A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid–structure interaction: The sliding boundary particle approach

A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI fra...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 383; p. 113922
Main Authors Fuchs, Sebastian L., Meier, Christoph, Wall, Wolfgang A., Cyron, Christian J.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid–structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet–Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics. •Smoothed particle hydrodynamics and finite element coupling scheme.•Sliding boundary particle approach for accurate representation of interface forces.•Capable of strongly curved and deformable interface geometries.•Iterative fixed-point coupling following a Dirichlet–Neumann partitioned approach.
AbstractList A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid–structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet–Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics.
A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid–structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet–Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics. •Smoothed particle hydrodynamics and finite element coupling scheme.•Sliding boundary particle approach for accurate representation of interface forces.•Capable of strongly curved and deformable interface geometries.•Iterative fixed-point coupling following a Dirichlet–Neumann partitioned approach.
ArticleNumber 113922
Author Cyron, Christian J.
Wall, Wolfgang A.
Meier, Christoph
Fuchs, Sebastian L.
Author_xml – sequence: 1
  givenname: Sebastian L.
  orcidid: 0000-0003-0250-6876
  surname: Fuchs
  fullname: Fuchs, Sebastian L.
  email: fuchs@lnm.mw.tum.de
  organization: Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
– sequence: 2
  givenname: Christoph
  surname: Meier
  fullname: Meier, Christoph
  email: meier@lnm.mw.tum.de
  organization: Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
– sequence: 3
  givenname: Wolfgang A.
  surname: Wall
  fullname: Wall, Wolfgang A.
  email: wall@lnm.mw.tum.de
  organization: Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
– sequence: 4
  givenname: Christian J.
  surname: Cyron
  fullname: Cyron, Christian J.
  email: christian.cyron@tuhh.de
  organization: Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Eißendorfer Straße 42, 21073, Hamburg, Germany
BookMark eNp9kMuKFDEUhoOMYM_oA7gLuK42l7rqahgcHRhwM65D6uTESlOVlElqoHe-w_iEPolpWhBcTDYHwv-dP_kuyYUPHgl5y9meM96-P-xh0XvBBN9zLgchXpAd77uhElz2F2THWN1UXS-aV-QypQMrp-diR35dUx8ecaZpCSFPaOiqY3YwI52OJgZz9HpxkKj2hlrnXUaKMy7oM4WwrbPz32mCqdxQGyK18-bM759PKccN8haROp8xasgu-A_0YUKaZmdO1Bg2b3Q8_mvU6xqDhuk1eWn1nPDN33lFvt1-erj5Ut1__Xx3c31fgWz7XGkzNDiIYQRZW96aXjIp5chqjVLWCHKwYMe67aFphBHYdSXPaz52I9ZGWHlF3p33ltofG6asDmGLvlQq0TSs7etWiJLi5xTEkFJEq9bolvJwxZk6yVcHVeSrk3x1ll-Y7j8GXNYnBzlqNz9LfjyTWD7-6DCqBA49oHERISsT3DP0H9R5pTQ
CitedBy_id crossref_primary_10_1007_s00158_023_03655_0
crossref_primary_10_1016_j_powtec_2024_119956
crossref_primary_10_1051_e3sconf_202343001116
crossref_primary_10_1016_j_oceaneng_2024_117942
crossref_primary_10_3390_buildings14103140
crossref_primary_10_1063_5_0206390
crossref_primary_10_1016_j_euromechflu_2021_12_001
crossref_primary_10_1063_5_0238868
crossref_primary_10_1186_s40323_021_00200_w
crossref_primary_10_1016_j_euromechflu_2023_04_005
crossref_primary_10_1016_j_cma_2022_114809
crossref_primary_10_1016_j_advengsoft_2024_103707
crossref_primary_10_1063_5_0169801
crossref_primary_10_1002_fld_5083
crossref_primary_10_1016_j_jcp_2023_112233
crossref_primary_10_1007_s00366_023_01856_1
crossref_primary_10_1007_s40571_022_00498_2
crossref_primary_10_1016_j_cma_2022_115573
crossref_primary_10_1016_j_cma_2023_115895
crossref_primary_10_1007_s00366_022_01724_4
crossref_primary_10_1142_S0219876223500056
crossref_primary_10_1016_j_cmpb_2024_108034
crossref_primary_10_1002_gamm_202100014
crossref_primary_10_1016_j_cirpj_2022_12_012
crossref_primary_10_1016_j_camwa_2023_11_045
crossref_primary_10_1080_17445302_2024_2317040
crossref_primary_10_1016_j_powtec_2024_119587
Cites_doi 10.1007/s00466-003-0534-0
10.1002/nme.1617
10.1002/fld.1971
10.1002/cav.18
10.1007/s11071-013-1093-3
10.1007/s11075-014-9835-y
10.1002/zamm.201800166
10.1016/j.cpc.2009.05.008
10.1063/1.1426389
10.1016/j.jcp.2012.05.005
10.1007/s11831-010-9040-7
10.1016/S0045-7825(96)01090-0
10.1016/j.cma.2016.11.028
10.1016/j.ijnonlinmec.2011.10.007
10.1002/gamm.201900001
10.1006/jcph.1994.1034
10.1016/j.cma.2004.12.005
10.1016/j.cma.2008.04.020
10.1080/10867651.1999.10487513
10.1017/S0022112094002764
10.1002/fld.3666
10.1016/j.jcp.2013.01.043
10.1016/j.cma.2004.10.008
10.1016/j.cma.2006.09.002
10.1016/j.cma.2011.06.006
10.1016/j.jcp.2010.12.011
10.1006/jcph.1997.5776
10.1093/mnras/181.3.375
10.1007/s00466-008-0255-5
10.1086/112164
10.1063/1.5068697
10.1007/s00466-006-0066-5
10.1016/j.jcp.2017.08.044
10.1016/j.cpc.2017.04.005
10.1088/0034-4885/68/8/R01
10.1007/s00466-015-1131-8
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Sep 1, 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Sep 1, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.113922
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_113922
S0045782521002590
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-ad95e929bc34f16d830333b04ae334ec39fcfb468c552d2e7795e141b7be4d2f3
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Jul 25 05:49:36 EDT 2025
Tue Jul 01 04:06:13 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Fri Feb 23 02:43:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Smoothed particle hydrodynamics
Incompressible flow
Fluid–structure interaction
Iterative Dirichlet–Neumann coupling
Large deformation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-ad95e929bc34f16d830333b04ae334ec39fcfb468c552d2e7795e141b7be4d2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0250-6876
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0045782521002590
PQID 2550684622
PQPubID 2045269
ParticipantIDs proquest_journals_2550684622
crossref_primary_10_1016_j_cma_2021_113922
crossref_citationtrail_10_1016_j_cma_2021_113922
elsevier_sciencedirect_doi_10_1016_j_cma_2021_113922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Leduc, Nunez-Ramirez, Combescure, Marongiu (b21) 2015; 55
Kulasegaram, Bonet, Lewis, Profit (b14) 2004; 33
Randles, Libersky (b11) 1996; 139
Fourey, Hermange, Le Touzé, Oger (b22) 2017; 217
Schäfer, Turek, Durst, Krause, Rannacher (b38) 1996
Causin, Gerbeau, Nobile (b6) 2005; 194
Quinlan, Basa, Lastiwka (b26) 2006; 66
Adami, Hu, Adams (b27) 2013; 241
Belytschko, Liu, Moran, Elkhodary (b29) 2013
Adami, Hu, Adams (b13) 2012; 231
Küttler, Förster, Wall (b45) 2006; 38
Brandstaeter, Fuchs, Aydin, Cyron (b2) 2019; 42
Long, Hu, Wan, Zhuang, Yang (b23) 2017; 350
Monaghan, Kajtar (b10) 2009; 180
Monaghan (b8) 1994; 110
Cottrell, Hughes, Bazilevs (b34) 2009
Turek (b39) 2020
Limache, Sánchez, Dalcín, Idelsohn (b37) 2008; 197
Küttler, Wall (b5) 2008; 43
Morris, Fox, Zhu (b12) 1997; 136
Turek (b44) 2020
Förster, Wall, Ramm (b7) 2007; 196
Ferrand, Laurence, Rogers, Violeau, Kassiotis (b15) 2013; 71
Ye, Pan, Huang, Liu (b18) 2019; 31
Feng, Hu, Joseph (b40) 1994; 277
Liu, Liu (b17) 2010; 17
Hashemi, Fatehi, Manzari (b36) 2012; 47
Hughes, Moller (b35) 1999; 4
Ramm, Wall (b43) 1998
Brandstaeter, Gizzi, Fuchs, Gebauer, Aydin, Cyron (b1) 2018; 98
Hughes, Cottrell, Bazilevs (b33) 2005; 194
Monaghan (b9) 2005; 68
(b24) 2021
Gingold, Monaghan (b3) 1977; 181
Lastiwka, Basa, Quinlan (b28) 2009; 61
Price (b25) 2012; 231
Lucy (b4) 1977; 82
Müller, Schirm, Teschner, Heidelberger, Gross (b19) 2004; 15
Feng, Michaelides (b41) 2002; 14
Mayrhofer, Ferrand, Kassiotis, Violeau, Morel (b16) 2015; 68
Klöppel, Popp, Küttler, Wall (b31) 2011; 200
Zienkiewicz, Taylor, Fox (b30) 2014
Meier, Wall, Popp (b32) 2017; 315
Hu, Tian, Hu (b20) 2014; 75
Turek, Hron (b42) 2006
Randles (10.1016/j.cma.2021.113922_b11) 1996; 139
Lucy (10.1016/j.cma.2021.113922_b4) 1977; 82
Feng (10.1016/j.cma.2021.113922_b41) 2002; 14
Long (10.1016/j.cma.2021.113922_b23) 2017; 350
Morris (10.1016/j.cma.2021.113922_b12) 1997; 136
Kulasegaram (10.1016/j.cma.2021.113922_b14) 2004; 33
Küttler (10.1016/j.cma.2021.113922_b45) 2006; 38
Turek (10.1016/j.cma.2021.113922_b42) 2006
Causin (10.1016/j.cma.2021.113922_b6) 2005; 194
Cottrell (10.1016/j.cma.2021.113922_b34) 2009
Limache (10.1016/j.cma.2021.113922_b37) 2008; 197
(10.1016/j.cma.2021.113922_b24) 2021
Monaghan (10.1016/j.cma.2021.113922_b10) 2009; 180
Hashemi (10.1016/j.cma.2021.113922_b36) 2012; 47
Ramm (10.1016/j.cma.2021.113922_b43) 1998
Küttler (10.1016/j.cma.2021.113922_b5) 2008; 43
Lastiwka (10.1016/j.cma.2021.113922_b28) 2009; 61
Klöppel (10.1016/j.cma.2021.113922_b31) 2011; 200
Gingold (10.1016/j.cma.2021.113922_b3) 1977; 181
Zienkiewicz (10.1016/j.cma.2021.113922_b30) 2014
Monaghan (10.1016/j.cma.2021.113922_b8) 1994; 110
Fourey (10.1016/j.cma.2021.113922_b22) 2017; 217
Price (10.1016/j.cma.2021.113922_b25) 2012; 231
Belytschko (10.1016/j.cma.2021.113922_b29) 2013
Brandstaeter (10.1016/j.cma.2021.113922_b1) 2018; 98
Liu (10.1016/j.cma.2021.113922_b17) 2010; 17
Li (10.1016/j.cma.2021.113922_b21) 2015; 55
Quinlan (10.1016/j.cma.2021.113922_b26) 2006; 66
Hughes (10.1016/j.cma.2021.113922_b35) 1999; 4
Monaghan (10.1016/j.cma.2021.113922_b9) 2005; 68
Feng (10.1016/j.cma.2021.113922_b40) 1994; 277
Hughes (10.1016/j.cma.2021.113922_b33) 2005; 194
Adami (10.1016/j.cma.2021.113922_b27) 2013; 241
Ferrand (10.1016/j.cma.2021.113922_b15) 2013; 71
Ye (10.1016/j.cma.2021.113922_b18) 2019; 31
Adami (10.1016/j.cma.2021.113922_b13) 2012; 231
Schäfer (10.1016/j.cma.2021.113922_b38) 1996
Brandstaeter (10.1016/j.cma.2021.113922_b2) 2019; 42
Turek (10.1016/j.cma.2021.113922_b44) 2020
Förster (10.1016/j.cma.2021.113922_b7) 2007; 196
Mayrhofer (10.1016/j.cma.2021.113922_b16) 2015; 68
Müller (10.1016/j.cma.2021.113922_b19) 2004; 15
Meier (10.1016/j.cma.2021.113922_b32) 2017; 315
Turek (10.1016/j.cma.2021.113922_b39) 2020
Hu (10.1016/j.cma.2021.113922_b20) 2014; 75
References_xml – volume: 33
  start-page: 316
  year: 2004
  end-page: 325
  ident: b14
  article-title: A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications
  publication-title: Comput. Mech.
– volume: 71
  start-page: 446
  year: 2013
  end-page: 472
  ident: b15
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: b4
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
– year: 2013
  ident: b29
  article-title: Nonlinear Finite Elements for Continua and Structures
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: b17
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
– volume: 350
  start-page: 166
  year: 2017
  end-page: 183
  ident: b23
  article-title: An arbitrary boundary with ghost particles incorporated in coupled FEM–SPH model for FSI problems
  publication-title: J. Comput. Phys.
– volume: 14
  start-page: 49
  year: 2002
  end-page: 60
  ident: b41
  article-title: Interparticle forces and lift on a particle attached to a solid boundary in suspension flow
  publication-title: Phys. Fluids
– start-page: 371
  year: 2006
  end-page: 385
  ident: b42
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
  publication-title: Fluid-Structure Interaction
– volume: 43
  start-page: 61
  year: 2008
  end-page: 72
  ident: b5
  article-title: Fixed-point fluid–structure interaction solvers with dynamic relaxation
  publication-title: Comput. Mech.
– volume: 139
  start-page: 375
  year: 1996
  end-page: 408
  ident: b11
  article-title: Smoothed particle hydrodynamics: some recent improvements and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 241
  start-page: 292
  year: 2013
  end-page: 307
  ident: b27
  article-title: A transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 277
  start-page: 271
  year: 1994
  end-page: 301
  ident: b40
  article-title: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and poiseuille flows
  publication-title: J. Fluid Mech.
– start-page: 1
  year: 1998
  end-page: 20
  ident: b43
  article-title: Fluid-structure interaction based upon a stabilized (ALE) finite element method
  publication-title: 4th World Congress on Computational Mechanics: New Trends and Applications, CIMNE, Barcelona
– volume: 42
  year: 2019
  ident: b2
  article-title: Mechanics of the stomach: A review of an emerging field of biomechanics
  publication-title: GAMM-Mitt.
– volume: 31
  year: 2019
  ident: b18
  article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications
  publication-title: Phys. Fluids
– volume: 197
  start-page: 4180
  year: 2008
  end-page: 4192
  ident: b37
  article-title: Objectivity tests for navier–stokes simulations: The revealing of non-physical solutions produced by laplace formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 98
  start-page: 2177
  year: 2018
  end-page: 2197
  ident: b1
  article-title: Computational model of gastric motility with active-strain electromechanics
  publication-title: ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
– volume: 66
  start-page: 2064
  year: 2006
  end-page: 2085
  ident: b26
  article-title: Truncation error in mesh-free particle methods
  publication-title: Internat. J. Numer. Methods Engrg.
– start-page: 547
  year: 1996
  end-page: 566
  ident: b38
  article-title: Benchmark computations of laminar flow around a cylinder
  publication-title: Flow Simulation with High-Performance Computers II
– volume: 15
  start-page: 159
  year: 2004
  end-page: 171
  ident: b19
  article-title: Interaction of fluids with deformable solids
  publication-title: Comput. Animat. Virtual Worlds
– year: 2020
  ident: b39
  article-title: Flow Around a Cylinder
– year: 2014
  ident: b30
  article-title: The Finite Element Method for Solid and Structural Mechanics
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: b8
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
– volume: 55
  start-page: 697
  year: 2015
  end-page: 718
  ident: b21
  article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion
  publication-title: Comput. Mech.
– volume: 38
  start-page: 417
  year: 2006
  end-page: 429
  ident: b45
  article-title: A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains
  publication-title: Comput. Mech.
– volume: 196
  start-page: 1278
  year: 2007
  end-page: 1293
  ident: b7
  article-title: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 200
  start-page: 3111
  year: 2011
  end-page: 3126
  ident: b31
  article-title: Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 315
  start-page: 972
  year: 2017
  end-page: 1010
  ident: b32
  article-title: A unified approach for beam-to-beam contact
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 180
  start-page: 1811
  year: 2009
  end-page: 1820
  ident: b10
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Comm.
– volume: 231
  start-page: 7057
  year: 2012
  end-page: 7075
  ident: b13
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 61
  start-page: 709
  year: 2009
  end-page: 724
  ident: b28
  article-title: Permeable and non-reflecting boundary conditions in SPH
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 68
  start-page: 1703
  year: 2005
  ident: b9
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
– volume: 47
  start-page: 626
  year: 2012
  end-page: 638
  ident: b36
  article-title: A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows
  publication-title: Int. J. Non-Linear Mech.
– year: 2020
  ident: b44
  article-title: Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: b12
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
– volume: 217
  start-page: 66
  year: 2017
  end-page: 81
  ident: b22
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Comm.
– volume: 231
  start-page: 759
  year: 2012
  end-page: 794
  ident: b25
  article-title: Smoothed particle hydrodynamics and magnetohydrodynamics
  publication-title: J. Comput. Phys.
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: b3
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 4
  start-page: 33
  year: 1999
  end-page: 35
  ident: b35
  article-title: Building an orthonormal basis from a unit vector
  publication-title: J. Graph. Tools
– volume: 194
  start-page: 4506
  year: 2005
  end-page: 4527
  ident: b6
  article-title: Added-mass effect in the design of partitioned algorithms for fluid–structure problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2021
  ident: b24
  article-title: BACI: A comprehensive multi-physics simulation framework
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: b33
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2009
  ident: b34
  article-title: Isogeometric Analysis: Toward Integration of CAD and FEA
– volume: 68
  start-page: 15
  year: 2015
  end-page: 34
  ident: b16
  article-title: Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D
  publication-title: Numer. Algorithms
– volume: 75
  start-page: 653
  year: 2014
  end-page: 671
  ident: b20
  article-title: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method
  publication-title: Nonlinear Dynam.
– volume: 33
  start-page: 316
  issue: 4
  year: 2004
  ident: 10.1016/j.cma.2021.113922_b14
  article-title: A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0534-0
– volume: 66
  start-page: 2064
  issue: 13
  year: 2006
  ident: 10.1016/j.cma.2021.113922_b26
  article-title: Truncation error in mesh-free particle methods
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1617
– volume: 61
  start-page: 709
  issue: 7
  year: 2009
  ident: 10.1016/j.cma.2021.113922_b28
  article-title: Permeable and non-reflecting boundary conditions in SPH
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1971
– volume: 15
  start-page: 159
  issue: 3–4
  year: 2004
  ident: 10.1016/j.cma.2021.113922_b19
  article-title: Interaction of fluids with deformable solids
  publication-title: Comput. Animat. Virtual Worlds
  doi: 10.1002/cav.18
– year: 2009
  ident: 10.1016/j.cma.2021.113922_b34
– volume: 75
  start-page: 653
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2021.113922_b20
  article-title: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-013-1093-3
– volume: 68
  start-page: 15
  issue: 1
  year: 2015
  ident: 10.1016/j.cma.2021.113922_b16
  article-title: Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-014-9835-y
– volume: 98
  start-page: 2177
  issue: 12
  year: 2018
  ident: 10.1016/j.cma.2021.113922_b1
  article-title: Computational model of gastric motility with active-strain electromechanics
  publication-title: ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201800166
– volume: 180
  start-page: 1811
  issue: 10
  year: 2009
  ident: 10.1016/j.cma.2021.113922_b10
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2009.05.008
– year: 2013
  ident: 10.1016/j.cma.2021.113922_b29
– volume: 14
  start-page: 49
  issue: 1
  year: 2002
  ident: 10.1016/j.cma.2021.113922_b41
  article-title: Interparticle forces and lift on a particle attached to a solid boundary in suspension flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.1426389
– volume: 231
  start-page: 7057
  issue: 21
  year: 2012
  ident: 10.1016/j.cma.2021.113922_b13
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.005
– volume: 17
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.cma.2021.113922_b17
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9040-7
– volume: 139
  start-page: 375
  issue: 1–4
  year: 1996
  ident: 10.1016/j.cma.2021.113922_b11
  article-title: Smoothed particle hydrodynamics: some recent improvements and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(96)01090-0
– start-page: 547
  year: 1996
  ident: 10.1016/j.cma.2021.113922_b38
  article-title: Benchmark computations of laminar flow around a cylinder
– volume: 315
  start-page: 972
  year: 2017
  ident: 10.1016/j.cma.2021.113922_b32
  article-title: A unified approach for beam-to-beam contact
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.11.028
– volume: 47
  start-page: 626
  issue: 6
  year: 2012
  ident: 10.1016/j.cma.2021.113922_b36
  article-title: A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2011.10.007
– volume: 42
  issue: 3
  year: 2019
  ident: 10.1016/j.cma.2021.113922_b2
  article-title: Mechanics of the stomach: A review of an emerging field of biomechanics
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.201900001
– year: 2014
  ident: 10.1016/j.cma.2021.113922_b30
– year: 2020
  ident: 10.1016/j.cma.2021.113922_b44
– volume: 110
  start-page: 399
  issue: 2
  year: 1994
  ident: 10.1016/j.cma.2021.113922_b8
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– volume: 194
  start-page: 4506
  issue: 42–44
  year: 2005
  ident: 10.1016/j.cma.2021.113922_b6
  article-title: Added-mass effect in the design of partitioned algorithms for fluid–structure problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.12.005
– volume: 197
  start-page: 4180
  issue: 49–50
  year: 2008
  ident: 10.1016/j.cma.2021.113922_b37
  article-title: Objectivity tests for navier–stokes simulations: The revealing of non-physical solutions produced by laplace formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.04.020
– volume: 4
  start-page: 33
  issue: 4
  year: 1999
  ident: 10.1016/j.cma.2021.113922_b35
  article-title: Building an orthonormal basis from a unit vector
  publication-title: J. Graph. Tools
  doi: 10.1080/10867651.1999.10487513
– volume: 277
  start-page: 271
  year: 1994
  ident: 10.1016/j.cma.2021.113922_b40
  article-title: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and poiseuille flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094002764
– volume: 71
  start-page: 446
  issue: 4
  year: 2013
  ident: 10.1016/j.cma.2021.113922_b15
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.3666
– volume: 241
  start-page: 292
  year: 2013
  ident: 10.1016/j.cma.2021.113922_b27
  article-title: A transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.01.043
– volume: 194
  start-page: 4135
  issue: 39–41
  year: 2005
  ident: 10.1016/j.cma.2021.113922_b33
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.10.008
– volume: 196
  start-page: 1278
  issue: 7
  year: 2007
  ident: 10.1016/j.cma.2021.113922_b7
  article-title: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2006.09.002
– volume: 200
  start-page: 3111
  issue: 45–46
  year: 2011
  ident: 10.1016/j.cma.2021.113922_b31
  article-title: Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2011.06.006
– year: 2020
  ident: 10.1016/j.cma.2021.113922_b39
– volume: 231
  start-page: 759
  issue: 3
  year: 2012
  ident: 10.1016/j.cma.2021.113922_b25
  article-title: Smoothed particle hydrodynamics and magnetohydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.011
– volume: 136
  start-page: 214
  issue: 1
  year: 1997
  ident: 10.1016/j.cma.2021.113922_b12
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 181
  start-page: 375
  issue: 3
  year: 1977
  ident: 10.1016/j.cma.2021.113922_b3
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– start-page: 1
  year: 1998
  ident: 10.1016/j.cma.2021.113922_b43
  article-title: Fluid-structure interaction based upon a stabilized (ALE) finite element method
– volume: 43
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.cma.2021.113922_b5
  article-title: Fixed-point fluid–structure interaction solvers with dynamic relaxation
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0255-5
– year: 2021
  ident: 10.1016/j.cma.2021.113922_b24
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.cma.2021.113922_b4
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 31
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2021.113922_b18
  article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications
  publication-title: Phys. Fluids
  doi: 10.1063/1.5068697
– volume: 38
  start-page: 417
  issue: 4
  year: 2006
  ident: 10.1016/j.cma.2021.113922_b45
  article-title: A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-006-0066-5
– volume: 350
  start-page: 166
  year: 2017
  ident: 10.1016/j.cma.2021.113922_b23
  article-title: An arbitrary boundary with ghost particles incorporated in coupled FEM–SPH model for FSI problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.08.044
– start-page: 371
  year: 2006
  ident: 10.1016/j.cma.2021.113922_b42
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
– volume: 217
  start-page: 66
  year: 2017
  ident: 10.1016/j.cma.2021.113922_b22
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.04.005
– volume: 68
  start-page: 1703
  issue: 8
  year: 2005
  ident: 10.1016/j.cma.2021.113922_b9
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 55
  start-page: 697
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2021.113922_b21
  article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1131-8
SSID ssj0000812
Score 2.5101535
Snippet A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113922
SubjectTerms Biomechanics
Computational fluid dynamics
Coupling
Dirichlet problem
Finite element method
Fluid flow
Fluid mechanics
Fluid-structure interaction
Incompressible flow
Iterative Dirichlet–Neumann coupling
Iterative methods
Large deformation
Phase transitions
Robustness (mathematics)
Sliding
Smooth particle hydrodynamics
Smoothed particle hydrodynamics
Structural members
Title A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid–structure interaction: The sliding boundary particle approach
URI https://dx.doi.org/10.1016/j.cma.2021.113922
https://www.proquest.com/docview/2550684622
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxELYQXOihhbRVKRDNoadK2-x6vbsxtwgRBVBzIlJu1vqvTRU2UUKQuCDeAZ6QJ2G89pK2Ehw4rmXvj2c884125htCvmWSSapiGRXaYoBSljbiJR73vMTYg7NY-d6AP4f5YMTOxtl4gxw3tTAurTLYfm_Ta2sdRjphNzvzycTV-DLHxY7-xzlu7uJ2xgqn5T9u12ke6PI8YzjLIje7-bNZ53ipmnqIJq6zCaf0Jd_0n5WuXU9_h7wPmBF6_rV2yYapWuRDwI8QTueyRd79RS74kTz0oJpdmyksL2euzErDPHwY_L7RaDd9L_ollJUGO3HYE4xPJgc1W7lK3V-AsS-OACJbsNPVRD_e3XvG2dXCgKOaWPjCiCNAfQPErM4Vgqx7NS1u1k9sqMs_kVH_5OJ4EIUeDJFK8-5VVGqeGYRQUqXMJrnuostLUxmz0qQpMyrlVlnJ8q7KMqqpKQqcn7BEFtIwTW36mWxWs8p8IaA41ZYparmUrJBcmqQrJUUDUmaIM7I9Eje7L1QgKHd9MqaiyUT7I1BgwglMeIHtke_PS-aeneO1yawRqfhHxQR6j9eWHTTiF-F8LwUGYnGO0I3Sr2-76z7Zdlc-W-2AbKLozCHCmyvZrvW3TbZ6p-eD4RMWBvzX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOUAP_BQQLQXmABek0MRxknUlDhVQbenPqZV6M_4tQdvsatMF7QXxDu2b9I14EsaxQwGJHpB6TWIn8tjffKPMfEPIi0IxRXWqkso4DFCkdAmXeNxLibEHZ6kOvQH39svhIftwVBwtkIu-FsanVUbsD5jeoXW8sh5Xc31S177Gl3ktdvQ_3nHzNGZW7tj5V4zb2jfb79DILynden_wdpjE1gKJzsvBaSINLywyA6Vz5rLSDBDJ81ylTNo8Z1bn3GmnWDnQRUENtVWFz2csU5WyzFCX47w3yE2GcOHbJrz-dplXgj42SJSzIvGf1_9K7ZLKdKd1RDPfSoVT-i9n-Jdb6Hzd1j1yJ5JU2AzrcJ8s2GaZ3I2EFSIctMtk6Tc1wwfkfBOa8Rc7gvZk7Ou6DEziSsKnuUGgnjfypNYtyMaAqz3ZBRuy10GPZ740-Bgw2MYrgFQa3GhWmx_fz4LE7WxqwWtbTEMlxgbgBgckyd73guqaQ03nl2_stdIfksNrscwjstiMG_uYgObUOKap40qxSnFls4FSFBFLFkhsihWS9qsvdFRE9405RqJPffss0GDCG0wEg62QV7-GTIIcyFUPs96k4o89LdBdXTVsrTe_iIDSCoz80hK5IqWr_zfrc3JreLC3K3a393eekNv-TkiVWyOLaEb7FLnVqXrW7WUgH6_78PwEsdM4wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+smoothed+particle+hydrodynamics+and+finite+element+coupling+scheme+for+fluid%E2%80%93structure+interaction%3A+The+sliding+boundary+particle+approach&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Fuchs%2C+Sebastian+L.&rft.au=Meier%2C+Christoph&rft.au=Wall%2C+Wolfgang+A.&rft.au=Cyron%2C+Christian+J.&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=383&rft_id=info:doi/10.1016%2Fj.cma.2021.113922&rft.externalDocID=S0045782521002590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon