2417-983X
0009-0007-9259-7180
0000-0003-0172-4310
0000-0001-8369-0067
0009-0001-7607-3682
0000-0003-2732-3419
PQID 2864597854
PQPubID 1256
PageCount 7
ParticipantIDs proquest_miscellaneous_2865784296
proquest_journals_2864597854
crossref_citationtrail_10_1126_science_ade3483
crossref_primary_10_1126_science_ade3483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-15
20230915
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2023
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_43_2
  doi: 10.1126/science.ade3483
– ident: e_1_3_2_51_2
– ident: e_1_3_2_36_2
  doi: 10.1109/HPCA.2017.55
– ident: e_1_3_2_22_2
  doi: 10.1038/s41928-019-0221-6
– ident: e_1_3_2_35_2
  doi: 10.1145/3007787.3001140
– ident: e_1_3_2_50_2
  doi: 10.1145/3079856.3080231
– ident: e_1_3_2_49_2
  doi: 10.1109/JPROC.2018.2882603
– ident: e_1_3_2_4_2
  doi: 10.1038/nature14539
– ident: e_1_3_2_39_2
  doi: 10.1109/VLSITechnology18217.2020.9265066
– ident: e_1_3_2_42_2
  doi: 10.1109/ISSCC42615.2023.10067610
– ident: e_1_3_2_10_2
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_3_2_5_2
– ident: e_1_3_2_14_2
  doi: 10.1038/s41928-020-00505-5
– ident: e_1_3_2_44_2
  doi: 10.1126/science.ade3483
– ident: e_1_3_2_48_2
  doi: 10.1109/FCCM48280.2020.00024
– ident: e_1_3_2_21_2
  doi: 10.1038/s41467-018-04484-2
– ident: e_1_3_2_45_2
  doi: 10.1145/3079856.3080246
– ident: e_1_3_2_2_2
  doi: 10.1109/JIOT.2016.2579198
– ident: e_1_3_2_17_2
  doi: 10.1038/s41565-020-0655-z
– ident: e_1_3_2_37_2
  doi: 10.1109/JSSC.2021.3066400
– ident: e_1_3_2_16_2
  doi: 10.1038/s41586-018-0180-5
– ident: e_1_3_2_13_2
  doi: 10.1109/ISSCC19947.2020.9062979
– ident: e_1_3_2_6_2
  doi: 10.1109/ISSCC.2014.6757323
– ident: e_1_3_2_18_2
  doi: 10.1038/s41928-020-0435-7
– ident: e_1_3_2_40_2
  doi: 10.1038/s41928-021-00676-9
– ident: e_1_3_2_52_2
– ident: e_1_3_2_11_2
  doi: 10.1126/science.abj9979
– ident: e_1_3_2_38_2
  doi: 10.23919/VLSICircuits52068.2021.9492362
– ident: e_1_3_2_7_2
  doi: 10.1038/nnano.2015.29
– ident: e_1_3_2_53_2
  doi: 10.1109/CVPR.2018.00810
– ident: e_1_3_2_15_2
  doi: 10.1038/s41928-019-0288-0
– ident: e_1_3_2_54_2
– ident: e_1_3_2_46_2
  doi: 10.1109/VLSIC.2012.6243840
– ident: e_1_3_2_26_2
  doi: 10.1126/science.aaw5581
– ident: e_1_3_2_3_2
  doi: 10.1038/323533a0
– ident: e_1_3_2_31_2
  doi: 10.1016/j.neunet.2018.08.012
– ident: e_1_3_2_47_2
  doi: 10.1038/s41467-020-16108-9
– ident: e_1_3_2_23_2
  doi: 10.1038/s42256-018-0001-4
– ident: e_1_3_2_12_2
  doi: 10.1109/ISSCC19947.2020.9062953
– ident: e_1_3_2_41_2
  doi: 10.1186/s40537-016-0043-6
– ident: e_1_3_2_29_2
  doi: 10.1109/TCAD.2018.2789723
– ident: e_1_3_2_33_2
  doi: 10.1109/VLSIT.2018.8510690
– ident: e_1_3_2_34_2
  doi: 10.1109/5.726791
– ident: e_1_3_2_19_2
  doi: 10.1038/nature14441
– ident: e_1_3_2_25_2
  doi: 10.1038/s41928-019-0270-x
– ident: e_1_3_2_27_2
  doi: 10.1109/TED.2015.2439635
– ident: e_1_3_2_9_2
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_3_2_20_2
  doi: 10.1038/ncomms15199
– ident: e_1_3_2_28_2
  doi: 10.1109/IEDM.2017.8268372
– ident: e_1_3_2_8_2
  doi: 10.1609/aaai.v34i09.7123
– ident: e_1_3_2_32_2
– ident: e_1_3_2_30_2
  doi: 10.1109/JPROC.2020.3004543
– ident: e_1_3_2_24_2
  doi: 10.1038/s41586-020-1942-4
SSID ssj0009593
Score 2.7185318
Snippet Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural...
Editor’s summaryMemristor-based computing technology has recently received considerable attention because of its potential to overcome the so-called “von...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1205
SubjectTerms CMOS
Computer architecture
Energy efficiency
Image classification
Influence of Technology
Learning
Memristors
Motion control
Speech recognition
Title Edge learning using a fully integrated neuro-inspired memristor chip
URI https://www.proquest.com/docview/2864597854
https://www.proquest.com/docview/2865784296
Volume 381
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbymAvY-02lq0dGuyho7g4kj-kx6RNKCPrGCQsezKyLUGgdUqbPHR__e4k-SMjhXYvJpHlxOh-Ot1Jd78j5AssoylXogyiMjbgoCQ8kFzJoEy1lklRlrzEE93vl8nFPPq2iBdtKK_NLlnnp8WfnXkl_yNVaAO5YpbsEyTb_Cg0wGeQL1xBwnB9lIzHmGt1VW9ubKzbr05wR_2-5YEoTyxnZbCs8FAdvl7ra0socIuZ3Ddd67Se6GB1Nic5Hfk1IYlDFzhQxxH4xzqbCs029C9d5csGf7_VysUE--US435c06jtNF1usOXnsrshwThGT7iUTK9DQyz_yEKnt_SONq94uSvW4hEGfhTvaNIBs-nYO1R8pyilRi5NHgnermb1Cf7lj2wyn06z2Xgxe072GHgRrEf2hqPz0eRfVubm7Tz3Uyerqv6DbbNle9W2psjsNXnlfQg6dIDYJ890dUBeuKqi9wdk38vjjh57UvGvb8g5YoXWWKEWK1RRixXaYoVuY4U2WKGIlbdkPhnPzi4CX0EjKHgi1kEep7kQQhbgNMZaYJK1BG8q1lylzIQDzSITmjCVBWcpMudFRVKYhMkUrFQMPH5HetWq0u8JlSYSoKJLZgZFBHNYchMrmMk5N6UKle6T03qAssLTy2OVk6vMupksyfyIZn5E--S4eeDGMas83PWwHvHMT7-7jAnkQUpFHPXJ5-Y2KEc88VKVXm1sH1iRwORKPjyiz0fyssXzIemtbzf6CEzOdf7JA-cvryiE5w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+learning+using+a+fully+integrated+neuro-inspired+memristor+chip&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Wenbin&rft.au=Yao%2C+Peng&rft.au=Gao%2C+Bin&rft.au=Liu%2C+Qi&rft.date=2023-09-15&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=381&rft.issue=6663&rft.spage=1205&rft_id=info:doi/10.1126%2Fscience.ade3483&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon