Low-quality training data detection method of EEG signals for motor imagery BCI system

The design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However, fluctuation in subjects’ physiological and mental states as well as artifacts can produce the low-quality motor imagery electroencephalogram (EEG)...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 376; p. 109607
Main Authors Ouyang, Rui, Jin, Zihao, Tang, Shuhao, Fan, Cunhang, Wu, Xiaopei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2022.109607

Cover

Loading…
Abstract The design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However, fluctuation in subjects’ physiological and mental states as well as artifacts can produce the low-quality motor imagery electroencephalogram (EEG) signal, which will damage the performance of MI-BCI system. In order to select high-quality MI-EEG training data, this paper proposes a low-quality training data detection method combining independent component analysis (ICA) and weak classifier cluster. we also design and implement a new online BCI system based on motor imagery to verify the online processing performance of the proposed method. In order to verify the effectiveness of the proposed method, we conducted offline experiments on the public dataset called BCI Competition IV Data Set 2b. Furthermore, in order to verify the processing performance of the online system, we designed 60 groups of online experiments on 12 subjects. The online experimental results show that the twelve subjects can complete the system task efficiently (the best experiment is 135.6 s with 9 trials of subject S1). This paper demonstrated that the proposed low-quality training data detection method can effectively screen out low-quality training samples, so as to improve the performance of the MI-BCI system. •A low-quality data detection method is proposed to screen low-quality training samples caused by different factors.•The possibility of reusing low-quality samples is studied.•An online asynchronous MI-BCI system is designed and implemented.
AbstractList The design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However, fluctuation in subjects' physiological and mental states as well as artifacts can produce the low-quality motor imagery electroencephalogram (EEG) signal, which will damage the performance of MI-BCI system. In order to select high-quality MI-EEG training data, this paper proposes a low-quality training data detection method combining independent component analysis (ICA) and weak classifier cluster. we also design and implement a new online BCI system based on motor imagery to verify the online processing performance of the proposed method. In order to verify the effectiveness of the proposed method, we conducted offline experiments on the public dataset called BCI Competition IV Data Set 2b. Furthermore, in order to verify the processing performance of the online system, we designed 60 groups of online experiments on 12 subjects. The online experimental results show that the twelve subjects can complete the system task efficiently (the best experiment is 135.6 s with 9 trials of subject S1). This paper demonstrated that the proposed low-quality training data detection method can effectively screen out low-quality training samples, so as to improve the performance of the MI-BCI system.
The design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However, fluctuation in subjects' physiological and mental states as well as artifacts can produce the low-quality motor imagery electroencephalogram (EEG) signal, which will damage the performance of MI-BCI system.BACKGROUNDThe design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However, fluctuation in subjects' physiological and mental states as well as artifacts can produce the low-quality motor imagery electroencephalogram (EEG) signal, which will damage the performance of MI-BCI system.In order to select high-quality MI-EEG training data, this paper proposes a low-quality training data detection method combining independent component analysis (ICA) and weak classifier cluster. we also design and implement a new online BCI system based on motor imagery to verify the online processing performance of the proposed method.NEW METHODIn order to select high-quality MI-EEG training data, this paper proposes a low-quality training data detection method combining independent component analysis (ICA) and weak classifier cluster. we also design and implement a new online BCI system based on motor imagery to verify the online processing performance of the proposed method.In order to verify the effectiveness of the proposed method, we conducted offline experiments on the public dataset called BCI Competition IV Data Set 2b. Furthermore, in order to verify the processing performance of the online system, we designed 60 groups of online experiments on 12 subjects. The online experimental results show that the twelve subjects can complete the system task efficiently (the best experiment is 135.6 s with 9 trials of subject S1).RESULTIn order to verify the effectiveness of the proposed method, we conducted offline experiments on the public dataset called BCI Competition IV Data Set 2b. Furthermore, in order to verify the processing performance of the online system, we designed 60 groups of online experiments on 12 subjects. The online experimental results show that the twelve subjects can complete the system task efficiently (the best experiment is 135.6 s with 9 trials of subject S1).This paper demonstrated that the proposed low-quality training data detection method can effectively screen out low-quality training samples, so as to improve the performance of the MI-BCI system.CONCLUSIONThis paper demonstrated that the proposed low-quality training data detection method can effectively screen out low-quality training samples, so as to improve the performance of the MI-BCI system.
The design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However, fluctuation in subjects’ physiological and mental states as well as artifacts can produce the low-quality motor imagery electroencephalogram (EEG) signal, which will damage the performance of MI-BCI system. In order to select high-quality MI-EEG training data, this paper proposes a low-quality training data detection method combining independent component analysis (ICA) and weak classifier cluster. we also design and implement a new online BCI system based on motor imagery to verify the online processing performance of the proposed method. In order to verify the effectiveness of the proposed method, we conducted offline experiments on the public dataset called BCI Competition IV Data Set 2b. Furthermore, in order to verify the processing performance of the online system, we designed 60 groups of online experiments on 12 subjects. The online experimental results show that the twelve subjects can complete the system task efficiently (the best experiment is 135.6 s with 9 trials of subject S1). This paper demonstrated that the proposed low-quality training data detection method can effectively screen out low-quality training samples, so as to improve the performance of the MI-BCI system. •A low-quality data detection method is proposed to screen low-quality training samples caused by different factors.•The possibility of reusing low-quality samples is studied.•An online asynchronous MI-BCI system is designed and implemented.
ArticleNumber 109607
Author Ouyang, Rui
Jin, Zihao
Wu, Xiaopei
Tang, Shuhao
Fan, Cunhang
Author_xml – sequence: 1
  givenname: Rui
  surname: Ouyang
  fullname: Ouyang, Rui
  organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 2
  givenname: Zihao
  surname: Jin
  fullname: Jin, Zihao
  organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 3
  givenname: Shuhao
  surname: Tang
  fullname: Tang, Shuhao
  organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 4
  givenname: Cunhang
  surname: Fan
  fullname: Fan, Cunhang
  email: cunhang.fan@ahu.edu.cn
  organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 5
  givenname: Xiaopei
  surname: Wu
  fullname: Wu, Xiaopei
  email: wxp2001@ahu.edu.cn
  organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei 230601, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35483505$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuGyEQhlGVqnHSvkLEsZd1WfCyIPXQ1nKTSJZ6aaveEIbBxdqFBNhUfvuycnzJJZdBGn3_zOjjCl2EGAChm5YsW9LyT4flIcA0Qvm7pITS2pSc9G_QohU9bXgv_lygRQW7htCeXKKrnA-EkJUk_B26ZN1KsI50C_R7G_81j5MefDnikrQPPuyx1UVjCwVM8THgeU20ODq82dzi7PdBDxm7mPAYS61-1HtIR_xtfY_zMRcY36O3rjLw4fm9Rr--b36u75rtj9v79ddtYxgXpdm1TGrGGJVUM2251b0zjtN-JVnrOiuEcWBlL63gdmep1SBdy_oVM0QQ1rFr9PE09yHFxwlyUaPPBoZBB4hTVpR3glLJhazozTM67Uaw6iHVs9NRnV1U4PMJMCnmnMAp44ueBcxeBtUSNatXB3VWr2b16qS-xvmL-HnDq8EvpyBUUU8eksrGQzBgfaofoGz0r434D0OXoeQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120906
crossref_primary_10_3390_electronics13142767
crossref_primary_10_1016_j_jneumeth_2023_109806
crossref_primary_10_3390_s24010149
Cites_doi 10.1109/TIM.2019.2920186
10.1016/S0013-4694(97)00022-2
10.1109/MSP.2016.2521870
10.1109/TIM.2017.2759398
10.1109/TSMC.2019.2955478
10.1109/ACCESS.2019.2936434
10.1109/JSEN.2018.2872623
10.1016/j.eswa.2018.08.031
10.1016/0165-1684(94)90029-9
10.1109/TIM.2016.2608479
10.1109/TIM.2021.3051996
10.1109/TBME.2014.2358536
10.1016/j.neulet.2017.06.044
10.1088/1741-2552/aadea0
10.1109/JBHI.2019.2920381
10.1109/78.554307
10.1109/TNSRE.2022.3140772
10.1109/86.895946
10.1109/MCI.2015.2501545
10.3389/fnins.2012.00039
10.1109/TBME.2009.2032162
10.1109/TBME.2010.2082539
10.1088/1741-2552/ab0ab5
10.1109/TIM.2017.2775358
10.1109/TPAMI.2014.2330598
10.1016/j.neunet.2018.02.011
10.1016/S0893-6080(00)00026-5
10.1016/j.measurement.2021.109280
10.1162/089976699300016719
10.1088/1741-2552/aba162
10.1109/JBHI.2019.2922976
10.1016/j.jneumeth.2022.109502
10.1088/1741-2560/4/2/R03
10.1016/j.neuroimage.2005.05.032
10.1002/hbm.23730
10.1016/j.bspc.2020.102152
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2022.109607
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 35483505
10_1016_j_jneumeth_2022_109607
S0165027022001340
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
NPM
7X8
ID FETCH-LOGICAL-c368t-b139a333292a3ad6da7fcf6274931f5d88cfed979d86dbd2dae9f13743c080353
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Thu Jul 10 23:36:09 EDT 2025
Thu Apr 03 07:06:54 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Tue Jul 01 02:57:16 EDT 2025
Fri Feb 23 02:39:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motor imagery (MI)
Electroencephalogram (EEG)
Independent component analysis (ICA)
Brain computer interface (BCI)
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-b139a333292a3ad6da7fcf6274931f5d88cfed979d86dbd2dae9f13743c080353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35483505
PQID 2658229689
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2658229689
pubmed_primary_35483505
crossref_citationtrail_10_1016_j_jneumeth_2022_109607
crossref_primary_10_1016_j_jneumeth_2022_109607
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hyvarinen, Oja (bib20) 2000; 13
McFarland, McCane, David, Wolpaw (bib28) 1997; 103
Zhuang, Geng, Yin (bib47) 2019; 51
Saha, Sarker, Abdullah Al Shiam, Rahoman (bib35) 2020
Witteveen, Pradhapan, Mihajlović (bib38) 2019; 24
Bashashati, Fatourechi, Ward, Birch (bib4) 2007; 4
Dose, Moller, Iversen, Puthusserypady (bib13) 2018; 114
Chen, Liu, Tao, Li, Lee, Liu, Chen, Cheng, McKeown, Wang (bib7) 2019; 69
Wu, X., Lv, Z., 2022, Motor imagery eeg data set. [DB/OL]. 〈http://iiphci.ahu.edu.cn/toeeg/〉.
Chen, Peng, Yu, Wang (bib8) 2017; 66
R. , Leeb , C. , Brunner , G. , MullerPutz , A. , Schlogl , G. , Pfurtscheller, Bci competition 2008 - graz data set b. [EB/OL].〈http://www.bbci.de/competition/iv/desc_2b.pdf/〉.
Ravi, Lu, Pearce, Jiang (bib33) 2022; 30
Zhang, Wang, Gao, Hong, Gao (bib43) 2007
Lee, Girolami, Sejnowski (bib23) 1999; 11
Yijun Wang, Tzyyping (bib42) 2012; 7
Craik, He, Contrerasvidal (bib12) 2019; 16
Jayaram, Alamgir, Altun, Schlkopf, Grosse-Wentrup (bib21) 2015; 11
Anbarasan, GomezCarmona, Mahendran (bib1) 2022
Arpaia, De Benedetto, Duraccio (bib3) 2021; 177
Lotte, Guan (bib24) 2011; 58
Maddirala, Shaik (bib26) 2017; 67
Chen, Chen, Zhang, Wang (bib6) 2018; 19
Ma, Dong, Lin, Ma, Jia, Chen, Xiao, Qi (bib25) 2022
Chen, Xu, Liu, McKeown, Wang (bib10) 2017; 67
Belouchrani, Abedmeraim, Cardoso, Moulines (bib5) 1997; 45
Gubert, Costa, Silva, Trofino-Neto (bib19) 2020; 62
Jayaram, Barachant (bib22) 2018; 15
Ang, Chin, Wang, Guan, Zhang (bib2) 2012; 6
Chen, Wang, McKeown (bib9) 2016; 33
Zhou, Wu, Lv, Zhang, Guo (bib46) 2016; 11
Feng, Yin, Jin, Saab, Daly, Wang, Hu, Cichocki (bib15) 2018; 102
Ramoser, Muller-Gerking (bib32) 2000; 8
Wu, Zhou, Lv, Zhang (bib41) 2020; 24
Gaur, Gupta, Chowdhury, McCreadie, Pachori, Wang (bib17) 2021; 70
Parra, Spence, Gerson, Sajda (bib30) 2005; 28
Wu, Chen, Gao, Li, Brown, Gao (bib39) 2015; 37
Hu, zhang, Wu, X (bib29) 2017; 34
Safitri, Djamal, Nugraha (bib34) 2020
Comon (bib11) 1994; 36
Frolich, Winkler, Müller, Samek (bib16) 2015
Mane, Chouhan, Guan (bib27) 2020; 17
Fedosov, Levadniy, Dmitriev, Nikolaev (bib14) 2020
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (bib36) 2017; 38
Zhang, Zheng, Wang, Wang, Ma, Zhang, Xu, Li, Zhang (bib44) 2017; 655
Tomida, Tanaka, Ono, Yamagishi, Higashi (bib37) 2015; 62
Gouypailler, Congedo, Brunner, Jutten, Pfurtscheller (bib18) 2010; 57
Zheng, Zhang, Wang, Wang, Deng, Zhang, Li, Wang (bib45) 2019; 7
Zhuang (10.1016/j.jneumeth.2022.109607_bib47) 2019; 51
Lotte (10.1016/j.jneumeth.2022.109607_bib24) 2011; 58
Chen (10.1016/j.jneumeth.2022.109607_bib10) 2017; 67
Frolich (10.1016/j.jneumeth.2022.109607_bib16) 2015
Jayaram (10.1016/j.jneumeth.2022.109607_bib22) 2018; 15
Lee (10.1016/j.jneumeth.2022.109607_bib23) 1999; 11
Parra (10.1016/j.jneumeth.2022.109607_bib30) 2005; 28
Gubert (10.1016/j.jneumeth.2022.109607_bib19) 2020; 62
Feng (10.1016/j.jneumeth.2022.109607_bib15) 2018; 102
Zheng (10.1016/j.jneumeth.2022.109607_bib45) 2019; 7
Zhou (10.1016/j.jneumeth.2022.109607_bib46) 2016; 11
Anbarasan (10.1016/j.jneumeth.2022.109607_bib1) 2022
Ramoser (10.1016/j.jneumeth.2022.109607_bib32) 2000; 8
10.1016/j.jneumeth.2022.109607_bib31
Mane (10.1016/j.jneumeth.2022.109607_bib27) 2020; 17
Zhang (10.1016/j.jneumeth.2022.109607_bib43) 2007
Witteveen (10.1016/j.jneumeth.2022.109607_bib38) 2019; 24
Yijun Wang (10.1016/j.jneumeth.2022.109607_bib42) 2012; 7
Tomida (10.1016/j.jneumeth.2022.109607_bib37) 2015; 62
Belouchrani (10.1016/j.jneumeth.2022.109607_bib5) 1997; 45
Chen (10.1016/j.jneumeth.2022.109607_bib6) 2018; 19
Ma (10.1016/j.jneumeth.2022.109607_bib25) 2022
Schirrmeister (10.1016/j.jneumeth.2022.109607_bib36) 2017; 38
Arpaia (10.1016/j.jneumeth.2022.109607_bib3) 2021; 177
Wu (10.1016/j.jneumeth.2022.109607_bib39) 2015; 37
Chen (10.1016/j.jneumeth.2022.109607_bib7) 2019; 69
Saha (10.1016/j.jneumeth.2022.109607_bib35) 2020
McFarland (10.1016/j.jneumeth.2022.109607_bib28) 1997; 103
Chen (10.1016/j.jneumeth.2022.109607_bib9) 2016; 33
Gouypailler (10.1016/j.jneumeth.2022.109607_bib18) 2010; 57
Fedosov (10.1016/j.jneumeth.2022.109607_bib14) 2020
Safitri (10.1016/j.jneumeth.2022.109607_bib34) 2020
Ravi (10.1016/j.jneumeth.2022.109607_bib33) 2022; 30
Dose (10.1016/j.jneumeth.2022.109607_bib13) 2018; 114
Ang (10.1016/j.jneumeth.2022.109607_bib2) 2012; 6
Chen (10.1016/j.jneumeth.2022.109607_bib8) 2017; 66
Craik (10.1016/j.jneumeth.2022.109607_bib12) 2019; 16
Hyvarinen (10.1016/j.jneumeth.2022.109607_bib20) 2000; 13
Bashashati (10.1016/j.jneumeth.2022.109607_bib4) 2007; 4
Gaur (10.1016/j.jneumeth.2022.109607_bib17) 2021; 70
10.1016/j.jneumeth.2022.109607_bib40
Wu (10.1016/j.jneumeth.2022.109607_bib41) 2020; 24
Comon (10.1016/j.jneumeth.2022.109607_bib11) 1994; 36
Zhang (10.1016/j.jneumeth.2022.109607_bib44) 2017; 655
Hu (10.1016/j.jneumeth.2022.109607_bib29) 2017; 34
Maddirala (10.1016/j.jneumeth.2022.109607_bib26) 2017; 67
Jayaram (10.1016/j.jneumeth.2022.109607_bib21) 2015; 11
References_xml – volume: 58
  start-page: 355
  year: 2011
  end-page: 362
  ident: bib24
  article-title: Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 34
  start-page: 106
  year: 2017
  end-page: 114
  ident: bib29
  article-title: Online brain computer interface system based on independent component analysis
  publication-title: J. Biomed. Eng.
– volume: 16
  year: 2019
  ident: bib12
  article-title: Deep learning for electroencephalogram (eeg) classification tasks: a review
  publication-title: J. Neural Eng.
– volume: 28
  start-page: 326
  year: 2005
  end-page: 341
  ident: bib30
  article-title: Recipes for the linear analysis of eeg
  publication-title: NeuroImage
– volume: 4
  start-page: R32
  year: 2007
  ident: bib4
  article-title: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals
  publication-title: J. Neural Eng.
– volume: 69
  start-page: 2105
  year: 2019
  end-page: 2119
  ident: bib7
  article-title: Remae: User-friendly toolbox for removing muscle artifacts from eeg
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 24
  start-page: 775
  year: 2020
  end-page: 787
  ident: bib41
  article-title: To explore the potentials of independent component analysis in brain-computer interface of motor imagery
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 177
  year: 2021
  ident: bib3
  article-title: Design, implementation, and metrological characterization of a wearable, integrated ar-bci hands-free system for health 4.0 monitoring
  publication-title: Measurement
– volume: 103
  start-page: 386
  year: 1997
  end-page: 394
  ident: bib28
  article-title: Spatial filter selection for eeg-based communication
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 33
  start-page: 86
  year: 2016
  end-page: 107
  ident: bib9
  article-title: Joint blind source separation for neurophysiological data analysis: Multiset and multimodal methods
  publication-title: IEEE Signal Process. Mag.
– start-page: 69
  year: 2020
  end-page: 72
  ident: bib14
  article-title: Independent component analysis for different movements detection in bci application based on sensorimotor rhythms
  publication-title: 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)
– volume: 19
  start-page: 8420
  year: 2018
  end-page: 8431
  ident: bib6
  article-title: A novel eemd-cca approach to removing muscle artifacts for pervasive eeg
  publication-title: IEEE Sens. J.
– volume: 15
  year: 2018
  ident: bib22
  article-title: Moabb: Trustworthy algorithm benchmarking for bcis
  publication-title: J. Neural Eng.
– volume: 62
  start-page: 258
  year: 2015
  end-page: 267
  ident: bib37
  article-title: Active data selection for motor imagery eeg classification
  publication-title: IEEE Trans. Bio-Med. Eng.
– reference: Wu, X., Lv, Z., 2022, Motor imagery eeg data set. [DB/OL]. 〈http://iiphci.ahu.edu.cn/toeeg/〉.
– volume: 37
  start-page: 639
  year: 2015
  end-page: 653
  ident: bib39
  article-title: Probabilistic common spatial patterns for multichannel eeg analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 66
  start-page: 1770
  year: 2017
  end-page: 1779
  ident: bib8
  article-title: Independent vector analysis applied to remove muscle artifacts in eeg data
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2022
  ident: bib25
  article-title: A classification algorithm of an ssvep brain-computer interface based on cca fusion wavelet coefficients
  publication-title: J. Neurosci. Methods
– reference: R. , Leeb , C. , Brunner , G. , MullerPutz , A. , Schlogl , G. , Pfurtscheller, Bci competition 2008 - graz data set b. [EB/OL].〈http://www.bbci.de/competition/iv/desc_2b.pdf/〉.
– volume: 51
  start-page: 5392
  year: 2019
  end-page: 5404
  ident: bib47
  article-title: Ensemble learning based brain-computer interface system for ground vehicle control
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 6
  year: 2012
  ident: bib2
  article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b
  publication-title: Front. Neurosci.
– volume: 57
  start-page: 469
  year: 2010
  end-page: 478
  ident: bib18
  article-title: Nonstationary brain source separation for multiclass motor imagery
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 11
  year: 2016
  ident: bib46
  article-title: A fully automated trial selection method for optimization of motor imagery based brain-computer interface
  publication-title: PloS One
– volume: 45
  start-page: 434
  year: 1997
  end-page: 444
  ident: bib5
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Trans. Signal Process.
– volume: 114
  start-page: 532
  year: 2018
  end-page: 542
  ident: bib13
  article-title: An end-to-end deep learning approach to mi-eeg signal classification for bcis
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 85
  year: 2022
  end-page: 95
  ident: bib33
  article-title: Enhanced system robustness of asynchronous bci in augmented reality using steady-state motion visual evoked potential
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 18
  year: 2020
  ident: bib35
  article-title: Motor imagery eeg signal classification using mwt-csp for online bci implementation
  publication-title: Int. J. Comput. Sci. Inf. Secur. (IJCSIS)
– volume: 62
  year: 2020
  ident: bib19
  article-title: The performance impact of data augmentation in csp-based motor-imagery systems for bci applications
  publication-title: Biomed. Signal Process. Control
– volume: 11
  start-page: 417
  year: 1999
  end-page: 441
  ident: bib23
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput.
– volume: 36
  start-page: 287
  year: 1994
  end-page: 314
  ident: bib11
  article-title: Independent component analysis, a new concept?
  publication-title: Signal Process.
– volume: 11
  start-page: 20
  year: 2015
  end-page: 31
  ident: bib21
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
– volume: 67
  start-page: 359
  year: 2017
  end-page: 370
  ident: bib10
  article-title: The use of multivariate emd and cca for denoising muscle artifacts from few-channel eeg recordings
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 17
  year: 2020
  ident: bib27
  article-title: Bci for stroke rehabilitation: motor and beyond
  publication-title: J. Neural Eng.
– start-page: 118
  year: 2020
  end-page: 122
  ident: bib34
  article-title: Brain-computer interface of motor imagery using ica and recurrent neural networks
  publication-title: 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)
– start-page: 1
  year: 2022
  end-page: 27
  ident: bib1
  article-title: Human taste-perception: Brain computer interface (bci) and its application as an engineering tool for taste-driven sensory studies
  publication-title: Food Eng. Rev.
– start-page: 2007
  year: 2007
  ident: bib43
  article-title: An algorithm for idle-state detection in motor-imagery-based brain-computer interface
  publication-title: Comput. Intell. Neurosci.
– start-page: 1942
  year: 2015
  end-page: 1945
  ident: bib16
  article-title: Investigating effects of different artefact types on motor imagery bci
  publication-title: Eng. Med. Biol. Soc.
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: bib32
  article-title: Optimal spatial filtering of single trial eeg during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 67
  start-page: 382
  year: 2017
  end-page: 393
  ident: bib26
  article-title: Separation of sources from single-channel eeg signals using independent component analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib36
  article-title: Deep learning with convolutional neural networks for eeg decoding and visualization
  publication-title: Hum. Brain Mapp.
– volume: 24
  start-page: 735
  year: 2019
  end-page: 746
  ident: bib38
  article-title: Comparison of a pragmatic and regression approach for wearable eeg signal quality assessment
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib17
  article-title: A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 655
  start-page: 35
  year: 2017
  end-page: 40
  ident: bib44
  article-title: Application of a common spatial pattern-based algorithm for an fnirs-based motor imagery brain-computer interface
  publication-title: Neurosci. Lett.
– volume: 102
  start-page: 87
  year: 2018
  end-page: 95
  ident: bib15
  article-title: Towards correlation-based time window selection method for motor imagery bcis
  publication-title: Neural Netw.
– volume: 7
  start-page: 120603
  year: 2019
  end-page: 120615
  ident: bib45
  article-title: Resting-state-based spatial filtering for an fnirs-based motor imagery brain-computer interface
  publication-title: IEEE Access
– volume: 7
  year: 2012
  ident: bib42
  article-title: Translation of eeg spatial filters from resting to motor imagery using independent component analysis
  publication-title: PLOS ONE
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib20
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– start-page: 69
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109607_bib14
  article-title: Independent component analysis for different movements detection in bci application based on sensorimotor rhythms
– start-page: 18
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109607_bib35
  article-title: Motor imagery eeg signal classification using mwt-csp for online bci implementation
  publication-title: Int. J. Comput. Sci. Inf. Secur. (IJCSIS)
– volume: 69
  start-page: 2105
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109607_bib7
  article-title: Remae: User-friendly toolbox for removing muscle artifacts from eeg
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2920186
– volume: 103
  start-page: 386
  year: 1997
  ident: 10.1016/j.jneumeth.2022.109607_bib28
  article-title: Spatial filter selection for eeg-based communication
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00022-2
– volume: 33
  start-page: 86
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109607_bib9
  article-title: Joint blind source separation for neurophysiological data analysis: Multiset and multimodal methods
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2016.2521870
– volume: 67
  start-page: 359
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109607_bib10
  article-title: The use of multivariate emd and cca for denoising muscle artifacts from few-channel eeg recordings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2759398
– volume: 51
  start-page: 5392
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109607_bib47
  article-title: Ensemble learning based brain-computer interface system for ground vehicle control
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2955478
– volume: 7
  start-page: 120603
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109607_bib45
  article-title: Resting-state-based spatial filtering for an fnirs-based motor imagery brain-computer interface
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936434
– volume: 19
  start-page: 8420
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109607_bib6
  article-title: A novel eemd-cca approach to removing muscle artifacts for pervasive eeg
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2872623
– volume: 114
  start-page: 532
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109607_bib13
  article-title: An end-to-end deep learning approach to mi-eeg signal classification for bcis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.031
– volume: 36
  start-page: 287
  year: 1994
  ident: 10.1016/j.jneumeth.2022.109607_bib11
  article-title: Independent component analysis, a new concept?
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90029-9
– start-page: 2007
  year: 2007
  ident: 10.1016/j.jneumeth.2022.109607_bib43
  article-title: An algorithm for idle-state detection in motor-imagery-based brain-computer interface
  publication-title: Comput. Intell. Neurosci.
– volume: 34
  start-page: 106
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109607_bib29
  article-title: Online brain computer interface system based on independent component analysis
  publication-title: J. Biomed. Eng.
– volume: 66
  start-page: 1770
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109607_bib8
  article-title: Independent vector analysis applied to remove muscle artifacts in eeg data
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2608479
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109607_bib17
  article-title: A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3051996
– volume: 62
  start-page: 258
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109607_bib37
  article-title: Active data selection for motor imagery eeg classification
  publication-title: IEEE Trans. Bio-Med. Eng.
  doi: 10.1109/TBME.2014.2358536
– volume: 655
  start-page: 35
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109607_bib44
  article-title: Application of a common spatial pattern-based algorithm for an fnirs-based motor imagery brain-computer interface
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2017.06.044
– volume: 15
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109607_bib22
  article-title: Moabb: Trustworthy algorithm benchmarking for bcis
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aadea0
– volume: 24
  start-page: 735
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109607_bib38
  article-title: Comparison of a pragmatic and regression approach for wearable eeg signal quality assessment
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2920381
– volume: 7
  year: 2012
  ident: 10.1016/j.jneumeth.2022.109607_bib42
  article-title: Translation of eeg spatial filters from resting to motor imagery using independent component analysis
  publication-title: PLOS ONE
– volume: 45
  start-page: 434
  year: 1997
  ident: 10.1016/j.jneumeth.2022.109607_bib5
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.554307
– volume: 30
  start-page: 85
  year: 2022
  ident: 10.1016/j.jneumeth.2022.109607_bib33
  article-title: Enhanced system robustness of asynchronous bci in augmented reality using steady-state motion visual evoked potential
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3140772
– volume: 8
  start-page: 441
  year: 2000
  ident: 10.1016/j.jneumeth.2022.109607_bib32
  article-title: Optimal spatial filtering of single trial eeg during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 11
  start-page: 20
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109607_bib21
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2015.2501545
– start-page: 118
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109607_bib34
  article-title: Brain-computer interface of motor imagery using ica and recurrent neural networks
– volume: 6
  year: 2012
  ident: 10.1016/j.jneumeth.2022.109607_bib2
  article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 57
  start-page: 469
  year: 2010
  ident: 10.1016/j.jneumeth.2022.109607_bib18
  article-title: Nonstationary brain source separation for multiclass motor imagery
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2032162
– volume: 58
  start-page: 355
  year: 2011
  ident: 10.1016/j.jneumeth.2022.109607_bib24
  article-title: Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 16
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109607_bib12
  article-title: Deep learning for electroencephalogram (eeg) classification tasks: a review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 67
  start-page: 382
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109607_bib26
  article-title: Separation of sources from single-channel eeg signals using independent component analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2775358
– volume: 37
  start-page: 639
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109607_bib39
  article-title: Probabilistic common spatial patterns for multichannel eeg analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2330598
– volume: 102
  start-page: 87
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109607_bib15
  article-title: Towards correlation-based time window selection method for motor imagery bcis
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.02.011
– volume: 13
  start-page: 411
  year: 2000
  ident: 10.1016/j.jneumeth.2022.109607_bib20
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 177
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109607_bib3
  article-title: Design, implementation, and metrological characterization of a wearable, integrated ar-bci hands-free system for health 4.0 monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109280
– volume: 11
  start-page: 417
  year: 1999
  ident: 10.1016/j.jneumeth.2022.109607_bib23
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016719
– volume: 17
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109607_bib27
  article-title: Bci for stroke rehabilitation: motor and beyond
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aba162
– volume: 24
  start-page: 775
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109607_bib41
  article-title: To explore the potentials of independent component analysis in brain-computer interface of motor imagery
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2922976
– year: 2022
  ident: 10.1016/j.jneumeth.2022.109607_bib25
  article-title: A classification algorithm of an ssvep brain-computer interface based on cca fusion wavelet coefficients
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2022.109502
– volume: 4
  start-page: R32
  year: 2007
  ident: 10.1016/j.jneumeth.2022.109607_bib4
  article-title: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R03
– volume: 28
  start-page: 326
  year: 2005
  ident: 10.1016/j.jneumeth.2022.109607_bib30
  article-title: Recipes for the linear analysis of eeg
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.05.032
– volume: 38
  start-page: 5391
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109607_bib36
  article-title: Deep learning with convolutional neural networks for eeg decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– ident: 10.1016/j.jneumeth.2022.109607_bib31
– start-page: 1942
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109607_bib16
  article-title: Investigating effects of different artefact types on motor imagery bci
  publication-title: Eng. Med. Biol. Soc.
– ident: 10.1016/j.jneumeth.2022.109607_bib40
– volume: 11
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109607_bib46
  article-title: A fully automated trial selection method for optimization of motor imagery based brain-computer interface
  publication-title: PloS One
– start-page: 1
  year: 2022
  ident: 10.1016/j.jneumeth.2022.109607_bib1
  article-title: Human taste-perception: Brain computer interface (bci) and its application as an engineering tool for taste-driven sensory studies
  publication-title: Food Eng. Rev.
– volume: 62
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109607_bib19
  article-title: The performance impact of data augmentation in csp-based motor-imagery systems for bci applications
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102152
SSID ssj0004906
Score 2.3939636
Snippet The design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109607
SubjectTerms Brain computer interface (BCI)
Electroencephalogram (EEG)
Independent component analysis (ICA)
Motor imagery (MI)
Title Low-quality training data detection method of EEG signals for motor imagery BCI system
URI https://dx.doi.org/10.1016/j.jneumeth.2022.109607
https://www.ncbi.nlm.nih.gov/pubmed/35483505
https://www.proquest.com/docview/2658229689
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hVkJcEFtehV1kJMQtlNqpYx-7VaE8LzzEzUpiW2oFKYJWqJf97TsTJ12QQBy4REoUK46_if1N_M0MwL7ncZo4lUfS5j6KtfIRznkqUlYpL532qqwNeHklB7fx2X3nfgF6dSwMySqruT_M6eVsXV1pVaPZehoOW9cUiHNE4VQkCxIx-e2UvQ5t-vDvf5lHrMv6mnQz7VcevYkSHh2OCjelSs3oJ3JOmZUklZX9eIH6jICWC9HxKqxUDJJ1Qyd_woIrGrDWLdB7fpyxA1ZqOsuf5Q1Yuqy2ztfg7mL8GoUQyhmrC0MwEogy6yalIKtgoZ40G3vW758w0nagdTLktQwRxePwkVJezNif3ikLOaDX4fa4f9MbRFVRhSgXUk2iDClfKoTgmqcitdKmic89VeDRou07CFHundWJtkrazHKbImBtgUSDcpKLjtiAxWJcuC1gNpHOpegyJXkcZyrJMod00bfj3GUIS9aETj2SJq8yjtP7PZhaWjYyNQKGEDABgSa05u2eQs6NL1voGijzznoMLgxftt2rkTX4adF-SVq48fTFcGRnnGupdBM2A-Tz_gj09ASyx-1vPHkHluksiH9_weLkeep-I8WZZLulDe_Cj-7p-eDqH0dz-zs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CRWJc0Pgx6MbAk9BuWamdOvaxVGXtaHsZTNysJLalVpAi1gr1v-e9OGEggTjskkMSK44_5_l78ffeAzjxPE4Tp_JI2txHsVY-QpunImWV8tJpr8ragOOJHFzFv64712vQq2NhSFZZ2f5g00trXZ1pVaPZuptOW78pEOeUwqlIFiRi9NvXKTtV3ID17vBiMPkXHqnLEpt0P21Znj4LFJ79mBVuScWa0VXknJIrSaos-_oa9RYHLdei84-wVZFI1g393IY1V-zAbrdAB_p2xb6zUtZZ_i_fgY1xtXu-C39G84coRFGuWF0bgpFGlFm3KDVZBQslpdncs37_JyN5B05QhtSWIah4nN5S1osVO-sNWUgDvQdX5_3L3iCq6ipEuZBqEWXI-lIhBNc8FamVNk187qkIjxZt30GUcu-sTrRV0maW2xQxawvkGpSWXHTEJ2gU88IdALOJdC5FrynJ4zhTSZY5ZIy-HecuQ2SyJnTqkTR5lXSc3u_G1OqymakRMISACQg0ofXU7i6k3Xi3ha6BMi8mkMG14d2232pkDX5dtGWSFm6-_Gs4EjTOtVS6CfsB8qf-CHT2BBLIz__x5GP4MLgcj8xoOLn4Apt0JWiBD6GxuF-6r8h4FtlRNaMfAeCJ_ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-quality+training+data+detection+method+of+EEG+signals+for+motor+imagery+BCI+system&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Ouyang%2C+Rui&rft.au=Jin%2C+Zihao&rft.au=Tang%2C+Shuhao&rft.au=Fan%2C+Cunhang&rft.date=2022-07-01&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=376&rft.spage=109607&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109607&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon