Liquid metal enabled microfluidics

Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid met...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 17; no. 6; pp. 974 - 993
Main Authors Khoshmanesh, Khashayar, Tang, Shi-Yang, Zhu, Jiu Yang, Schaefer, Samira, Mitchell, Arnan, Kalantar-zadeh, Kourosh, Dickey, Michael D
Format Journal Article
LanguageEnglish
Published England 14.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems. This review discusses the opportunities provided by gallium liquid metal alloys for making various microfluidic components.
AbstractList Several gallium-based liquid metal alloys are liquid at room temperature. As ‘liquid’, such alloys have a low viscosity and a high surface tension while as ‘metal’, they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.
Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems. This review discusses the opportunities provided by gallium liquid metal alloys for making various microfluidic components.
Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.
Author Khoshmanesh, Khashayar
Schaefer, Samira
Kalantar-zadeh, Kourosh
Zhu, Jiu Yang
Mitchell, Arnan
Tang, Shi-Yang
Dickey, Michael D
AuthorAffiliation North Carolina State University
Department of Bioengineering and Therapeutic Sciences
Schools of Medicine and Pharmacy
Department of Applied Chemistry
Reutlingen University
University of California
Department of Chemical and Biomolecular Engineering
School of Engineering
RMIT University
AuthorAffiliation_xml – name: Department of Bioengineering and Therapeutic Sciences
– name: Reutlingen University
– name: University of California
– name: Department of Chemical and Biomolecular Engineering
– name: North Carolina State University
– name: RMIT University
– name: School of Engineering
– name: Department of Applied Chemistry
– name: Schools of Medicine and Pharmacy
Author_xml – sequence: 1
  givenname: Khashayar
  surname: Khoshmanesh
  fullname: Khoshmanesh, Khashayar
– sequence: 2
  givenname: Shi-Yang
  surname: Tang
  fullname: Tang, Shi-Yang
– sequence: 3
  givenname: Jiu Yang
  surname: Zhu
  fullname: Zhu, Jiu Yang
– sequence: 4
  givenname: Samira
  surname: Schaefer
  fullname: Schaefer, Samira
– sequence: 5
  givenname: Arnan
  surname: Mitchell
  fullname: Mitchell, Arnan
– sequence: 6
  givenname: Kourosh
  surname: Kalantar-zadeh
  fullname: Kalantar-zadeh, Kourosh
– sequence: 7
  givenname: Michael D
  surname: Dickey
  fullname: Dickey, Michael D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28225135$$D View this record in MEDLINE/PubMed
BookMark eNqNkctLxDAQxoMo7kMv3pXVkwjVSZM06VHqEwpe9FzSPCCStrtNe_C_N7rrCiLiaWb4fjPwfTNDu23XGoSOMFxiIPmV4l4BAM30DppiykkCWOS72z7nEzQL4RUAM5qJfTRJRZoyTNgUnZVuNTq9aMwg_cK0svYmTk71nfVRcCocoD0rfTCHmzpHL3e3z8VDUj7dPxbXZaJIJoZESiO0gjrVVtYAjHCmWC4xcEm04FakUmFtlEqVUCCxjsVYwnNaM0wtIXN0vr677LvVaMJQNS4o471sTTeGKnoiQlCa4X-gHHLBOYWInmzQsW6Mrpa9a2T_Vn1FEIGLNRAth9Abu0UwVB_5VgUvi898byIMP2DlBjm4rh166fzvK8frlT6o7envl0X99C-9WmpL3gF1gpAf
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2020_116451
crossref_primary_10_3390_coatings14080935
crossref_primary_10_1063_5_0028685
crossref_primary_10_2139_ssrn_3989560
crossref_primary_10_1002_aelm_201800137
crossref_primary_10_1016_j_mtla_2019_100512
crossref_primary_10_3390_mi12020146
crossref_primary_10_1002_adfm_201901998
crossref_primary_10_1103_PhysRevE_105_025102
crossref_primary_10_3390_mi10030209
crossref_primary_10_1002_adem_202201296
crossref_primary_10_1021_acsami_2c01201
crossref_primary_10_1186_s12951_022_01471_0
crossref_primary_10_1063_5_0130491
crossref_primary_10_1002_smll_201903841
crossref_primary_10_1016_j_coco_2023_101735
crossref_primary_10_1016_j_applthermaleng_2019_114260
crossref_primary_10_1038_s41928_024_01268_z
crossref_primary_10_3390_mi9070360
crossref_primary_10_1039_D4LC00791C
crossref_primary_10_1039_D1MH01101D
crossref_primary_10_1016_j_apmt_2020_100868
crossref_primary_10_1063_5_0036991
crossref_primary_10_3390_mi13091429
crossref_primary_10_1002_admi_201901057
crossref_primary_10_1016_j_cis_2024_103183
crossref_primary_10_1016_j_triboint_2022_107520
crossref_primary_10_1002_admt_201700144
crossref_primary_10_1063_5_0222244
crossref_primary_10_3390_electronics11050716
crossref_primary_10_1039_C8LC01357H
crossref_primary_10_1063_5_0140629
crossref_primary_10_1002_admt_201800549
crossref_primary_10_1115_1_4048614
crossref_primary_10_1002_adfm_201804197
crossref_primary_10_1002_advs_202205795
crossref_primary_10_1088_1361_6528_ab61d0
crossref_primary_10_1021_acs_chemrev_3c00317
crossref_primary_10_1063_5_0133992
crossref_primary_10_1002_smll_202202987
crossref_primary_10_3390_nano12132153
crossref_primary_10_1039_D2LC00267A
crossref_primary_10_1016_j_actamat_2020_07_071
crossref_primary_10_1002_admt_202201264
crossref_primary_10_1002_adsu_202100312
crossref_primary_10_1002_admt_202200295
crossref_primary_10_1039_D0CC02108C
crossref_primary_10_1126_science_aao4249
crossref_primary_10_3390_ma16186186
crossref_primary_10_1002_aisy_202100024
crossref_primary_10_1039_D2LC01193J
crossref_primary_10_1002_adfm_202311153
crossref_primary_10_1002_elps_202200048
crossref_primary_10_1002_admt_202101092
crossref_primary_10_1039_C9NR02458A
crossref_primary_10_1088_1361_6439_ac5c77
crossref_primary_10_1002_advs_202401796
crossref_primary_10_1016_j_mattod_2020_08_017
crossref_primary_10_1021_acs_energyfuels_3c02754
crossref_primary_10_1007_s10118_022_2874_2
crossref_primary_10_1002_adma_202406456
crossref_primary_10_1021_acs_langmuir_4c03160
crossref_primary_10_1039_D0NR00988A
crossref_primary_10_1002_adfm_202301348
crossref_primary_10_1038_s41598_019_47078_8
crossref_primary_10_1002_advs_202303406
crossref_primary_10_1021_acsnano_1c06973
crossref_primary_10_1002_smll_201905446
crossref_primary_10_1039_D0MH01117G
crossref_primary_10_1002_aelm_201700434
crossref_primary_10_1002_anbr_202000086
crossref_primary_10_3390_mi13050799
crossref_primary_10_1146_annurev_matsci_080819_125403
crossref_primary_10_1016_j_apmt_2020_100722
crossref_primary_10_1039_D2LC00612J
crossref_primary_10_1007_s11431_023_2379_6
crossref_primary_10_1039_C9LC00995G
crossref_primary_10_1002_admt_202100690
crossref_primary_10_1021_acs_analchem_9b00093
crossref_primary_10_1002_adma_202001642
crossref_primary_10_1007_s12034_019_1872_7
crossref_primary_10_1016_j_matpr_2021_06_170
crossref_primary_10_1016_j_matt_2021_10_022
crossref_primary_10_1103_PhysRevApplied_10_054045
crossref_primary_10_1002_chem_201800605
crossref_primary_10_1002_adfm_202309614
crossref_primary_10_1039_D1CS00404B
crossref_primary_10_1039_D1MH00647A
crossref_primary_10_1007_s11708_019_0653_8
crossref_primary_10_1021_acsami_1c01026
crossref_primary_10_1002_tee_24040
crossref_primary_10_1021_acsami_0c01957
crossref_primary_10_3390_s24020416
crossref_primary_10_1088_1361_665X_ac6d31
crossref_primary_10_1109_LAWP_2024_3503581
crossref_primary_10_1016_j_apmt_2020_100612
crossref_primary_10_1021_acsami_8b20460
crossref_primary_10_1088_1361_6463_ab1e30
crossref_primary_10_1002_smsc_202000080
crossref_primary_10_1002_adfm_201706277
crossref_primary_10_1038_s41598_021_86394_w
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122674
crossref_primary_10_1016_j_cej_2020_125732
crossref_primary_10_1002_adfm_201808989
crossref_primary_10_1038_s41598_019_42457_7
crossref_primary_10_1016_j_apsusc_2019_06_084
crossref_primary_10_1016_j_eml_2021_101386
crossref_primary_10_1002_advs_202201963
crossref_primary_10_1016_j_hsr_2023_100118
crossref_primary_10_1002_adfm_202409341
crossref_primary_10_1021_acs_langmuir_1c01173
crossref_primary_10_1038_s41467_019_11466_5
crossref_primary_10_1002_adma_201805033
crossref_primary_10_3390_s20247062
crossref_primary_10_1016_j_pmatsci_2023_101228
crossref_primary_10_1002_ppsc_202100141
crossref_primary_10_1002_adma_202211731
crossref_primary_10_1002_adma_201805039
crossref_primary_10_1063_5_0030055
crossref_primary_10_1021_acs_nanolett_7b04050
crossref_primary_10_1002_adfm_202210961
crossref_primary_10_1002_elps_202000213
crossref_primary_10_1039_D1EE00531F
crossref_primary_10_1007_s10404_020_02336_4
crossref_primary_10_1016_j_surfin_2022_101951
crossref_primary_10_1039_C7LC00426E
crossref_primary_10_1039_C7LC00898H
crossref_primary_10_1002_adfm_202306453
crossref_primary_10_3389_fmech_2017_00009
crossref_primary_10_1039_D4LC00387J
crossref_primary_10_1039_D2LC00712F
crossref_primary_10_1109_JSEN_2020_3015949
crossref_primary_10_3390_s22114037
crossref_primary_10_1002_adfm_202310147
crossref_primary_10_1088_2399_7532_abd4f0
crossref_primary_10_1002_adfm_202000187
crossref_primary_10_1002_adfm_202003694
crossref_primary_10_1002_adfm_202415323
crossref_primary_10_1039_D1LC01019K
crossref_primary_10_1002_adfm_202411647
crossref_primary_10_1364_OME_425432
crossref_primary_10_1021_acsapm_9b00258
crossref_primary_10_3390_mi14050972
crossref_primary_10_1002_smtd_202401291
crossref_primary_10_1007_s00216_021_03494_2
crossref_primary_10_1002_admt_201700330
crossref_primary_10_1002_admt_202200749
crossref_primary_10_1002_aisy_202200080
crossref_primary_10_1039_D0TC04302H
crossref_primary_10_3390_app9071421
crossref_primary_10_1002_adhm_202100371
crossref_primary_10_1002_adma_202201469
crossref_primary_10_1016_j_vacuum_2024_113284
crossref_primary_10_1016_j_xcrp_2023_101604
crossref_primary_10_1038_s44222_023_00094_w
crossref_primary_10_1016_j_xcrp_2023_101603
crossref_primary_10_1016_j_isci_2020_101911
crossref_primary_10_3390_bios12030156
crossref_primary_10_1002_admt_201800420
crossref_primary_10_1021_acssensors_1c02606
crossref_primary_10_1002_adfm_202309706
crossref_primary_10_1002_cnma_202300078
crossref_primary_10_3390_mi12030280
crossref_primary_10_1016_j_ijhydene_2022_11_318
crossref_primary_10_1103_PhysRevFluids_8_114003
crossref_primary_10_1002_adhm_202302969
crossref_primary_10_1002_adfm_202410349
crossref_primary_10_1002_adma_202308862
crossref_primary_10_1021_acs_langmuir_1c02249
crossref_primary_10_1002_adfm_202309707
crossref_primary_10_1007_s11708_022_0815_y
crossref_primary_10_1038_s41578_024_00679_w
crossref_primary_10_1002_elps_202000237
crossref_primary_10_1039_D1MA00789K
crossref_primary_10_1002_admt_201900733
crossref_primary_10_1002_adfm_202402832
crossref_primary_10_1039_D0RA06010K
crossref_primary_10_1002_adfm_202308173
crossref_primary_10_3390_mi11030289
crossref_primary_10_1063_5_0106409
crossref_primary_10_1021_acsomega_3c01382
crossref_primary_10_1039_C8MH00203G
crossref_primary_10_1002_adfm_202311696
crossref_primary_10_1002_adma_201801368
crossref_primary_10_1021_acsami_2c17906
crossref_primary_10_1038_s41467_020_14814_y
crossref_primary_10_1002_aisy_202100201
crossref_primary_10_1007_s11837_019_03954_2
crossref_primary_10_1109_ACCESS_2019_2945773
crossref_primary_10_1002_adma_202103062
crossref_primary_10_1080_23746149_2018_1446359
crossref_primary_10_1002_adfm_202400284
crossref_primary_10_1016_j_apmt_2021_101151
crossref_primary_10_1016_j_sna_2020_111909
crossref_primary_10_1021_acs_langmuir_0c02086
crossref_primary_10_1017_jfm_2024_983
crossref_primary_10_1039_C7LC00768J
crossref_primary_10_1021_acselectrochem_4c00088
crossref_primary_10_1016_j_mser_2019_03_001
crossref_primary_10_1002_aisy_202000246
crossref_primary_10_1016_j_bios_2021_113765
crossref_primary_10_1109_JPROC_2019_2908433
crossref_primary_10_1109_JSEN_2023_3260029
crossref_primary_10_1039_D0NR07479A
crossref_primary_10_1016_j_apsusc_2019_06_203
crossref_primary_10_1039_C8TC02003E
crossref_primary_10_1016_j_mattod_2019_10_007
crossref_primary_10_1063_PT_3_4723
crossref_primary_10_1002_dro2_161
crossref_primary_10_1109_OJAP_2021_3063281
crossref_primary_10_1039_D1LC00206F
crossref_primary_10_1109_TMTT_2022_3197407
crossref_primary_10_1039_C7CS00043J
crossref_primary_10_1021_acsaelm_0c00551
crossref_primary_10_1002_adfm_202305680
crossref_primary_10_1021_acsami_2c02247
crossref_primary_10_1002_open_202000330
crossref_primary_10_1002_adma_201804011
crossref_primary_10_3390_ma11081384
crossref_primary_10_1002_adfm_201901370
crossref_primary_10_1016_j_isci_2021_102698
crossref_primary_10_1016_j_cej_2022_139832
crossref_primary_10_1021_acs_chemrev_1c00985
crossref_primary_10_1557_jmr_2018_209
crossref_primary_10_1021_acsaelm_2c01382
crossref_primary_10_1088_1361_665X_ac4e50
crossref_primary_10_1016_j_isci_2023_106493
crossref_primary_10_1002_adem_201800054
crossref_primary_10_1002_adma_202003553
crossref_primary_10_1016_j_scib_2017_04_015
crossref_primary_10_1017_jfm_2021_1090
crossref_primary_10_1002_adma_202205196
crossref_primary_10_1021_acsami_2c14260
crossref_primary_10_1021_acs_chemmater_2c01899
crossref_primary_10_1002_adem_201900381
crossref_primary_10_1002_adem_202301998
crossref_primary_10_1002_admt_201800061
crossref_primary_10_1063_1_5109082
crossref_primary_10_3390_mi8040119
crossref_primary_10_1016_j_sna_2020_112344
crossref_primary_10_1002_advs_202401946
crossref_primary_10_1088_2631_7990_ac5f78
crossref_primary_10_1002_adfm_202005804
crossref_primary_10_1088_2399_7532_ab835c
crossref_primary_10_3390_bioengineering9090416
crossref_primary_10_1007_s11431_021_2015_x
crossref_primary_10_1002_slct_201900997
crossref_primary_10_1088_1361_6439_ab8bc7
crossref_primary_10_1021_acs_langmuir_9b03385
crossref_primary_10_1109_LMWT_2023_3339200
crossref_primary_10_1039_D3LC01017A
crossref_primary_10_1063_5_0098144
crossref_primary_10_1016_j_mtla_2022_101595
crossref_primary_10_1002_admt_202201094
crossref_primary_10_1021_acssensors_4c00442
crossref_primary_10_1002_aisy_202000159
crossref_primary_10_1063_1_5013623
crossref_primary_10_1007_s40843_023_2607_3
crossref_primary_10_1016_j_cej_2022_141018
crossref_primary_10_1016_j_joule_2020_10_012
crossref_primary_10_1039_D2RA04120K
crossref_primary_10_1002_aisy_202000275
crossref_primary_10_1016_j_mee_2018_04_008
crossref_primary_10_1002_smll_202306652
crossref_primary_10_1021_acsapm_4c03581
crossref_primary_10_1039_D0NJ02652B
crossref_primary_10_3390_mi11020200
crossref_primary_10_1002_smtd_201900383
crossref_primary_10_1039_D1RA09394K
crossref_primary_10_1109_LMWC_2022_3193693
crossref_primary_10_1002_smll_201800118
crossref_primary_10_1021_acs_langmuir_8b03384
crossref_primary_10_1039_C8SM01281D
crossref_primary_10_1109_TII_2018_2870857
crossref_primary_10_1021_acs_chemmater_4c00043
crossref_primary_10_1002_adom_201800458
crossref_primary_10_1007_s40820_023_01043_3
crossref_primary_10_1021_acs_jpcc_3c03857
crossref_primary_10_1039_C8NR05600E
crossref_primary_10_1016_j_mtphys_2020_100245
crossref_primary_10_1039_C7MH00819H
crossref_primary_10_1002_adfm_202308116
crossref_primary_10_1039_D4MH00498A
crossref_primary_10_1007_s10544_024_00697_z
crossref_primary_10_3390_bios11070213
crossref_primary_10_1038_s44222_023_00102_z
crossref_primary_10_1007_s40843_021_2023_x
crossref_primary_10_1039_D2LC00993E
crossref_primary_10_1002_chem_201801957
crossref_primary_10_1021_acsnano_4c07051
crossref_primary_10_1016_j_colsurfa_2021_126750
crossref_primary_10_1016_j_cej_2024_151359
crossref_primary_10_1002_admt_202400797
crossref_primary_10_1063_1_5086376
crossref_primary_10_1002_advs_202000192
crossref_primary_10_1002_adfm_202307499
crossref_primary_10_1007_s10338_022_00372_x
crossref_primary_10_1002_adma_202203391
crossref_primary_10_1002_ente_202200300
crossref_primary_10_1088_1361_6439_ac545f
crossref_primary_10_1021_acs_chemmater_0c01615
crossref_primary_10_1109_JPROC_2023_3285400
crossref_primary_10_1016_j_apmt_2023_101746
crossref_primary_10_1021_acs_langmuir_8b00538
crossref_primary_10_1002_adem_202200345
crossref_primary_10_1016_j_bios_2024_116469
crossref_primary_10_1021_acsami_8b00158
crossref_primary_10_1002_admi_202100819
crossref_primary_10_1038_s41467_022_32259_3
crossref_primary_10_1016_j_elecom_2018_05_026
crossref_primary_10_1016_j_eml_2020_100863
crossref_primary_10_1016_j_mee_2017_12_010
crossref_primary_10_1002_aisy_202200364
crossref_primary_10_1039_D4TA06879C
crossref_primary_10_1016_j_cclet_2020_09_018
crossref_primary_10_1016_j_matt_2020_05_022
crossref_primary_10_1039_D4LC00313F
crossref_primary_10_1002_adfm_202311501
crossref_primary_10_1021_acs_jpcc_9b07731
crossref_primary_10_1002_adma_202415761
crossref_primary_10_1039_D0MH00280A
crossref_primary_10_1103_PhysRevB_111_L060403
crossref_primary_10_1109_TMECH_2020_2964387
crossref_primary_10_3390_mi13040572
crossref_primary_10_3390_bios10110165
crossref_primary_10_1016_j_est_2022_105134
crossref_primary_10_1002_adma_202207282
crossref_primary_10_1007_s12274_023_5651_9
crossref_primary_10_1002_advs_202105289
crossref_primary_10_1002_pol_20230616
crossref_primary_10_1039_D3CC04198K
crossref_primary_10_1016_j_coco_2024_101881
crossref_primary_10_3390_polym10030330
crossref_primary_10_1103_PhysRevE_98_032602
crossref_primary_10_3390_chemosensors11010006
crossref_primary_10_1016_j_compscitech_2020_108237
crossref_primary_10_1002_cnma_202300227
crossref_primary_10_1016_j_apmt_2022_101423
crossref_primary_10_1142_S0217984921400054
crossref_primary_10_1088_1873_7005_aa9280
crossref_primary_10_1002_adfm_202419666
crossref_primary_10_1007_s40843_022_2058_5
crossref_primary_10_1002_admi_202201693
crossref_primary_10_3390_bios10120196
crossref_primary_10_1007_s11431_021_1900_x
crossref_primary_10_1039_C7LC00390K
crossref_primary_10_1021_acsaelm_2c00352
crossref_primary_10_3390_ma14195694
Cites_doi 10.1109/JMEMS.2002.803286
10.1088/0960-1317/22/11/115012
10.1088/0960-1317/20/12/125029
10.1002/adma.201101257
10.1088/0960-1317/7/3/040
10.1002/1522-2683(200101)22:2<249::AID-ELPS249>3.0.CO;2-4
10.1088/1367-2630/11/7/075029
10.1039/c3nr00185g
10.1063/1.2431771
10.1039/C6LC00198J
10.1021/la401245d
10.1021/nn205089u
10.1109/JMEMS.2011.2174421
10.1038/ncomms1454
10.1007/s10404-016-1715-4
10.1002/adfm.201400689
10.1021/am506496u
10.1109/LMWC.2012.2223754
10.1109/JMEMS.2008.2011118
10.1021/am5043017
10.1002/adma.201203921
10.1002/adfm.200701216
10.1021/ac035188u
10.1039/C3LC50952D
10.1063/1.4903882
10.1088/0964-1726/23/8/085036
10.1016/j.sna.2003.10.013
10.1109/JMEMS.2002.802899
10.1063/1.1772862
10.1126/science.1066238
10.1007/s00231-010-0658-7
10.1016/j.biotechadv.2013.11.008
10.1109/JMEMS.2004.832184
10.1021/ac0261449
10.1126/science.288.5463.113
10.1063/1.3114381
10.1016/S0924-4247(99)00298-8
10.1002/admt.201600130
10.1002/adfm.200900604
10.1088/0960-1317/16/5/R01
10.1002/adfm.201200837
10.1109/84.911097
10.1109/JMEMS.2002.807467
10.1039/C6LC00046K
10.1016/j.sna.2013.01.031
10.1002/adma.201503875
10.1016/j.ces.2004.11.033
10.1021/ac0155411
10.1063/1.1504171
10.1073/pnas.1412227111
10.1039/B809673B
10.1038/35007047
10.1063/1.4959898
10.1073/pnas.1319878111
10.1016/j.physleta.2006.09.041
10.1109/TCPMT.2013.2251931
10.1364/OE.20.002346
10.1088/0960-1317/7/3/028
10.1002/adma.201301400
10.1002/adfm.201303220
10.1039/c0lc00501k
10.1039/C4LC00078A
10.1016/0924-4247(90)85039-7
10.1002/adfm.201200324
10.1039/c2lc21176a
10.1021/ac0102819
10.1002/elps.200305584
10.1039/C4LC00111G
10.1039/c005159d
10.1016/S0924-4247(00)00519-7
10.1016/S0924-4247(97)01660-9
10.1088/0960-1317/11/2/307
10.1002/adma.201404790
10.1002/smll.201502692
10.1039/c3lc50833a
10.1002/adfm.201304064
10.1063/1.4947272
10.1109/JMEMS.2014.2307358
10.1021/ac400896j
10.1039/C6LC01255H
10.1088/0964-1726/22/8/085005
10.1109/TIE.2008.2006954
10.1364/OE.20.012119
10.1021/acsami.5b10769
10.1016/S0925-4005(00)00355-5
10.1016/j.bios.2010.09.022
10.1039/C4LC01013B
10.1016/S0924-4247(99)00192-2
10.1063/1.3496359
10.1002/1522-2683(200208)23:16<2729::AID-ELPS2729>3.0.CO;2-I
10.1103/RevModPhys.77.977
10.1002/adma.201670133
10.1016/S0925-4005(02)00468-9
10.1103/PhysRevB.55.10786
10.3390/met4040465
10.1109/84.846699
10.1021/ac0350007
10.1039/C5TC00330J
10.1002/adma.201506243
10.1039/C5LC00742A
10.1088/0960-1317/15/2/R01
10.1007/s10404-007-0188-x
10.1002/adfm.201501296
10.1109/JMEMS.2014.2381555
10.1016/j.jphotochem.2006.03.004
10.1021/ac961038q
10.1039/b305892a
10.1063/1.3524533
10.1063/1.92952
10.1002/adma.201405438
10.1021/ac035220k
10.1021/ac9912294
10.1039/C5LC00415B
10.1021/ac302887a
10.3390/s150511823
10.1021/ac010048a
10.1002/smll.201600737
10.1039/C6LC00284F
10.1002/elps.201200396
10.1088/0960-1317/14/6/R01
10.1073/pnas.0507976103
10.1039/b811169c
10.1039/c2lc40492c
10.1115/1.1459075
10.1039/c2lc40628d
10.1038/nmat863
10.1109/84.846697
10.1109/84.896767
10.1002/adfm.201403042
10.1039/C4LC00762J
10.1039/C2LC40954B
10.1088/0034-4885/75/1/016601
10.1126/science.120.3114.390
10.1186/s40486-015-0017-z
10.1039/C6LC00712K
10.1039/C6LC00827E
10.1023/A:1009905926740
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SP
7TB
7U5
8FD
FR3
L7M
DOI 10.1039/c7lc00046d
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
PubMed

Solid State and Superconductivity Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1473-0189
EndPage 993
ExternalDocumentID 28225135
10_1039_C7LC00046D
c7lc00046d
Genre Journal Article
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3I
R7B
RCNCU
RPMJG
RRC
RSCEA
SKA
SLH
VH6
---
0R~
0UZ
0VX
29L
4.4
53G
5GY
71~
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACHDF
ACIWK
ACRPL
ADMRA
ADNMO
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRZK
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
BBWZM
BLAPV
CAG
CITATION
COF
CS3
DU5
EBS
ECGLT
EEHRC
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
IDY
J3G
J3H
L-8
M4U
N9A
NDZJH
O9-
R56
RAOCF
RCLXC
RNS
ROL
RRA
NPM
7X8
7SP
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c368t-aae8dc0b2dfab005375c59a107a3d87f82ac1decc2c8c0a1dc8cef3794b514f33
ISSN 1473-0197
1473-0189
IngestDate Fri Jul 11 11:48:15 EDT 2025
Thu Jul 10 22:48:24 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
Tue Jul 01 01:52:36 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Thu May 30 17:47:26 EDT 2019
Mon Jan 28 17:15:28 EST 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-aae8dc0b2dfab005375c59a107a3d87f82ac1decc2c8c0a1dc8cef3794b514f33
Notes Prof. Arnan Mitchell (PhD 1999, RMIT) leads the Microplatforms research group at RMIT University and is a Chief Investigator of the ARC Centre of Excellence (CUDOS). He is highly multi-disciplinary, leading a team of more than 30 researchers, spanning integrated photonics, functional and solar materials, microsystems, and lab-on-a-chip technology. He creates technology platforms to enable fundamental scientific and biomedical research and is committed to industrial translation with patents and industry projects in defence, communications and biomedical diagnostics.
Dr. Shi-Yang Tang received his PhD in Microelectromechanical Systems (MEMS) from RMIT University, Australia, in 2015. He is the named author of over 30 papers in different peer-reviewed journals and conference proceedings. He joined the Pennsylvania State University, USA, as a postdoctoral research fellow from August 2015 to July 2016, working on surface acoustic wave enabled microfluidics platforms. He is currently a postdoctoral scholar at the University of California, San Francisco (UCSF), USA, working on droplet microfluidics for point-of-care diagnosis. His research interests include developing microfluidics platforms for biomedical studies and liquid metal enabled micro/nano scale platforms.
Samira Schaefer receives her Master's Degree in Process Analysis & Technology-Management from Reutlingen University, Germany, in 2017. As a part of the SCON student exchange programme between RMIT University, Australia, and University of Applied Sciences Karlsruhe, Germany, she has joined RMIT's School of Engineering since September 2016. Her research interests include biomedical devices, microfluidics and data analysis.
Kourosh Kalantar-zadeh is a Distinguished Professor and the Director of the Centre for Advanced Electronics and Sensors (CADES) at RMIT University, Australia. He received his B.Sc. (1993) and M.Sc. (1997) degrees from Sharif University of Technology, Iran, and Tehran University, Iran, respectively, and his Ph.D. from RMIT University, Australia (2002). His research interests include chemical and biochemical sensors, nanotechnology, microsystems, materials science, electronics, gastroenterology, medical devices and microfluidics. Kourosh has so far been the co-author of over 350 peer reviewed scientific papers and books.
Michael Dickey received his BS in Chemical Engineering from Georgia Institute of Technology (1999) and his PhD in Chemical Engineering from the University of Texas at Austin (2006). From 2006-2008 he was a post-doctoral fellow in the lab of Professor George Whitesides at Harvard University. In August 2008, he joined the Department of Chemical & Biomolecular Engineering at North Carolina State University where he is currently a Professor. His research interests include studying new ways to pattern, actuate, and control soft materials (gels, polymers, liquid metals), and unconventional fabrication techniques.
Jiu Yang Zhu received his Master's Degree in Electronics and Telecommunication Engineering from the University of Melbourne, Australia, in 2013. He is currently a third year PhD student at RMIT University's School of Engineering. His research interests include liquid metal enabled fluidic actuators for convective cooling of hot spots.
Dr. Khashayar Khoshmanesh received his PhD in Biomechanical Engineering from Deakin University, Australia, in 2010. He is the named author of over 70 journal papers and the recipient of several awards, including the 2012-2015 Discovery Early Career Researcher Award by the Australian Research Council, 2012 American-Australian Association Fellowship, and 2010 Endeavour Fellowship. He is currently a Senior Research Fellow at RMIT University's School of Engineering, leading a group of PhD students. His research interests include microfluidics for various cellular assays and liquid metal enabled fluidic actuators.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6036-7371
PMID 28225135
PQID 1870987740
PQPubID 23479
PageCount 2
ParticipantIDs crossref_primary_10_1039_C7LC00046D
pubmed_primary_28225135
proquest_miscellaneous_1870987740
proquest_miscellaneous_1893884461
crossref_citationtrail_10_1039_C7LC00046D
rsc_primary_c7lc00046d
ProviderPackageCode J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
ADSRN
ABGFH
705
R7B
AAEMU
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170314
PublicationDateYYYYMMDD 2017-03-14
PublicationDate_xml – month: 3
  year: 2017
  text: 20170314
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Lab on a chip
PublicationTitleAlternate Lab Chip
PublicationYear 2017
References Roberts (C7LC00046D-(cit46)/*[position()=1]) 1997; 69
Ladd (C7LC00046D-(cit53)/*[position()=1]) 2013; 25
Lin (C7LC00046D-(cit7)/*[position()=1]) 2015; 11
Baratchi (C7LC00046D-(cit78)/*[position()=1]) 2014; 32
Palleau (C7LC00046D-(cit22)/*[position()=1]) 2013; 25
Döpper (C7LC00046D-(cit62)/*[position()=1]) 1997; 7
Cubaud (C7LC00046D-(cit129)/*[position()=1]) 2009; 11
Lemoff (C7LC00046D-(cit65)/*[position()=1]) 2000; 63
Wang (C7LC00046D-(cit2)/*[position()=1]) 2012; 20
Miner (C7LC00046D-(cit123)/*[position()=1]) 2004; 85
Andersson (C7LC00046D-(cit89)/*[position()=1]) 2001; 22
Yaralioglu (C7LC00046D-(cit104)/*[position()=1]) 2004; 76
Kim (C7LC00046D-(cit18)/*[position()=1]) 2008
Huang (C7LC00046D-(cit25)/*[position()=1]) 2014; 14
McKnight (C7LC00046D-(cit63)/*[position()=1]) 2001; 73
Regan (C7LC00046D-(cit8)/*[position()=1]) 1997; 55
Khan (C7LC00046D-(cit135)/*[position()=1]) 2014; 6
Li (C7LC00046D-(cit127)/*[position()=1]) 2014; 14
Cheng (C7LC00046D-(cit41)/*[position()=1]) 2012; 12
Lazarus (C7LC00046D-(cit31)/*[position()=1]) 2014; 23
Cheng (C7LC00046D-(cit23)/*[position()=1]) 2010; 10
Ma (C7LC00046D-(cit125)/*[position()=1]) 2007; 361
Grover (C7LC00046D-(cit57)/*[position()=1]) 2003; 89
Breadmore (C7LC00046D-(cit116)/*[position()=1]) 2013; 34
Hong (C7LC00046D-(cit100)/*[position()=1]) 2004; 4
Fassler (C7LC00046D-(cit29)/*[position()=1]) 2013; 13
So (C7LC00046D-(cit107)/*[position()=1]) 2011; 11
Boyd-Moss (C7LC00046D-(cit142)/*[position()=1]) 2016; 16
Wang (C7LC00046D-(cit26)/*[position()=1]) 2015
Darabi (C7LC00046D-(cit64)/*[position()=1]) 2001; 10
Beni (C7LC00046D-(cit72)/*[position()=1]) 1982; 40
Meng (C7LC00046D-(cit68)/*[position()=1]) 2000; 2
Khan (C7LC00046D-(cit17)/*[position()=1]) 2014; 111
Lazarus (C7LC00046D-(cit121)/*[position()=1]) 2016; 1
Liu (C7LC00046D-(cit44)/*[position()=1]) 2012; 21
Stroock (C7LC00046D-(cit99)/*[position()=1]) 2002; 295
Adamo (C7LC00046D-(cit118)/*[position()=1]) 2013; 85
Saffman (C7LC00046D-(cit138)/*[position()=1]) 1965
Dickey (C7LC00046D-(cit1)/*[position()=1]) 2014; 6
Gao (C7LC00046D-(cit77)/*[position()=1]) 2014; 14
Joshipura (C7LC00046D-(cit43)/*[position()=1]) 2015; 3
Deng (C7LC00046D-(cit126)/*[position()=1]) 2010; 46
Wego (C7LC00046D-(cit61)/*[position()=1]) 2001; 88
Liu (C7LC00046D-(cit101)/*[position()=1]) 2000; 9
Sia (C7LC00046D-(cit45)/*[position()=1]) 2003; 24
Do (C7LC00046D-(cit67)/*[position()=1]) 2008; 8
Khan (C7LC00046D-(cit52)/*[position()=1]) 2015; 25
Kim (C7LC00046D-(cit27)/*[position()=1]) 2014; 105
Khan (C7LC00046D-(cit24)/*[position()=1]) 2012; 22
Beebe (C7LC00046D-(cit90)/*[position()=1]) 2000; 404
Li (C7LC00046D-(cit34)/*[position()=1]) 2015; 15
Jeong (C7LC00046D-(cit32)/*[position()=1]) 2012; 12
Zavabeti (C7LC00046D-(cit76)/*[position()=1]) 2016
Tarik (C7LC00046D-(cit59)/*[position()=1]) 1997; 7
Sciambi (C7LC00046D-(cit114)/*[position()=1]) 2014; 14
Wu (C7LC00046D-(cit119)/*[position()=1]) 2015
Anderson (C7LC00046D-(cit47)/*[position()=1]) 2000; 72
Eaker (C7LC00046D-(cit42)/*[position()=1]) 2016; 3
Sudarsan (C7LC00046D-(cit102)/*[position()=1]) 2006; 103
Juncker (C7LC00046D-(cit69)/*[position()=1]) 2002; 74
Ralf (C7LC00046D-(cit134)/*[position()=1]) 2012; 75
Jung (C7LC00046D-(cit38)/*[position()=1]) 2015; 15
Tang (C7LC00046D-(cit16)/*[position()=1]) 2015; 15
Wang (C7LC00046D-(cit108)/*[position()=1]) 2008; 4
Pekas (C7LC00046D-(cit91)/*[position()=1]) 2012
Laser (C7LC00046D-(cit56)/*[position()=1]) 2004; 14
Waheed (C7LC00046D-(cit49)/*[position()=1]) 2016; 16
Hessel (C7LC00046D-(cit96)/*[position()=1]) 2005; 60
Kim (C7LC00046D-(cit19)/*[position()=1]) 2009; 18
Tang (C7LC00046D-(cit15)/*[position()=1]) 2016; 28
Zhang (C7LC00046D-(cit144)/*[position()=1]) 2015; 27
Mohammed (C7LC00046D-(cit146)/*[position()=1]) 2013; 193
Deng (C7LC00046D-(cit124)/*[position()=1]) 2013; 3
Thelen (C7LC00046D-(cit12)/*[position()=1]) 2012; 12
Hallfors (C7LC00046D-(cit94)/*[position()=1]) 2013; 13
Mohammed (C7LC00046D-(cit133)/*[position()=1]) 2014; 4
Ota (C7LC00046D-(cit36)/*[position()=1]) 2014
Böhm (C7LC00046D-(cit60)/*[position()=1]) 1999; 77
Yang (C7LC00046D-(cit86)/*[position()=1]) 1998; 64
Jeon (C7LC00046D-(cit128)/*[position()=1]) 2017; 17
Wanliang (C7LC00046D-(cit132)/*[position()=1]) 2013; 22
Therriault (C7LC00046D-(cit51)/*[position()=1]) 2003; 2
Boley (C7LC00046D-(cit54)/*[position()=1]) 2014; 24
White (C7LC00046D-(cit122)/*[position()=1]) 2013; 85
Wang (C7LC00046D-(cit3)/*[position()=1]) 2012; 20
Xu (C7LC00046D-(cit105)/*[position()=1]) 2010; 4
Junghoon (C7LC00046D-(cit70)/*[position()=1]) 2000; 9
Oddy (C7LC00046D-(cit106)/*[position()=1]) 2001; 73
Krupenkin (C7LC00046D-(cit147)/*[position()=1]) 2011; 2
Tang (C7LC00046D-(cit71)/*[position()=1]) 2014; 111
Giguère (C7LC00046D-(cit9)/*[position()=1]) 1954; 120
Bartlett (C7LC00046D-(cit141)/*[position()=1]) 2016; 28
Gol (C7LC00046D-(cit137)/*[position()=1]) 2015; 15
Yun (C7LC00046D-(cit4)/*[position()=1]) 2002; 11
Tang (C7LC00046D-(cit109)/*[position()=1]) 2014; 24
Cumby (C7LC00046D-(cit28)/*[position()=1]) 2012
Tabatabai (C7LC00046D-(cit30)/*[position()=1]) 2013; 29
Hutter (C7LC00046D-(cit10)/*[position()=1]) 2012; 22
Liang-Hsuan (C7LC00046D-(cit103)/*[position()=1]) 2002; 11
Parekh (C7LC00046D-(cit11)/*[position()=1]) 2016; 16
Khoshmanesh (C7LC00046D-(cit113)/*[position()=1]) 2011; 26
Böhm (C7LC00046D-(cit85)/*[position()=1]) 2000; 80
So (C7LC00046D-(cit20)/*[position()=1]) 2009; 19
Gu (C7LC00046D-(cit82)/*[position()=1]) 2007; 90
Yong-Lae (C7LC00046D-(cit39)/*[position()=1]) 2010; 20
Dickey (C7LC00046D-(cit6)/*[position()=1]) 2008; 18
Gol (C7LC00046D-(cit139)/*[position()=1]) 2016; 108
Richards (C7LC00046D-(cit110)/*[position()=1]) 2012; 22
Nguyen (C7LC00046D-(cit55)/*[position()=1]) 2002; 124
Cho (C7LC00046D-(cit93)/*[position()=1]) 2003; 12
Li (C7LC00046D-(cit83)/*[position()=1]) 2004; 111
Johnson (C7LC00046D-(cit88)/*[position()=1]) 2001; 73
Sivan (C7LC00046D-(cit145)/*[position()=1]) 2013; 23
Gobby (C7LC00046D-(cit98)/*[position()=1]) 2001; 11
Briant (C7LC00046D-(cit40)/*[position()=1]) 2013
Sen (C7LC00046D-(cit5)/*[position()=1]) 2009; 56
Gough (C7LC00046D-(cit14)/*[position()=1]) 2015; 3
Li (C7LC00046D-(cit35)/*[position()=1]) 2016; 16
Tang (C7LC00046D-(cit37)/*[position()=1]) 2016; 12
Mohammadi (C7LC00046D-(cit117)/*[position()=1]) 2002; 23
Zhu (C7LC00046D-(cit74)/*[position()=1]) 2016; 8
Koo (C7LC00046D-(cit136)/*[position()=1]) 2015; 24
Tang (C7LC00046D-(cit112)/*[position()=1]) 2015; 25
Lee (C7LC00046D-(cit73)/*[position()=1]) 2000; 9
Moon (C7LC00046D-(cit92)/*[position()=1]) 2002; 92
Xie (C7LC00046D-(cit66)/*[position()=1]) 2004; 76
Yamada (C7LC00046D-(cit87)/*[position()=1]) 2004; 76
Nam (C7LC00046D-(cit115)/*[position()=1]) 2016; 16
Reus (C7LC00046D-(cit143)/*[position()=1]) 2012; 6
Cheng (C7LC00046D-(cit21)/*[position()=1]) 2009; 94
Nam-Trung (C7LC00046D-(cit97)/*[position()=1]) 2005; 15
Koo (C7LC00046D-(cit111)/*[position()=1]) 2011; 23
Squires (C7LC00046D-(cit95)/*[position()=1]) 2005; 77
Tang (C7LC00046D-(cit75)/*[position()=1]) 2013; 5
Smits (C7LC00046D-(cit58)/*[position()=1]) 1990; 21
Kwang (C7LC00046D-(cit79)/*[position()=1]) 2006; 16
Xue'en (C7LC00046D-(cit84)/*[position()=1]) 2004; 13
Zhang (C7LC00046D-(cit130)/*[position()=1]) 2014; 24
Jeong (C7LC00046D-(cit33)/*[position()=1]) 2015
Je (C7LC00046D-(cit120)/*[position()=1]) 2014; 23
van Hoeve (C7LC00046D-(cit140)/*[position()=1]) 2010; 22
Boley (C7LC00046D-(cit13)/*[position()=1]) 2015; 27
Yazdi (C7LC00046D-(cit48)/*[position()=1]) 2016; 20
Bartlett (C7LC00046D-(cit131)/*[position()=1]) 2016; 28
Unger (C7LC00046D-(cit81)/*[position()=1]) 2000; 288
Wu (C7LC00046D-(cit50)/*[position()=1]) 2006; 181
Elizabeth Hulme (C7LC00046D-(cit80)/*[position()=1]) 2009; 9
References_xml – issn: 2013
  publication-title: Embrittlement of engineering alloys
  doi: Briant
– volume: 11
  start-page: 454
  year: 2002
  ident: C7LC00046D-(cit4)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2002.803286
– volume: 22
  start-page: 115012
  year: 2012
  ident: C7LC00046D-(cit110)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/11/115012
– volume: 20
  start-page: 125029
  year: 2010
  ident: C7LC00046D-(cit39)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/20/12/125029
– volume: 23
  start-page: 3559
  year: 2011
  ident: C7LC00046D-(cit111)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101257
– volume: 7
  start-page: 230
  year: 1997
  ident: C7LC00046D-(cit62)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/7/3/040
– start-page: 9
  year: 2015
  ident: C7LC00046D-(cit119)/*[position()=1]
  publication-title: Biomicrofluidics
– volume: 22
  start-page: 249
  year: 2001
  ident: C7LC00046D-(cit89)/*[position()=1]
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200101)22:2<249::AID-ELPS249>3.0.CO;2-4
– volume: 11
  start-page: 075029
  year: 2009
  ident: C7LC00046D-(cit129)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/7/075029
– volume: 5
  start-page: 5949
  year: 2013
  ident: C7LC00046D-(cit75)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr00185g
– volume: 90
  start-page: 033505
  year: 2007
  ident: C7LC00046D-(cit82)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2431771
– volume: 16
  start-page: 1812
  year: 2016
  ident: C7LC00046D-(cit11)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC00198J
– volume: 29
  start-page: 6194
  year: 2013
  ident: C7LC00046D-(cit30)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la401245d
– volume: 6
  start-page: 4806
  year: 2012
  ident: C7LC00046D-(cit143)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn205089u
– volume: 21
  start-page: 443
  year: 2012
  ident: C7LC00046D-(cit44)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2011.2174421
– volume: 2
  start-page: 448
  year: 2011
  ident: C7LC00046D-(cit147)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1454
– volume: 20
  start-page: 1
  year: 2016
  ident: C7LC00046D-(cit48)/*[position()=1]
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-016-1715-4
– volume: 24
  start-page: 5851
  year: 2014
  ident: C7LC00046D-(cit109)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400689
– volume: 6
  start-page: 22467
  year: 2014
  ident: C7LC00046D-(cit135)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506496u
– volume: 22
  start-page: 577
  year: 2012
  ident: C7LC00046D-(cit24)/*[position()=1]
  publication-title: IEEE Microwave Wireless Compon. Lett.
  doi: 10.1109/LMWC.2012.2223754
– start-page: 5
  year: 2014
  ident: C7LC00046D-(cit36)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 18
  start-page: 138
  year: 2009
  ident: C7LC00046D-(cit19)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2008.2011118
– volume: 6
  start-page: 18369
  year: 2014
  ident: C7LC00046D-(cit1)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5043017
– volume: 25
  start-page: 1589
  year: 2013
  ident: C7LC00046D-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203921
– volume: 18
  start-page: 1097
  year: 2008
  ident: C7LC00046D-(cit6)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200701216
– volume: 76
  start-page: 3756
  year: 2004
  ident: C7LC00046D-(cit66)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac035188u
– volume: 14
  start-page: 200
  year: 2014
  ident: C7LC00046D-(cit127)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C3LC50952D
– volume: 105
  start-page: 234104
  year: 2014
  ident: C7LC00046D-(cit27)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4903882
– volume: 23
  start-page: 085036
  year: 2014
  ident: C7LC00046D-(cit31)/*[position()=1]
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/8/085036
– volume: 111
  start-page: 51
  year: 2004
  ident: C7LC00046D-(cit83)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2003.10.013
– volume: 11
  start-page: 462
  year: 2002
  ident: C7LC00046D-(cit103)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2002.802899
– volume: 85
  start-page: 506
  year: 2004
  ident: C7LC00046D-(cit123)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1772862
– volume: 295
  start-page: 647
  year: 2002
  ident: C7LC00046D-(cit99)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1066238
– volume: 46
  start-page: 1327
  year: 2010
  ident: C7LC00046D-(cit126)/*[position()=1]
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-010-0658-7
– volume: 32
  start-page: 333
  year: 2014
  ident: C7LC00046D-(cit78)/*[position()=1]
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.11.008
– volume: 13
  start-page: 660
  year: 2004
  ident: C7LC00046D-(cit84)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2004.832184
– volume: 74
  start-page: 6139
  year: 2002
  ident: C7LC00046D-(cit69)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0261449
– volume: 288
  start-page: 113
  year: 2000
  ident: C7LC00046D-(cit81)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.288.5463.113
– volume: 94
  start-page: 144103
  year: 2009
  ident: C7LC00046D-(cit21)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3114381
– volume: 80
  start-page: 77
  year: 2000
  ident: C7LC00046D-(cit85)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(99)00298-8
– volume: 1
  start-page: 1600130
  year: 2016
  ident: C7LC00046D-(cit121)/*[position()=1]
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600130
– volume: 19
  start-page: 3632
  year: 2009
  ident: C7LC00046D-(cit20)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900604
– volume: 16
  start-page: R13
  year: 2006
  ident: C7LC00046D-(cit79)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/5/R01
– start-page: 22
  year: 1965
  ident: C7LC00046D-(cit138)/*[position()=1]
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 144
  year: 2013
  ident: C7LC00046D-(cit145)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200837
– volume: 10
  start-page: 98
  year: 2001
  ident: C7LC00046D-(cit64)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.911097
– volume: 12
  start-page: 70
  year: 2003
  ident: C7LC00046D-(cit93)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2002.807467
– volume: 16
  start-page: 1366
  year: 2016
  ident: C7LC00046D-(cit35)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC00046K
– volume: 193
  start-page: 246
  year: 2013
  ident: C7LC00046D-(cit146)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2013.01.031
– volume: 28
  start-page: 604
  year: 2016
  ident: C7LC00046D-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503875
– volume: 60
  start-page: 2479
  year: 2005
  ident: C7LC00046D-(cit96)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.11.033
– volume: 73
  start-page: 5822
  year: 2001
  ident: C7LC00046D-(cit106)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0155411
– volume: 92
  start-page: 4080
  year: 2002
  ident: C7LC00046D-(cit92)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1504171
– volume: 111
  start-page: 14047
  year: 2014
  ident: C7LC00046D-(cit17)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1412227111
– volume: 9
  start-page: 79
  year: 2009
  ident: C7LC00046D-(cit80)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/B809673B
– volume-title: Embrittlement of engineering alloys
  year: 2013
  ident: C7LC00046D-(cit40)/*[position()=1]
– volume: 404
  start-page: 588
  year: 2000
  ident: C7LC00046D-(cit90)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35007047
– volume: 3
  start-page: 031103
  year: 2016
  ident: C7LC00046D-(cit42)/*[position()=1]
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4959898
– volume: 111
  start-page: 3304
  year: 2014
  ident: C7LC00046D-(cit71)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1319878111
– volume: 361
  start-page: 252
  year: 2007
  ident: C7LC00046D-(cit125)/*[position()=1]
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.09.041
– volume: 3
  start-page: 1171
  year: 2013
  ident: C7LC00046D-(cit124)/*[position()=1]
  publication-title: IEEE Trans. Compon., Packag., Manuf. Technol.
  doi: 10.1109/TCPMT.2013.2251931
– volume: 20
  start-page: 2346
  year: 2012
  ident: C7LC00046D-(cit2)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.20.002346
– volume: 7
  start-page: 186
  year: 1997
  ident: C7LC00046D-(cit59)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/7/3/028
– volume: 25
  start-page: 5081
  year: 2013
  ident: C7LC00046D-(cit53)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301400
– volume: 24
  start-page: 3501
  year: 2014
  ident: C7LC00046D-(cit54)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303220
– volume: 11
  start-page: 905
  year: 2011
  ident: C7LC00046D-(cit107)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c0lc00501k
– volume: 14
  start-page: 2605
  year: 2014
  ident: C7LC00046D-(cit114)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C4LC00078A
– volume: 21
  start-page: 203
  year: 1990
  ident: C7LC00046D-(cit58)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/0924-4247(90)85039-7
– volume: 22
  start-page: 2624
  year: 2012
  ident: C7LC00046D-(cit10)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200324
– volume: 12
  start-page: 2782
  year: 2012
  ident: C7LC00046D-(cit41)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c2lc21176a
– start-page: 92
  year: 2008
  ident: C7LC00046D-(cit18)/*[position()=1]
  publication-title: Appl. Phys. Lett.
– volume: 73
  start-page: 3940
  year: 2001
  ident: C7LC00046D-(cit88)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0102819
– volume: 24
  start-page: 3563
  year: 2003
  ident: C7LC00046D-(cit45)/*[position()=1]
  publication-title: Electrophoresis
  doi: 10.1002/elps.200305584
– volume: 14
  start-page: 1866
  year: 2014
  ident: C7LC00046D-(cit77)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C4LC00111G
– volume: 10
  start-page: 3227
  year: 2010
  ident: C7LC00046D-(cit23)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c005159d
– volume: 88
  start-page: 220
  year: 2001
  ident: C7LC00046D-(cit61)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(00)00519-7
– volume: 64
  start-page: 101
  year: 1998
  ident: C7LC00046D-(cit86)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(97)01660-9
– volume: 11
  start-page: 126
  year: 2001
  ident: C7LC00046D-(cit98)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/11/2/307
– volume: 27
  start-page: 2355
  year: 2015
  ident: C7LC00046D-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404790
– volume: 11
  start-page: 6397
  year: 2015
  ident: C7LC00046D-(cit7)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201502692
– volume: 13
  start-page: 4442
  year: 2013
  ident: C7LC00046D-(cit29)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c3lc50833a
– volume: 24
  start-page: 3799
  year: 2014
  ident: C7LC00046D-(cit130)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201304064
– volume: 108
  start-page: 164101
  year: 2016
  ident: C7LC00046D-(cit139)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4947272
– start-page: 7
  year: 2016
  ident: C7LC00046D-(cit76)/*[position()=1]
  publication-title: Nat. Commun.
– start-page: 101
  year: 2012
  ident: C7LC00046D-(cit28)/*[position()=1]
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 1156
  year: 2014
  ident: C7LC00046D-(cit120)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2307358
– volume: 85
  start-page: 7182
  year: 2013
  ident: C7LC00046D-(cit122)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac400896j
– volume: 17
  start-page: 128
  year: 2017
  ident: C7LC00046D-(cit128)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC01255H
– volume: 22
  start-page: 085005
  year: 2013
  ident: C7LC00046D-(cit132)/*[position()=1]
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/8/085005
– volume: 56
  start-page: 1314
  year: 2009
  ident: C7LC00046D-(cit5)/*[position()=1]
  publication-title: IEEE Trans. Ind. Electron. Control Instrum.
  doi: 10.1109/TIE.2008.2006954
– volume: 20
  start-page: 12119
  year: 2012
  ident: C7LC00046D-(cit3)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.20.012119
– volume: 8
  start-page: 2173
  year: 2016
  ident: C7LC00046D-(cit74)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10769
– volume: 63
  start-page: 178
  year: 2000
  ident: C7LC00046D-(cit65)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/S0925-4005(00)00355-5
– volume: 26
  start-page: 1800
  year: 2011
  ident: C7LC00046D-(cit113)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.09.022
– volume: 15
  start-page: 766
  year: 2015
  ident: C7LC00046D-(cit34)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C4LC01013B
– volume: 77
  start-page: 223
  year: 1999
  ident: C7LC00046D-(cit60)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(99)00192-2
– volume: 4
  start-page: 044102
  year: 2010
  ident: C7LC00046D-(cit105)/*[position()=1]
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3496359
– volume: 23
  start-page: 2729
  year: 2002
  ident: C7LC00046D-(cit117)/*[position()=1]
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200208)23:16<2729::AID-ELPS2729>3.0.CO;2-I
– volume: 77
  start-page: 977
  year: 2005
  ident: C7LC00046D-(cit95)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.977
– volume: 28
  start-page: 3791
  year: 2016
  ident: C7LC00046D-(cit131)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201670133
– volume: 89
  start-page: 315
  year: 2003
  ident: C7LC00046D-(cit57)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/S0925-4005(02)00468-9
– volume: 55
  start-page: 10786
  year: 1997
  ident: C7LC00046D-(cit8)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.55.10786
– volume: 4
  start-page: 465
  year: 2014
  ident: C7LC00046D-(cit133)/*[position()=1]
  publication-title: Metals
  doi: 10.3390/met4040465
– volume: 9
  start-page: 190
  year: 2000
  ident: C7LC00046D-(cit101)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.846699
– start-page: 117
  year: 2015
  ident: C7LC00046D-(cit26)/*[position()=1]
  publication-title: J. Appl. Phys.
– volume: 76
  start-page: 895
  year: 2004
  ident: C7LC00046D-(cit87)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0350007
– volume: 3
  start-page: 3834
  year: 2015
  ident: C7LC00046D-(cit43)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00330J
– volume: 28
  start-page: 3726
  year: 2016
  ident: C7LC00046D-(cit141)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506243
– volume: 15
  start-page: 3905
  year: 2015
  ident: C7LC00046D-(cit16)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C5LC00742A
– volume: 15
  start-page: R1
  year: 2005
  ident: C7LC00046D-(cit97)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/15/2/R01
– volume: 4
  start-page: 375
  year: 2008
  ident: C7LC00046D-(cit108)/*[position()=1]
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-007-0188-x
– volume: 25
  start-page: 4445
  year: 2015
  ident: C7LC00046D-(cit112)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501296
– volume: 24
  start-page: 1069
  year: 2015
  ident: C7LC00046D-(cit136)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2381555
– volume: 181
  start-page: 1
  year: 2006
  ident: C7LC00046D-(cit50)/*[position()=1]
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2006.03.004
– volume: 69
  start-page: 2035
  year: 1997
  ident: C7LC00046D-(cit46)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac961038q
– volume: 4
  start-page: 109
  year: 2004
  ident: C7LC00046D-(cit100)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b305892a
– volume: 22
  start-page: 122003
  year: 2010
  ident: C7LC00046D-(cit140)/*[position()=1]
  publication-title: Phys. Fluids
  doi: 10.1063/1.3524533
– volume: 40
  start-page: 912
  year: 1982
  ident: C7LC00046D-(cit72)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.92952
– volume: 27
  start-page: 2648
  year: 2015
  ident: C7LC00046D-(cit144)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405438
– volume: 76
  start-page: 3694
  year: 2004
  ident: C7LC00046D-(cit104)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac035220k
– volume: 72
  start-page: 3158
  year: 2000
  ident: C7LC00046D-(cit47)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac9912294
– volume: 15
  start-page: 2476
  year: 2015
  ident: C7LC00046D-(cit137)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C5LC00415B
– volume: 85
  start-page: 1637
  year: 2013
  ident: C7LC00046D-(cit118)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac302887a
– start-page: 5
  year: 2015
  ident: C7LC00046D-(cit33)/*[position()=1]
  publication-title: Sci. Rep.
– start-page: 22
  year: 2012
  ident: C7LC00046D-(cit91)/*[position()=1]
  publication-title: J. Micromech. Microeng.
– volume: 15
  start-page: 11823
  year: 2015
  ident: C7LC00046D-(cit38)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s150511823
– volume: 73
  start-page: 4045
  year: 2001
  ident: C7LC00046D-(cit63)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac010048a
– volume: 12
  start-page: 3861
  year: 2016
  ident: C7LC00046D-(cit37)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201600737
– volume: 16
  start-page: 1993
  year: 2016
  ident: C7LC00046D-(cit49)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC00284F
– volume: 34
  start-page: 29
  year: 2013
  ident: C7LC00046D-(cit116)/*[position()=1]
  publication-title: Electrophoresis
  doi: 10.1002/elps.201200396
– volume: 14
  start-page: R35
  year: 2004
  ident: C7LC00046D-(cit56)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/14/6/R01
– volume: 103
  start-page: 7228
  year: 2006
  ident: C7LC00046D-(cit102)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507976103
– volume: 8
  start-page: 2113
  year: 2008
  ident: C7LC00046D-(cit67)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b811169c
– volume: 12
  start-page: 3961
  year: 2012
  ident: C7LC00046D-(cit12)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c2lc40492c
– volume: 124
  start-page: 384
  year: 2002
  ident: C7LC00046D-(cit55)/*[position()=1]
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.1459075
– volume: 12
  start-page: 4657
  year: 2012
  ident: C7LC00046D-(cit32)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c2lc40628d
– volume: 2
  start-page: 265
  year: 2003
  ident: C7LC00046D-(cit51)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat863
– volume: 9
  start-page: 171
  year: 2000
  ident: C7LC00046D-(cit70)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.846697
– volume: 9
  start-page: 171
  year: 2000
  ident: C7LC00046D-(cit73)/*[position()=1]
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.896767
– volume: 25
  start-page: 671
  year: 2015
  ident: C7LC00046D-(cit52)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403042
– volume: 14
  start-page: 4205
  year: 2014
  ident: C7LC00046D-(cit25)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C4LC00762J
– volume: 13
  start-page: 522
  year: 2013
  ident: C7LC00046D-(cit94)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C2LC40954B
– volume: 75
  start-page: 016601
  year: 2012
  ident: C7LC00046D-(cit134)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/1/016601
– volume: 120
  start-page: 390
  year: 1954
  ident: C7LC00046D-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.120.3114.390
– volume: 3
  start-page: 1
  year: 2015
  ident: C7LC00046D-(cit14)/*[position()=1]
  publication-title: Micro Nano Syst. Lett.
  doi: 10.1186/s40486-015-0017-z
– volume: 16
  start-page: 3177
  year: 2016
  ident: C7LC00046D-(cit142)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC00712K
– volume: 16
  start-page: 3750
  year: 2016
  ident: C7LC00046D-(cit115)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC00827E
– volume: 2
  start-page: 169
  year: 2000
  ident: C7LC00046D-(cit68)/*[position()=1]
  publication-title: Biomed. Microdevices
  doi: 10.1023/A:1009905926740
SSID ssj0015468
Score 2.6434371
SecondaryResourceType review_article
Snippet Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as...
Several gallium-based liquid metal alloys are liquid at room temperature. As ‘liquid’, such alloys have a low viscosity and a high surface tension while as...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 974
SubjectTerms Electrodes
Gallium base alloys
Heaters
Liquid metals
Liquids
Mercury (metal)
Microfluidics
Toxicity
Title Liquid metal enabled microfluidics
URI https://www.ncbi.nlm.nih.gov/pubmed/28225135
https://www.proquest.com/docview/1870987740
https://www.proquest.com/docview/1893884461
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegEwIOCAqDjA-FjwtCGU3sJM5xKp0GhHEglcopcmxHidS1pW0O46_n2Y7TTKvQ4JKkjpVUfi_vw_49_xB6F0qp9IZ4YVEIj3AceEwBbETI_QjcGQs0ePzbeXQ2JV9m4cwyZLfVJdvimP_eW1fyP1KFNpCrqpL9B8l2D4UGuAb5whEkDMcbyTitfzW1UCzQMNBSV0HBLwWxK-dwwwLZu3LnQi0NMFXAveoMbbXcVBcMDJ6eX_lasU3FLlkH2c3sfHJVez9Z6-b0RHOjFaBuPvSbfygQftmSebGLes360wrgqhRGjfQsIYkV0MqAZ49lv81w_nTmM-6pSd8WJoZ-p3WriSFCvGaxR1hteMrjOdeFrGLnl-xa_Pn3_HSapnk2mWW30UEA-UAwQAcnk-xz2i0YhcRUPdp_bXeixcnH3bOvxh7XEgoIL9aW9kWHF9lD9KDNC9wTI-RH6JZcDNEdwxR6OUR3x5aYb4ju9_aQfIzeGCVwtRK4rRK4V5TgCZqeTrLxmdcSX3gcR3TrMSap4KMiECXTZjIOeZgwyNQZFjQuacC4L-DjCzjlI-YLOMkSg2ktIP4tMT5Eg8VyIZ8hV0pcxAWPMKOQaTIBnWOOaUBwxJKSCAe9t0OS83ZXeEVOMs81OgEn-ThOx3r4Pjnobdd3ZfZC2dvrtR3ZHAZGrT-BEi-bTe6Db0go5Bujv_VJMKWERL6DnhqxdO9SiOfQx6GDDkFOXfNOvg462n8jX4ny6AbvfI7u7b6FF2iwXTfyJQSd2-JVq3B_AKHHf4s
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+metal+enabled+microfluidics&rft.jtitle=Lab+on+a+chip&rft.au=Khoshmanesh%2C+Khashayar&rft.au=Tang%2C+Shi-Yang&rft.au=Zhu%2C+Jiu+Yang&rft.au=Schaefer%2C+Samira&rft.date=2017-03-14&rft.issn=1473-0197&rft.eissn=1473-0189&rft.volume=17&rft.issue=6&rft.spage=974&rft.epage=993&rft_id=info:doi/10.1039%2Fc7lc00046d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon