A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid–structure interaction: The sliding boundary particle approach
A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI fra...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 383; p. 113922 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid–structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet–Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics.
•Smoothed particle hydrodynamics and finite element coupling scheme.•Sliding boundary particle approach for accurate representation of interface forces.•Capable of strongly curved and deformable interface geometries.•Iterative fixed-point coupling following a Dirichlet–Neumann partitioned approach. |
---|---|
AbstractList | A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid–structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet–Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics. A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid–structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet–Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics. •Smoothed particle hydrodynamics and finite element coupling scheme.•Sliding boundary particle approach for accurate representation of interface forces.•Capable of strongly curved and deformable interface geometries.•Iterative fixed-point coupling following a Dirichlet–Neumann partitioned approach. |
ArticleNumber | 113922 |
Author | Cyron, Christian J. Wall, Wolfgang A. Meier, Christoph Fuchs, Sebastian L. |
Author_xml | – sequence: 1 givenname: Sebastian L. orcidid: 0000-0003-0250-6876 surname: Fuchs fullname: Fuchs, Sebastian L. email: fuchs@lnm.mw.tum.de organization: Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany – sequence: 2 givenname: Christoph surname: Meier fullname: Meier, Christoph email: meier@lnm.mw.tum.de organization: Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany – sequence: 3 givenname: Wolfgang A. surname: Wall fullname: Wall, Wolfgang A. email: wall@lnm.mw.tum.de organization: Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany – sequence: 4 givenname: Christian J. surname: Cyron fullname: Cyron, Christian J. email: christian.cyron@tuhh.de organization: Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Eißendorfer Straße 42, 21073, Hamburg, Germany |
BookMark | eNp9kMuKFDEUhoOMYM_oA7gLuK42l7rqahgcHRhwM65D6uTESlOVlElqoHe-w_iEPolpWhBcTDYHwv-dP_kuyYUPHgl5y9meM96-P-xh0XvBBN9zLgchXpAd77uhElz2F2THWN1UXS-aV-QypQMrp-diR35dUx8ecaZpCSFPaOiqY3YwI52OJgZz9HpxkKj2hlrnXUaKMy7oM4WwrbPz32mCqdxQGyK18-bM759PKccN8haROp8xasgu-A_0YUKaZmdO1Bg2b3Q8_mvU6xqDhuk1eWn1nPDN33lFvt1-erj5Ut1__Xx3c31fgWz7XGkzNDiIYQRZW96aXjIp5chqjVLWCHKwYMe67aFphBHYdSXPaz52I9ZGWHlF3p33ltofG6asDmGLvlQq0TSs7etWiJLi5xTEkFJEq9bolvJwxZk6yVcHVeSrk3x1ll-Y7j8GXNYnBzlqNz9LfjyTWD7-6DCqBA49oHERISsT3DP0H9R5pTQ |
CitedBy_id | crossref_primary_10_1007_s00158_023_03655_0 crossref_primary_10_1016_j_powtec_2024_119956 crossref_primary_10_1051_e3sconf_202343001116 crossref_primary_10_1016_j_oceaneng_2024_117942 crossref_primary_10_3390_buildings14103140 crossref_primary_10_1063_5_0206390 crossref_primary_10_1016_j_euromechflu_2021_12_001 crossref_primary_10_1063_5_0238868 crossref_primary_10_1186_s40323_021_00200_w crossref_primary_10_1016_j_euromechflu_2023_04_005 crossref_primary_10_1016_j_cma_2022_114809 crossref_primary_10_1016_j_advengsoft_2024_103707 crossref_primary_10_1063_5_0169801 crossref_primary_10_1002_fld_5083 crossref_primary_10_1016_j_jcp_2023_112233 crossref_primary_10_1007_s00366_023_01856_1 crossref_primary_10_1007_s40571_022_00498_2 crossref_primary_10_1016_j_cma_2022_115573 crossref_primary_10_1016_j_cma_2023_115895 crossref_primary_10_1007_s00366_022_01724_4 crossref_primary_10_1142_S0219876223500056 crossref_primary_10_1016_j_cmpb_2024_108034 crossref_primary_10_1002_gamm_202100014 crossref_primary_10_1016_j_cirpj_2022_12_012 crossref_primary_10_1016_j_camwa_2023_11_045 crossref_primary_10_1080_17445302_2024_2317040 crossref_primary_10_1016_j_powtec_2024_119587 |
Cites_doi | 10.1007/s00466-003-0534-0 10.1002/nme.1617 10.1002/fld.1971 10.1002/cav.18 10.1007/s11071-013-1093-3 10.1007/s11075-014-9835-y 10.1002/zamm.201800166 10.1016/j.cpc.2009.05.008 10.1063/1.1426389 10.1016/j.jcp.2012.05.005 10.1007/s11831-010-9040-7 10.1016/S0045-7825(96)01090-0 10.1016/j.cma.2016.11.028 10.1016/j.ijnonlinmec.2011.10.007 10.1002/gamm.201900001 10.1006/jcph.1994.1034 10.1016/j.cma.2004.12.005 10.1016/j.cma.2008.04.020 10.1080/10867651.1999.10487513 10.1017/S0022112094002764 10.1002/fld.3666 10.1016/j.jcp.2013.01.043 10.1016/j.cma.2004.10.008 10.1016/j.cma.2006.09.002 10.1016/j.cma.2011.06.006 10.1016/j.jcp.2010.12.011 10.1006/jcph.1997.5776 10.1093/mnras/181.3.375 10.1007/s00466-008-0255-5 10.1086/112164 10.1063/1.5068697 10.1007/s00466-006-0066-5 10.1016/j.jcp.2017.08.044 10.1016/j.cpc.2017.04.005 10.1088/0034-4885/68/8/R01 10.1007/s00466-015-1131-8 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright Elsevier BV Sep 1, 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier BV Sep 1, 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2021.113922 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2021_113922 S0045782521002590 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-ad95e929bc34f16d830333b04ae334ec39fcfb468c552d2e7795e141b7be4d2f3 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Fri Jul 25 05:49:36 EDT 2025 Tue Jul 01 04:06:13 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Fri Feb 23 02:43:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element method Smoothed particle hydrodynamics Incompressible flow Fluid–structure interaction Iterative Dirichlet–Neumann coupling Large deformation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-ad95e929bc34f16d830333b04ae334ec39fcfb468c552d2e7795e141b7be4d2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0250-6876 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0045782521002590 |
PQID | 2550684622 |
PQPubID | 2045269 |
ParticipantIDs | proquest_journals_2550684622 crossref_primary_10_1016_j_cma_2021_113922 crossref_citationtrail_10_1016_j_cma_2021_113922 elsevier_sciencedirect_doi_10_1016_j_cma_2021_113922 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Li, Leduc, Nunez-Ramirez, Combescure, Marongiu (b21) 2015; 55 Kulasegaram, Bonet, Lewis, Profit (b14) 2004; 33 Randles, Libersky (b11) 1996; 139 Fourey, Hermange, Le Touzé, Oger (b22) 2017; 217 Schäfer, Turek, Durst, Krause, Rannacher (b38) 1996 Causin, Gerbeau, Nobile (b6) 2005; 194 Quinlan, Basa, Lastiwka (b26) 2006; 66 Adami, Hu, Adams (b27) 2013; 241 Belytschko, Liu, Moran, Elkhodary (b29) 2013 Adami, Hu, Adams (b13) 2012; 231 Küttler, Förster, Wall (b45) 2006; 38 Brandstaeter, Fuchs, Aydin, Cyron (b2) 2019; 42 Long, Hu, Wan, Zhuang, Yang (b23) 2017; 350 Monaghan, Kajtar (b10) 2009; 180 Monaghan (b8) 1994; 110 Cottrell, Hughes, Bazilevs (b34) 2009 Turek (b39) 2020 Limache, Sánchez, Dalcín, Idelsohn (b37) 2008; 197 Küttler, Wall (b5) 2008; 43 Morris, Fox, Zhu (b12) 1997; 136 Turek (b44) 2020 Förster, Wall, Ramm (b7) 2007; 196 Ferrand, Laurence, Rogers, Violeau, Kassiotis (b15) 2013; 71 Ye, Pan, Huang, Liu (b18) 2019; 31 Feng, Hu, Joseph (b40) 1994; 277 Liu, Liu (b17) 2010; 17 Hashemi, Fatehi, Manzari (b36) 2012; 47 Hughes, Moller (b35) 1999; 4 Ramm, Wall (b43) 1998 Brandstaeter, Gizzi, Fuchs, Gebauer, Aydin, Cyron (b1) 2018; 98 Hughes, Cottrell, Bazilevs (b33) 2005; 194 Monaghan (b9) 2005; 68 (b24) 2021 Gingold, Monaghan (b3) 1977; 181 Lastiwka, Basa, Quinlan (b28) 2009; 61 Price (b25) 2012; 231 Lucy (b4) 1977; 82 Müller, Schirm, Teschner, Heidelberger, Gross (b19) 2004; 15 Feng, Michaelides (b41) 2002; 14 Mayrhofer, Ferrand, Kassiotis, Violeau, Morel (b16) 2015; 68 Klöppel, Popp, Küttler, Wall (b31) 2011; 200 Zienkiewicz, Taylor, Fox (b30) 2014 Meier, Wall, Popp (b32) 2017; 315 Hu, Tian, Hu (b20) 2014; 75 Turek, Hron (b42) 2006 Randles (10.1016/j.cma.2021.113922_b11) 1996; 139 Lucy (10.1016/j.cma.2021.113922_b4) 1977; 82 Feng (10.1016/j.cma.2021.113922_b41) 2002; 14 Long (10.1016/j.cma.2021.113922_b23) 2017; 350 Morris (10.1016/j.cma.2021.113922_b12) 1997; 136 Kulasegaram (10.1016/j.cma.2021.113922_b14) 2004; 33 Küttler (10.1016/j.cma.2021.113922_b45) 2006; 38 Turek (10.1016/j.cma.2021.113922_b42) 2006 Causin (10.1016/j.cma.2021.113922_b6) 2005; 194 Cottrell (10.1016/j.cma.2021.113922_b34) 2009 Limache (10.1016/j.cma.2021.113922_b37) 2008; 197 (10.1016/j.cma.2021.113922_b24) 2021 Monaghan (10.1016/j.cma.2021.113922_b10) 2009; 180 Hashemi (10.1016/j.cma.2021.113922_b36) 2012; 47 Ramm (10.1016/j.cma.2021.113922_b43) 1998 Küttler (10.1016/j.cma.2021.113922_b5) 2008; 43 Lastiwka (10.1016/j.cma.2021.113922_b28) 2009; 61 Klöppel (10.1016/j.cma.2021.113922_b31) 2011; 200 Gingold (10.1016/j.cma.2021.113922_b3) 1977; 181 Zienkiewicz (10.1016/j.cma.2021.113922_b30) 2014 Monaghan (10.1016/j.cma.2021.113922_b8) 1994; 110 Fourey (10.1016/j.cma.2021.113922_b22) 2017; 217 Price (10.1016/j.cma.2021.113922_b25) 2012; 231 Belytschko (10.1016/j.cma.2021.113922_b29) 2013 Brandstaeter (10.1016/j.cma.2021.113922_b1) 2018; 98 Liu (10.1016/j.cma.2021.113922_b17) 2010; 17 Li (10.1016/j.cma.2021.113922_b21) 2015; 55 Quinlan (10.1016/j.cma.2021.113922_b26) 2006; 66 Hughes (10.1016/j.cma.2021.113922_b35) 1999; 4 Monaghan (10.1016/j.cma.2021.113922_b9) 2005; 68 Feng (10.1016/j.cma.2021.113922_b40) 1994; 277 Hughes (10.1016/j.cma.2021.113922_b33) 2005; 194 Adami (10.1016/j.cma.2021.113922_b27) 2013; 241 Ferrand (10.1016/j.cma.2021.113922_b15) 2013; 71 Ye (10.1016/j.cma.2021.113922_b18) 2019; 31 Adami (10.1016/j.cma.2021.113922_b13) 2012; 231 Schäfer (10.1016/j.cma.2021.113922_b38) 1996 Brandstaeter (10.1016/j.cma.2021.113922_b2) 2019; 42 Turek (10.1016/j.cma.2021.113922_b44) 2020 Förster (10.1016/j.cma.2021.113922_b7) 2007; 196 Mayrhofer (10.1016/j.cma.2021.113922_b16) 2015; 68 Müller (10.1016/j.cma.2021.113922_b19) 2004; 15 Meier (10.1016/j.cma.2021.113922_b32) 2017; 315 Turek (10.1016/j.cma.2021.113922_b39) 2020 Hu (10.1016/j.cma.2021.113922_b20) 2014; 75 |
References_xml | – volume: 33 start-page: 316 year: 2004 end-page: 325 ident: b14 article-title: A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications publication-title: Comput. Mech. – volume: 71 start-page: 446 year: 2013 end-page: 472 ident: b15 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Internat. J. Numer. Methods Fluids – volume: 82 start-page: 1013 year: 1977 end-page: 1024 ident: b4 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. – year: 2013 ident: b29 article-title: Nonlinear Finite Elements for Continua and Structures – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: b17 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. – volume: 350 start-page: 166 year: 2017 end-page: 183 ident: b23 article-title: An arbitrary boundary with ghost particles incorporated in coupled FEM–SPH model for FSI problems publication-title: J. Comput. Phys. – volume: 14 start-page: 49 year: 2002 end-page: 60 ident: b41 article-title: Interparticle forces and lift on a particle attached to a solid boundary in suspension flow publication-title: Phys. Fluids – start-page: 371 year: 2006 end-page: 385 ident: b42 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow publication-title: Fluid-Structure Interaction – volume: 43 start-page: 61 year: 2008 end-page: 72 ident: b5 article-title: Fixed-point fluid–structure interaction solvers with dynamic relaxation publication-title: Comput. Mech. – volume: 139 start-page: 375 year: 1996 end-page: 408 ident: b11 article-title: Smoothed particle hydrodynamics: some recent improvements and applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 241 start-page: 292 year: 2013 end-page: 307 ident: b27 article-title: A transport-velocity formulation for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 277 start-page: 271 year: 1994 end-page: 301 ident: b40 article-title: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and poiseuille flows publication-title: J. Fluid Mech. – start-page: 1 year: 1998 end-page: 20 ident: b43 article-title: Fluid-structure interaction based upon a stabilized (ALE) finite element method publication-title: 4th World Congress on Computational Mechanics: New Trends and Applications, CIMNE, Barcelona – volume: 42 year: 2019 ident: b2 article-title: Mechanics of the stomach: A review of an emerging field of biomechanics publication-title: GAMM-Mitt. – volume: 31 year: 2019 ident: b18 article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications publication-title: Phys. Fluids – volume: 197 start-page: 4180 year: 2008 end-page: 4192 ident: b37 article-title: Objectivity tests for navier–stokes simulations: The revealing of non-physical solutions produced by laplace formulations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 98 start-page: 2177 year: 2018 end-page: 2197 ident: b1 article-title: Computational model of gastric motility with active-strain electromechanics publication-title: ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. – volume: 66 start-page: 2064 year: 2006 end-page: 2085 ident: b26 article-title: Truncation error in mesh-free particle methods publication-title: Internat. J. Numer. Methods Engrg. – start-page: 547 year: 1996 end-page: 566 ident: b38 article-title: Benchmark computations of laminar flow around a cylinder publication-title: Flow Simulation with High-Performance Computers II – volume: 15 start-page: 159 year: 2004 end-page: 171 ident: b19 article-title: Interaction of fluids with deformable solids publication-title: Comput. Animat. Virtual Worlds – year: 2020 ident: b39 article-title: Flow Around a Cylinder – year: 2014 ident: b30 article-title: The Finite Element Method for Solid and Structural Mechanics – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: b8 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. – volume: 55 start-page: 697 year: 2015 end-page: 718 ident: b21 article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion publication-title: Comput. Mech. – volume: 38 start-page: 417 year: 2006 end-page: 429 ident: b45 article-title: A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains publication-title: Comput. Mech. – volume: 196 start-page: 1278 year: 2007 end-page: 1293 ident: b7 article-title: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 200 start-page: 3111 year: 2011 end-page: 3126 ident: b31 article-title: Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 315 start-page: 972 year: 2017 end-page: 1010 ident: b32 article-title: A unified approach for beam-to-beam contact publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 180 start-page: 1811 year: 2009 end-page: 1820 ident: b10 article-title: SPH particle boundary forces for arbitrary boundaries publication-title: Comput. Phys. Comm. – volume: 231 start-page: 7057 year: 2012 end-page: 7075 ident: b13 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 61 start-page: 709 year: 2009 end-page: 724 ident: b28 article-title: Permeable and non-reflecting boundary conditions in SPH publication-title: Internat. J. Numer. Methods Fluids – volume: 68 start-page: 1703 year: 2005 ident: b9 article-title: Smoothed particle hydrodynamics publication-title: Rep. Progr. Phys. – volume: 47 start-page: 626 year: 2012 end-page: 638 ident: b36 article-title: A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows publication-title: Int. J. Non-Linear Mech. – year: 2020 ident: b44 article-title: Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow – volume: 136 start-page: 214 year: 1997 end-page: 226 ident: b12 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. – volume: 217 start-page: 66 year: 2017 end-page: 81 ident: b22 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Comm. – volume: 231 start-page: 759 year: 2012 end-page: 794 ident: b25 article-title: Smoothed particle hydrodynamics and magnetohydrodynamics publication-title: J. Comput. Phys. – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: b3 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. – volume: 4 start-page: 33 year: 1999 end-page: 35 ident: b35 article-title: Building an orthonormal basis from a unit vector publication-title: J. Graph. Tools – volume: 194 start-page: 4506 year: 2005 end-page: 4527 ident: b6 article-title: Added-mass effect in the design of partitioned algorithms for fluid–structure problems publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2021 ident: b24 article-title: BACI: A comprehensive multi-physics simulation framework – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: b33 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2009 ident: b34 article-title: Isogeometric Analysis: Toward Integration of CAD and FEA – volume: 68 start-page: 15 year: 2015 end-page: 34 ident: b16 article-title: Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D publication-title: Numer. Algorithms – volume: 75 start-page: 653 year: 2014 end-page: 671 ident: b20 article-title: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method publication-title: Nonlinear Dynam. – volume: 33 start-page: 316 issue: 4 year: 2004 ident: 10.1016/j.cma.2021.113922_b14 article-title: A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications publication-title: Comput. Mech. doi: 10.1007/s00466-003-0534-0 – volume: 66 start-page: 2064 issue: 13 year: 2006 ident: 10.1016/j.cma.2021.113922_b26 article-title: Truncation error in mesh-free particle methods publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1617 – volume: 61 start-page: 709 issue: 7 year: 2009 ident: 10.1016/j.cma.2021.113922_b28 article-title: Permeable and non-reflecting boundary conditions in SPH publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.1971 – volume: 15 start-page: 159 issue: 3–4 year: 2004 ident: 10.1016/j.cma.2021.113922_b19 article-title: Interaction of fluids with deformable solids publication-title: Comput. Animat. Virtual Worlds doi: 10.1002/cav.18 – year: 2009 ident: 10.1016/j.cma.2021.113922_b34 – volume: 75 start-page: 653 issue: 4 year: 2014 ident: 10.1016/j.cma.2021.113922_b20 article-title: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method publication-title: Nonlinear Dynam. doi: 10.1007/s11071-013-1093-3 – volume: 68 start-page: 15 issue: 1 year: 2015 ident: 10.1016/j.cma.2021.113922_b16 article-title: Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D publication-title: Numer. Algorithms doi: 10.1007/s11075-014-9835-y – volume: 98 start-page: 2177 issue: 12 year: 2018 ident: 10.1016/j.cma.2021.113922_b1 article-title: Computational model of gastric motility with active-strain electromechanics publication-title: ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. doi: 10.1002/zamm.201800166 – volume: 180 start-page: 1811 issue: 10 year: 2009 ident: 10.1016/j.cma.2021.113922_b10 article-title: SPH particle boundary forces for arbitrary boundaries publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2009.05.008 – year: 2013 ident: 10.1016/j.cma.2021.113922_b29 – volume: 14 start-page: 49 issue: 1 year: 2002 ident: 10.1016/j.cma.2021.113922_b41 article-title: Interparticle forces and lift on a particle attached to a solid boundary in suspension flow publication-title: Phys. Fluids doi: 10.1063/1.1426389 – volume: 231 start-page: 7057 issue: 21 year: 2012 ident: 10.1016/j.cma.2021.113922_b13 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.05.005 – volume: 17 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.cma.2021.113922_b17 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 – volume: 139 start-page: 375 issue: 1–4 year: 1996 ident: 10.1016/j.cma.2021.113922_b11 article-title: Smoothed particle hydrodynamics: some recent improvements and applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(96)01090-0 – start-page: 547 year: 1996 ident: 10.1016/j.cma.2021.113922_b38 article-title: Benchmark computations of laminar flow around a cylinder – volume: 315 start-page: 972 year: 2017 ident: 10.1016/j.cma.2021.113922_b32 article-title: A unified approach for beam-to-beam contact publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.11.028 – volume: 47 start-page: 626 issue: 6 year: 2012 ident: 10.1016/j.cma.2021.113922_b36 article-title: A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2011.10.007 – volume: 42 issue: 3 year: 2019 ident: 10.1016/j.cma.2021.113922_b2 article-title: Mechanics of the stomach: A review of an emerging field of biomechanics publication-title: GAMM-Mitt. doi: 10.1002/gamm.201900001 – year: 2014 ident: 10.1016/j.cma.2021.113922_b30 – year: 2020 ident: 10.1016/j.cma.2021.113922_b44 – volume: 110 start-page: 399 issue: 2 year: 1994 ident: 10.1016/j.cma.2021.113922_b8 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – volume: 194 start-page: 4506 issue: 42–44 year: 2005 ident: 10.1016/j.cma.2021.113922_b6 article-title: Added-mass effect in the design of partitioned algorithms for fluid–structure problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.12.005 – volume: 197 start-page: 4180 issue: 49–50 year: 2008 ident: 10.1016/j.cma.2021.113922_b37 article-title: Objectivity tests for navier–stokes simulations: The revealing of non-physical solutions produced by laplace formulations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2008.04.020 – volume: 4 start-page: 33 issue: 4 year: 1999 ident: 10.1016/j.cma.2021.113922_b35 article-title: Building an orthonormal basis from a unit vector publication-title: J. Graph. Tools doi: 10.1080/10867651.1999.10487513 – volume: 277 start-page: 271 year: 1994 ident: 10.1016/j.cma.2021.113922_b40 article-title: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and poiseuille flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112094002764 – volume: 71 start-page: 446 issue: 4 year: 2013 ident: 10.1016/j.cma.2021.113922_b15 article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.3666 – volume: 241 start-page: 292 year: 2013 ident: 10.1016/j.cma.2021.113922_b27 article-title: A transport-velocity formulation for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.01.043 – volume: 194 start-page: 4135 issue: 39–41 year: 2005 ident: 10.1016/j.cma.2021.113922_b33 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.10.008 – volume: 196 start-page: 1278 issue: 7 year: 2007 ident: 10.1016/j.cma.2021.113922_b7 article-title: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.09.002 – volume: 200 start-page: 3111 issue: 45–46 year: 2011 ident: 10.1016/j.cma.2021.113922_b31 article-title: Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2011.06.006 – year: 2020 ident: 10.1016/j.cma.2021.113922_b39 – volume: 231 start-page: 759 issue: 3 year: 2012 ident: 10.1016/j.cma.2021.113922_b25 article-title: Smoothed particle hydrodynamics and magnetohydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.011 – volume: 136 start-page: 214 issue: 1 year: 1997 ident: 10.1016/j.cma.2021.113922_b12 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 – volume: 181 start-page: 375 issue: 3 year: 1977 ident: 10.1016/j.cma.2021.113922_b3 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – start-page: 1 year: 1998 ident: 10.1016/j.cma.2021.113922_b43 article-title: Fluid-structure interaction based upon a stabilized (ALE) finite element method – volume: 43 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.cma.2021.113922_b5 article-title: Fixed-point fluid–structure interaction solvers with dynamic relaxation publication-title: Comput. Mech. doi: 10.1007/s00466-008-0255-5 – year: 2021 ident: 10.1016/j.cma.2021.113922_b24 – volume: 82 start-page: 1013 year: 1977 ident: 10.1016/j.cma.2021.113922_b4 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. doi: 10.1086/112164 – volume: 31 issue: 1 year: 2019 ident: 10.1016/j.cma.2021.113922_b18 article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications publication-title: Phys. Fluids doi: 10.1063/1.5068697 – volume: 38 start-page: 417 issue: 4 year: 2006 ident: 10.1016/j.cma.2021.113922_b45 article-title: A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains publication-title: Comput. Mech. doi: 10.1007/s00466-006-0066-5 – volume: 350 start-page: 166 year: 2017 ident: 10.1016/j.cma.2021.113922_b23 article-title: An arbitrary boundary with ghost particles incorporated in coupled FEM–SPH model for FSI problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.08.044 – start-page: 371 year: 2006 ident: 10.1016/j.cma.2021.113922_b42 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow – volume: 217 start-page: 66 year: 2017 ident: 10.1016/j.cma.2021.113922_b22 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2017.04.005 – volume: 68 start-page: 1703 issue: 8 year: 2005 ident: 10.1016/j.cma.2021.113922_b9 article-title: Smoothed particle hydrodynamics publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/68/8/R01 – volume: 55 start-page: 697 issue: 4 year: 2015 ident: 10.1016/j.cma.2021.113922_b21 article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion publication-title: Comput. Mech. doi: 10.1007/s00466-015-1131-8 |
SSID | ssj0000812 |
Score | 2.5101535 |
Snippet | A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113922 |
SubjectTerms | Biomechanics Computational fluid dynamics Coupling Dirichlet problem Finite element method Fluid flow Fluid mechanics Fluid-structure interaction Incompressible flow Iterative Dirichlet–Neumann coupling Iterative methods Large deformation Phase transitions Robustness (mathematics) Sliding Smooth particle hydrodynamics Smoothed particle hydrodynamics Structural members |
Title | A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid–structure interaction: The sliding boundary particle approach |
URI | https://dx.doi.org/10.1016/j.cma.2021.113922 https://www.proquest.com/docview/2550684622 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxELYQXOihhbRVKRDNoadK2-x6vbsxtwgRBVBzIlJu1vqvTRU2UUKQuCDeAZ6QJ2G89pK2Ehw4rmXvj2c884125htCvmWSSapiGRXaYoBSljbiJR73vMTYg7NY-d6AP4f5YMTOxtl4gxw3tTAurTLYfm_Ta2sdRjphNzvzycTV-DLHxY7-xzlu7uJ2xgqn5T9u12ke6PI8YzjLIje7-bNZ53ipmnqIJq6zCaf0Jd_0n5WuXU9_h7wPmBF6_rV2yYapWuRDwI8QTueyRd79RS74kTz0oJpdmyksL2euzErDPHwY_L7RaDd9L_ollJUGO3HYE4xPJgc1W7lK3V-AsS-OACJbsNPVRD_e3XvG2dXCgKOaWPjCiCNAfQPErM4Vgqx7NS1u1k9sqMs_kVH_5OJ4EIUeDJFK8-5VVGqeGYRQUqXMJrnuostLUxmz0qQpMyrlVlnJ8q7KMqqpKQqcn7BEFtIwTW36mWxWs8p8IaA41ZYparmUrJBcmqQrJUUDUmaIM7I9Eje7L1QgKHd9MqaiyUT7I1BgwglMeIHtke_PS-aeneO1yawRqfhHxQR6j9eWHTTiF-F8LwUGYnGO0I3Sr2-76z7Zdlc-W-2AbKLozCHCmyvZrvW3TbZ6p-eD4RMWBvzX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOUAP_BQQLQXmABek0MRxknUlDhVQbenPqZV6M_4tQdvsatMF7QXxDu2b9I14EsaxQwGJHpB6TWIn8tjffKPMfEPIi0IxRXWqkso4DFCkdAmXeNxLibEHZ6kOvQH39svhIftwVBwtkIu-FsanVUbsD5jeoXW8sh5Xc31S177Gl3ktdvQ_3nHzNGZW7tj5V4zb2jfb79DILynden_wdpjE1gKJzsvBaSINLywyA6Vz5rLSDBDJ81ylTNo8Z1bn3GmnWDnQRUENtVWFz2csU5WyzFCX47w3yE2GcOHbJrz-dplXgj42SJSzIvGf1_9K7ZLKdKd1RDPfSoVT-i9n-Jdb6Hzd1j1yJ5JU2AzrcJ8s2GaZ3I2EFSIctMtk6Tc1wwfkfBOa8Rc7gvZk7Ou6DEziSsKnuUGgnjfypNYtyMaAqz3ZBRuy10GPZ740-Bgw2MYrgFQa3GhWmx_fz4LE7WxqwWtbTEMlxgbgBgckyd73guqaQ03nl2_stdIfksNrscwjstiMG_uYgObUOKap40qxSnFls4FSFBFLFkhsihWS9qsvdFRE9405RqJPffss0GDCG0wEg62QV7-GTIIcyFUPs96k4o89LdBdXTVsrTe_iIDSCoz80hK5IqWr_zfrc3JreLC3K3a393eekNv-TkiVWyOLaEb7FLnVqXrW7WUgH6_78PwEsdM4wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+smoothed+particle+hydrodynamics+and+finite+element+coupling+scheme+for+fluid%E2%80%93structure+interaction%3A+The+sliding+boundary+particle+approach&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Fuchs%2C+Sebastian+L.&rft.au=Meier%2C+Christoph&rft.au=Wall%2C+Wolfgang+A.&rft.au=Cyron%2C+Christian+J.&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=383&rft_id=info:doi/10.1016%2Fj.cma.2021.113922&rft.externalDocID=S0045782521002590 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |