Liquid metal enabled microfluidics
Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid met...
Saved in:
Published in | Lab on a chip Vol. 17; no. 6; pp. 974 - 993 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.
This review discusses the opportunities provided by gallium liquid metal alloys for making various microfluidic components. |
---|---|
AbstractList | Several gallium-based liquid metal alloys are liquid at room temperature. As ‘liquid’, such alloys have a low viscosity and a high surface tension while as ‘metal’, they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems. Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems. This review discusses the opportunities provided by gallium liquid metal alloys for making various microfluidic components. Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems. |
Author | Khoshmanesh, Khashayar Schaefer, Samira Kalantar-zadeh, Kourosh Zhu, Jiu Yang Mitchell, Arnan Tang, Shi-Yang Dickey, Michael D |
AuthorAffiliation | North Carolina State University Department of Bioengineering and Therapeutic Sciences Schools of Medicine and Pharmacy Department of Applied Chemistry Reutlingen University University of California Department of Chemical and Biomolecular Engineering School of Engineering RMIT University |
AuthorAffiliation_xml | – name: Department of Bioengineering and Therapeutic Sciences – name: Reutlingen University – name: University of California – name: Department of Chemical and Biomolecular Engineering – name: North Carolina State University – name: RMIT University – name: School of Engineering – name: Department of Applied Chemistry – name: Schools of Medicine and Pharmacy |
Author_xml | – sequence: 1 givenname: Khashayar surname: Khoshmanesh fullname: Khoshmanesh, Khashayar – sequence: 2 givenname: Shi-Yang surname: Tang fullname: Tang, Shi-Yang – sequence: 3 givenname: Jiu Yang surname: Zhu fullname: Zhu, Jiu Yang – sequence: 4 givenname: Samira surname: Schaefer fullname: Schaefer, Samira – sequence: 5 givenname: Arnan surname: Mitchell fullname: Mitchell, Arnan – sequence: 6 givenname: Kourosh surname: Kalantar-zadeh fullname: Kalantar-zadeh, Kourosh – sequence: 7 givenname: Michael D surname: Dickey fullname: Dickey, Michael D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28225135$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctLxDAQxoMo7kMv3pXVkwjVSZM06VHqEwpe9FzSPCCStrtNe_C_N7rrCiLiaWb4fjPwfTNDu23XGoSOMFxiIPmV4l4BAM30DppiykkCWOS72z7nEzQL4RUAM5qJfTRJRZoyTNgUnZVuNTq9aMwg_cK0svYmTk71nfVRcCocoD0rfTCHmzpHL3e3z8VDUj7dPxbXZaJIJoZESiO0gjrVVtYAjHCmWC4xcEm04FakUmFtlEqVUCCxjsVYwnNaM0wtIXN0vr677LvVaMJQNS4o471sTTeGKnoiQlCa4X-gHHLBOYWInmzQsW6Mrpa9a2T_Vn1FEIGLNRAth9Abu0UwVB_5VgUvi898byIMP2DlBjm4rh166fzvK8frlT6o7envl0X99C-9WmpL3gF1gpAf |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2020_116451 crossref_primary_10_3390_coatings14080935 crossref_primary_10_1063_5_0028685 crossref_primary_10_2139_ssrn_3989560 crossref_primary_10_1002_aelm_201800137 crossref_primary_10_1016_j_mtla_2019_100512 crossref_primary_10_3390_mi12020146 crossref_primary_10_1002_adfm_201901998 crossref_primary_10_1103_PhysRevE_105_025102 crossref_primary_10_3390_mi10030209 crossref_primary_10_1002_adem_202201296 crossref_primary_10_1021_acsami_2c01201 crossref_primary_10_1186_s12951_022_01471_0 crossref_primary_10_1063_5_0130491 crossref_primary_10_1002_smll_201903841 crossref_primary_10_1016_j_coco_2023_101735 crossref_primary_10_1016_j_applthermaleng_2019_114260 crossref_primary_10_1038_s41928_024_01268_z crossref_primary_10_3390_mi9070360 crossref_primary_10_1039_D4LC00791C crossref_primary_10_1039_D1MH01101D crossref_primary_10_1016_j_apmt_2020_100868 crossref_primary_10_1063_5_0036991 crossref_primary_10_3390_mi13091429 crossref_primary_10_1002_admi_201901057 crossref_primary_10_1016_j_cis_2024_103183 crossref_primary_10_1016_j_triboint_2022_107520 crossref_primary_10_1002_admt_201700144 crossref_primary_10_1063_5_0222244 crossref_primary_10_3390_electronics11050716 crossref_primary_10_1039_C8LC01357H crossref_primary_10_1063_5_0140629 crossref_primary_10_1002_admt_201800549 crossref_primary_10_1115_1_4048614 crossref_primary_10_1002_adfm_201804197 crossref_primary_10_1002_advs_202205795 crossref_primary_10_1088_1361_6528_ab61d0 crossref_primary_10_1021_acs_chemrev_3c00317 crossref_primary_10_1063_5_0133992 crossref_primary_10_1002_smll_202202987 crossref_primary_10_3390_nano12132153 crossref_primary_10_1039_D2LC00267A crossref_primary_10_1016_j_actamat_2020_07_071 crossref_primary_10_1002_admt_202201264 crossref_primary_10_1002_adsu_202100312 crossref_primary_10_1002_admt_202200295 crossref_primary_10_1039_D0CC02108C crossref_primary_10_1126_science_aao4249 crossref_primary_10_3390_ma16186186 crossref_primary_10_1002_aisy_202100024 crossref_primary_10_1039_D2LC01193J crossref_primary_10_1002_adfm_202311153 crossref_primary_10_1002_elps_202200048 crossref_primary_10_1002_admt_202101092 crossref_primary_10_1039_C9NR02458A crossref_primary_10_1088_1361_6439_ac5c77 crossref_primary_10_1002_advs_202401796 crossref_primary_10_1016_j_mattod_2020_08_017 crossref_primary_10_1021_acs_energyfuels_3c02754 crossref_primary_10_1007_s10118_022_2874_2 crossref_primary_10_1002_adma_202406456 crossref_primary_10_1021_acs_langmuir_4c03160 crossref_primary_10_1039_D0NR00988A crossref_primary_10_1002_adfm_202301348 crossref_primary_10_1038_s41598_019_47078_8 crossref_primary_10_1002_advs_202303406 crossref_primary_10_1021_acsnano_1c06973 crossref_primary_10_1002_smll_201905446 crossref_primary_10_1039_D0MH01117G crossref_primary_10_1002_aelm_201700434 crossref_primary_10_1002_anbr_202000086 crossref_primary_10_3390_mi13050799 crossref_primary_10_1146_annurev_matsci_080819_125403 crossref_primary_10_1016_j_apmt_2020_100722 crossref_primary_10_1039_D2LC00612J crossref_primary_10_1007_s11431_023_2379_6 crossref_primary_10_1039_C9LC00995G crossref_primary_10_1002_admt_202100690 crossref_primary_10_1021_acs_analchem_9b00093 crossref_primary_10_1002_adma_202001642 crossref_primary_10_1007_s12034_019_1872_7 crossref_primary_10_1016_j_matpr_2021_06_170 crossref_primary_10_1016_j_matt_2021_10_022 crossref_primary_10_1103_PhysRevApplied_10_054045 crossref_primary_10_1002_chem_201800605 crossref_primary_10_1002_adfm_202309614 crossref_primary_10_1039_D1CS00404B crossref_primary_10_1039_D1MH00647A crossref_primary_10_1007_s11708_019_0653_8 crossref_primary_10_1021_acsami_1c01026 crossref_primary_10_1002_tee_24040 crossref_primary_10_1021_acsami_0c01957 crossref_primary_10_3390_s24020416 crossref_primary_10_1088_1361_665X_ac6d31 crossref_primary_10_1109_LAWP_2024_3503581 crossref_primary_10_1016_j_apmt_2020_100612 crossref_primary_10_1021_acsami_8b20460 crossref_primary_10_1088_1361_6463_ab1e30 crossref_primary_10_1002_smsc_202000080 crossref_primary_10_1002_adfm_201706277 crossref_primary_10_1038_s41598_021_86394_w crossref_primary_10_1016_j_ijheatmasstransfer_2022_122674 crossref_primary_10_1016_j_cej_2020_125732 crossref_primary_10_1002_adfm_201808989 crossref_primary_10_1038_s41598_019_42457_7 crossref_primary_10_1016_j_apsusc_2019_06_084 crossref_primary_10_1016_j_eml_2021_101386 crossref_primary_10_1002_advs_202201963 crossref_primary_10_1016_j_hsr_2023_100118 crossref_primary_10_1002_adfm_202409341 crossref_primary_10_1021_acs_langmuir_1c01173 crossref_primary_10_1038_s41467_019_11466_5 crossref_primary_10_1002_adma_201805033 crossref_primary_10_3390_s20247062 crossref_primary_10_1016_j_pmatsci_2023_101228 crossref_primary_10_1002_ppsc_202100141 crossref_primary_10_1002_adma_202211731 crossref_primary_10_1002_adma_201805039 crossref_primary_10_1063_5_0030055 crossref_primary_10_1021_acs_nanolett_7b04050 crossref_primary_10_1002_adfm_202210961 crossref_primary_10_1002_elps_202000213 crossref_primary_10_1039_D1EE00531F crossref_primary_10_1007_s10404_020_02336_4 crossref_primary_10_1016_j_surfin_2022_101951 crossref_primary_10_1039_C7LC00426E crossref_primary_10_1039_C7LC00898H crossref_primary_10_1002_adfm_202306453 crossref_primary_10_3389_fmech_2017_00009 crossref_primary_10_1039_D4LC00387J crossref_primary_10_1039_D2LC00712F crossref_primary_10_1109_JSEN_2020_3015949 crossref_primary_10_3390_s22114037 crossref_primary_10_1002_adfm_202310147 crossref_primary_10_1088_2399_7532_abd4f0 crossref_primary_10_1002_adfm_202000187 crossref_primary_10_1002_adfm_202003694 crossref_primary_10_1002_adfm_202415323 crossref_primary_10_1039_D1LC01019K crossref_primary_10_1002_adfm_202411647 crossref_primary_10_1364_OME_425432 crossref_primary_10_1021_acsapm_9b00258 crossref_primary_10_3390_mi14050972 crossref_primary_10_1002_smtd_202401291 crossref_primary_10_1007_s00216_021_03494_2 crossref_primary_10_1002_admt_201700330 crossref_primary_10_1002_admt_202200749 crossref_primary_10_1002_aisy_202200080 crossref_primary_10_1039_D0TC04302H crossref_primary_10_3390_app9071421 crossref_primary_10_1002_adhm_202100371 crossref_primary_10_1002_adma_202201469 crossref_primary_10_1016_j_vacuum_2024_113284 crossref_primary_10_1016_j_xcrp_2023_101604 crossref_primary_10_1038_s44222_023_00094_w crossref_primary_10_1016_j_xcrp_2023_101603 crossref_primary_10_1016_j_isci_2020_101911 crossref_primary_10_3390_bios12030156 crossref_primary_10_1002_admt_201800420 crossref_primary_10_1021_acssensors_1c02606 crossref_primary_10_1002_adfm_202309706 crossref_primary_10_1002_cnma_202300078 crossref_primary_10_3390_mi12030280 crossref_primary_10_1016_j_ijhydene_2022_11_318 crossref_primary_10_1103_PhysRevFluids_8_114003 crossref_primary_10_1002_adhm_202302969 crossref_primary_10_1002_adfm_202410349 crossref_primary_10_1002_adma_202308862 crossref_primary_10_1021_acs_langmuir_1c02249 crossref_primary_10_1002_adfm_202309707 crossref_primary_10_1007_s11708_022_0815_y crossref_primary_10_1038_s41578_024_00679_w crossref_primary_10_1002_elps_202000237 crossref_primary_10_1039_D1MA00789K crossref_primary_10_1002_admt_201900733 crossref_primary_10_1002_adfm_202402832 crossref_primary_10_1039_D0RA06010K crossref_primary_10_1002_adfm_202308173 crossref_primary_10_3390_mi11030289 crossref_primary_10_1063_5_0106409 crossref_primary_10_1021_acsomega_3c01382 crossref_primary_10_1039_C8MH00203G crossref_primary_10_1002_adfm_202311696 crossref_primary_10_1002_adma_201801368 crossref_primary_10_1021_acsami_2c17906 crossref_primary_10_1038_s41467_020_14814_y crossref_primary_10_1002_aisy_202100201 crossref_primary_10_1007_s11837_019_03954_2 crossref_primary_10_1109_ACCESS_2019_2945773 crossref_primary_10_1002_adma_202103062 crossref_primary_10_1080_23746149_2018_1446359 crossref_primary_10_1002_adfm_202400284 crossref_primary_10_1016_j_apmt_2021_101151 crossref_primary_10_1016_j_sna_2020_111909 crossref_primary_10_1021_acs_langmuir_0c02086 crossref_primary_10_1017_jfm_2024_983 crossref_primary_10_1039_C7LC00768J crossref_primary_10_1021_acselectrochem_4c00088 crossref_primary_10_1016_j_mser_2019_03_001 crossref_primary_10_1002_aisy_202000246 crossref_primary_10_1016_j_bios_2021_113765 crossref_primary_10_1109_JPROC_2019_2908433 crossref_primary_10_1109_JSEN_2023_3260029 crossref_primary_10_1039_D0NR07479A crossref_primary_10_1016_j_apsusc_2019_06_203 crossref_primary_10_1039_C8TC02003E crossref_primary_10_1016_j_mattod_2019_10_007 crossref_primary_10_1063_PT_3_4723 crossref_primary_10_1002_dro2_161 crossref_primary_10_1109_OJAP_2021_3063281 crossref_primary_10_1039_D1LC00206F crossref_primary_10_1109_TMTT_2022_3197407 crossref_primary_10_1039_C7CS00043J crossref_primary_10_1021_acsaelm_0c00551 crossref_primary_10_1002_adfm_202305680 crossref_primary_10_1021_acsami_2c02247 crossref_primary_10_1002_open_202000330 crossref_primary_10_1002_adma_201804011 crossref_primary_10_3390_ma11081384 crossref_primary_10_1002_adfm_201901370 crossref_primary_10_1016_j_isci_2021_102698 crossref_primary_10_1016_j_cej_2022_139832 crossref_primary_10_1021_acs_chemrev_1c00985 crossref_primary_10_1557_jmr_2018_209 crossref_primary_10_1021_acsaelm_2c01382 crossref_primary_10_1088_1361_665X_ac4e50 crossref_primary_10_1016_j_isci_2023_106493 crossref_primary_10_1002_adem_201800054 crossref_primary_10_1002_adma_202003553 crossref_primary_10_1016_j_scib_2017_04_015 crossref_primary_10_1017_jfm_2021_1090 crossref_primary_10_1002_adma_202205196 crossref_primary_10_1021_acsami_2c14260 crossref_primary_10_1021_acs_chemmater_2c01899 crossref_primary_10_1002_adem_201900381 crossref_primary_10_1002_adem_202301998 crossref_primary_10_1002_admt_201800061 crossref_primary_10_1063_1_5109082 crossref_primary_10_3390_mi8040119 crossref_primary_10_1016_j_sna_2020_112344 crossref_primary_10_1002_advs_202401946 crossref_primary_10_1088_2631_7990_ac5f78 crossref_primary_10_1002_adfm_202005804 crossref_primary_10_1088_2399_7532_ab835c crossref_primary_10_3390_bioengineering9090416 crossref_primary_10_1007_s11431_021_2015_x crossref_primary_10_1002_slct_201900997 crossref_primary_10_1088_1361_6439_ab8bc7 crossref_primary_10_1021_acs_langmuir_9b03385 crossref_primary_10_1109_LMWT_2023_3339200 crossref_primary_10_1039_D3LC01017A crossref_primary_10_1063_5_0098144 crossref_primary_10_1016_j_mtla_2022_101595 crossref_primary_10_1002_admt_202201094 crossref_primary_10_1021_acssensors_4c00442 crossref_primary_10_1002_aisy_202000159 crossref_primary_10_1063_1_5013623 crossref_primary_10_1007_s40843_023_2607_3 crossref_primary_10_1016_j_cej_2022_141018 crossref_primary_10_1016_j_joule_2020_10_012 crossref_primary_10_1039_D2RA04120K crossref_primary_10_1002_aisy_202000275 crossref_primary_10_1016_j_mee_2018_04_008 crossref_primary_10_1002_smll_202306652 crossref_primary_10_1021_acsapm_4c03581 crossref_primary_10_1039_D0NJ02652B crossref_primary_10_3390_mi11020200 crossref_primary_10_1002_smtd_201900383 crossref_primary_10_1039_D1RA09394K crossref_primary_10_1109_LMWC_2022_3193693 crossref_primary_10_1002_smll_201800118 crossref_primary_10_1021_acs_langmuir_8b03384 crossref_primary_10_1039_C8SM01281D crossref_primary_10_1109_TII_2018_2870857 crossref_primary_10_1021_acs_chemmater_4c00043 crossref_primary_10_1002_adom_201800458 crossref_primary_10_1007_s40820_023_01043_3 crossref_primary_10_1021_acs_jpcc_3c03857 crossref_primary_10_1039_C8NR05600E crossref_primary_10_1016_j_mtphys_2020_100245 crossref_primary_10_1039_C7MH00819H crossref_primary_10_1002_adfm_202308116 crossref_primary_10_1039_D4MH00498A crossref_primary_10_1007_s10544_024_00697_z crossref_primary_10_3390_bios11070213 crossref_primary_10_1038_s44222_023_00102_z crossref_primary_10_1007_s40843_021_2023_x crossref_primary_10_1039_D2LC00993E crossref_primary_10_1002_chem_201801957 crossref_primary_10_1021_acsnano_4c07051 crossref_primary_10_1016_j_colsurfa_2021_126750 crossref_primary_10_1016_j_cej_2024_151359 crossref_primary_10_1002_admt_202400797 crossref_primary_10_1063_1_5086376 crossref_primary_10_1002_advs_202000192 crossref_primary_10_1002_adfm_202307499 crossref_primary_10_1007_s10338_022_00372_x crossref_primary_10_1002_adma_202203391 crossref_primary_10_1002_ente_202200300 crossref_primary_10_1088_1361_6439_ac545f crossref_primary_10_1021_acs_chemmater_0c01615 crossref_primary_10_1109_JPROC_2023_3285400 crossref_primary_10_1016_j_apmt_2023_101746 crossref_primary_10_1021_acs_langmuir_8b00538 crossref_primary_10_1002_adem_202200345 crossref_primary_10_1016_j_bios_2024_116469 crossref_primary_10_1021_acsami_8b00158 crossref_primary_10_1002_admi_202100819 crossref_primary_10_1038_s41467_022_32259_3 crossref_primary_10_1016_j_elecom_2018_05_026 crossref_primary_10_1016_j_eml_2020_100863 crossref_primary_10_1016_j_mee_2017_12_010 crossref_primary_10_1002_aisy_202200364 crossref_primary_10_1039_D4TA06879C crossref_primary_10_1016_j_cclet_2020_09_018 crossref_primary_10_1016_j_matt_2020_05_022 crossref_primary_10_1039_D4LC00313F crossref_primary_10_1002_adfm_202311501 crossref_primary_10_1021_acs_jpcc_9b07731 crossref_primary_10_1002_adma_202415761 crossref_primary_10_1039_D0MH00280A crossref_primary_10_1103_PhysRevB_111_L060403 crossref_primary_10_1109_TMECH_2020_2964387 crossref_primary_10_3390_mi13040572 crossref_primary_10_3390_bios10110165 crossref_primary_10_1016_j_est_2022_105134 crossref_primary_10_1002_adma_202207282 crossref_primary_10_1007_s12274_023_5651_9 crossref_primary_10_1002_advs_202105289 crossref_primary_10_1002_pol_20230616 crossref_primary_10_1039_D3CC04198K crossref_primary_10_1016_j_coco_2024_101881 crossref_primary_10_3390_polym10030330 crossref_primary_10_1103_PhysRevE_98_032602 crossref_primary_10_3390_chemosensors11010006 crossref_primary_10_1016_j_compscitech_2020_108237 crossref_primary_10_1002_cnma_202300227 crossref_primary_10_1016_j_apmt_2022_101423 crossref_primary_10_1142_S0217984921400054 crossref_primary_10_1088_1873_7005_aa9280 crossref_primary_10_1002_adfm_202419666 crossref_primary_10_1007_s40843_022_2058_5 crossref_primary_10_1002_admi_202201693 crossref_primary_10_3390_bios10120196 crossref_primary_10_1007_s11431_021_1900_x crossref_primary_10_1039_C7LC00390K crossref_primary_10_1021_acsaelm_2c00352 crossref_primary_10_3390_ma14195694 |
Cites_doi | 10.1109/JMEMS.2002.803286 10.1088/0960-1317/22/11/115012 10.1088/0960-1317/20/12/125029 10.1002/adma.201101257 10.1088/0960-1317/7/3/040 10.1002/1522-2683(200101)22:2<249::AID-ELPS249>3.0.CO;2-4 10.1088/1367-2630/11/7/075029 10.1039/c3nr00185g 10.1063/1.2431771 10.1039/C6LC00198J 10.1021/la401245d 10.1021/nn205089u 10.1109/JMEMS.2011.2174421 10.1038/ncomms1454 10.1007/s10404-016-1715-4 10.1002/adfm.201400689 10.1021/am506496u 10.1109/LMWC.2012.2223754 10.1109/JMEMS.2008.2011118 10.1021/am5043017 10.1002/adma.201203921 10.1002/adfm.200701216 10.1021/ac035188u 10.1039/C3LC50952D 10.1063/1.4903882 10.1088/0964-1726/23/8/085036 10.1016/j.sna.2003.10.013 10.1109/JMEMS.2002.802899 10.1063/1.1772862 10.1126/science.1066238 10.1007/s00231-010-0658-7 10.1016/j.biotechadv.2013.11.008 10.1109/JMEMS.2004.832184 10.1021/ac0261449 10.1126/science.288.5463.113 10.1063/1.3114381 10.1016/S0924-4247(99)00298-8 10.1002/admt.201600130 10.1002/adfm.200900604 10.1088/0960-1317/16/5/R01 10.1002/adfm.201200837 10.1109/84.911097 10.1109/JMEMS.2002.807467 10.1039/C6LC00046K 10.1016/j.sna.2013.01.031 10.1002/adma.201503875 10.1016/j.ces.2004.11.033 10.1021/ac0155411 10.1063/1.1504171 10.1073/pnas.1412227111 10.1039/B809673B 10.1038/35007047 10.1063/1.4959898 10.1073/pnas.1319878111 10.1016/j.physleta.2006.09.041 10.1109/TCPMT.2013.2251931 10.1364/OE.20.002346 10.1088/0960-1317/7/3/028 10.1002/adma.201301400 10.1002/adfm.201303220 10.1039/c0lc00501k 10.1039/C4LC00078A 10.1016/0924-4247(90)85039-7 10.1002/adfm.201200324 10.1039/c2lc21176a 10.1021/ac0102819 10.1002/elps.200305584 10.1039/C4LC00111G 10.1039/c005159d 10.1016/S0924-4247(00)00519-7 10.1016/S0924-4247(97)01660-9 10.1088/0960-1317/11/2/307 10.1002/adma.201404790 10.1002/smll.201502692 10.1039/c3lc50833a 10.1002/adfm.201304064 10.1063/1.4947272 10.1109/JMEMS.2014.2307358 10.1021/ac400896j 10.1039/C6LC01255H 10.1088/0964-1726/22/8/085005 10.1109/TIE.2008.2006954 10.1364/OE.20.012119 10.1021/acsami.5b10769 10.1016/S0925-4005(00)00355-5 10.1016/j.bios.2010.09.022 10.1039/C4LC01013B 10.1016/S0924-4247(99)00192-2 10.1063/1.3496359 10.1002/1522-2683(200208)23:16<2729::AID-ELPS2729>3.0.CO;2-I 10.1103/RevModPhys.77.977 10.1002/adma.201670133 10.1016/S0925-4005(02)00468-9 10.1103/PhysRevB.55.10786 10.3390/met4040465 10.1109/84.846699 10.1021/ac0350007 10.1039/C5TC00330J 10.1002/adma.201506243 10.1039/C5LC00742A 10.1088/0960-1317/15/2/R01 10.1007/s10404-007-0188-x 10.1002/adfm.201501296 10.1109/JMEMS.2014.2381555 10.1016/j.jphotochem.2006.03.004 10.1021/ac961038q 10.1039/b305892a 10.1063/1.3524533 10.1063/1.92952 10.1002/adma.201405438 10.1021/ac035220k 10.1021/ac9912294 10.1039/C5LC00415B 10.1021/ac302887a 10.3390/s150511823 10.1021/ac010048a 10.1002/smll.201600737 10.1039/C6LC00284F 10.1002/elps.201200396 10.1088/0960-1317/14/6/R01 10.1073/pnas.0507976103 10.1039/b811169c 10.1039/c2lc40492c 10.1115/1.1459075 10.1039/c2lc40628d 10.1038/nmat863 10.1109/84.846697 10.1109/84.896767 10.1002/adfm.201403042 10.1039/C4LC00762J 10.1039/C2LC40954B 10.1088/0034-4885/75/1/016601 10.1126/science.120.3114.390 10.1186/s40486-015-0017-z 10.1039/C6LC00712K 10.1039/C6LC00827E 10.1023/A:1009905926740 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SP 7TB 7U5 8FD FR3 L7M |
DOI | 10.1039/c7lc00046d |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef PubMed Solid State and Superconductivity Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1473-0189 |
EndPage | 993 |
ExternalDocumentID | 28225135 10_1039_C7LC00046D c7lc00046d |
Genre | Journal Article |
GroupedDBID | -JG 0-7 1TJ 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3I R7B RCNCU RPMJG RRC RSCEA SKA SLH VH6 --- 0R~ 0UZ 0VX 29L 4.4 53G 5GY 71~ AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACHDF ACIWK ACRPL ADMRA ADNMO AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRZK AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT BBWZM BLAPV CAG CITATION COF CS3 DU5 EBS ECGLT EEHRC EJD F5P FEDTE GGIMP H13 HVGLF HZ~ IDY J3G J3H L-8 M4U N9A NDZJH O9- R56 RAOCF RCLXC RNS ROL RRA NPM 7X8 7SP 7TB 7U5 8FD FR3 L7M |
ID | FETCH-LOGICAL-c368t-aae8dc0b2dfab005375c59a107a3d87f82ac1decc2c8c0a1dc8cef3794b514f33 |
ISSN | 1473-0197 1473-0189 |
IngestDate | Fri Jul 11 11:48:15 EDT 2025 Thu Jul 10 22:48:24 EDT 2025 Thu Apr 03 07:02:37 EDT 2025 Tue Jul 01 01:52:36 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Thu May 30 17:47:26 EDT 2019 Mon Jan 28 17:15:28 EST 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-aae8dc0b2dfab005375c59a107a3d87f82ac1decc2c8c0a1dc8cef3794b514f33 |
Notes | Prof. Arnan Mitchell (PhD 1999, RMIT) leads the Microplatforms research group at RMIT University and is a Chief Investigator of the ARC Centre of Excellence (CUDOS). He is highly multi-disciplinary, leading a team of more than 30 researchers, spanning integrated photonics, functional and solar materials, microsystems, and lab-on-a-chip technology. He creates technology platforms to enable fundamental scientific and biomedical research and is committed to industrial translation with patents and industry projects in defence, communications and biomedical diagnostics. Dr. Shi-Yang Tang received his PhD in Microelectromechanical Systems (MEMS) from RMIT University, Australia, in 2015. He is the named author of over 30 papers in different peer-reviewed journals and conference proceedings. He joined the Pennsylvania State University, USA, as a postdoctoral research fellow from August 2015 to July 2016, working on surface acoustic wave enabled microfluidics platforms. He is currently a postdoctoral scholar at the University of California, San Francisco (UCSF), USA, working on droplet microfluidics for point-of-care diagnosis. His research interests include developing microfluidics platforms for biomedical studies and liquid metal enabled micro/nano scale platforms. Samira Schaefer receives her Master's Degree in Process Analysis & Technology-Management from Reutlingen University, Germany, in 2017. As a part of the SCON student exchange programme between RMIT University, Australia, and University of Applied Sciences Karlsruhe, Germany, she has joined RMIT's School of Engineering since September 2016. Her research interests include biomedical devices, microfluidics and data analysis. Kourosh Kalantar-zadeh is a Distinguished Professor and the Director of the Centre for Advanced Electronics and Sensors (CADES) at RMIT University, Australia. He received his B.Sc. (1993) and M.Sc. (1997) degrees from Sharif University of Technology, Iran, and Tehran University, Iran, respectively, and his Ph.D. from RMIT University, Australia (2002). His research interests include chemical and biochemical sensors, nanotechnology, microsystems, materials science, electronics, gastroenterology, medical devices and microfluidics. Kourosh has so far been the co-author of over 350 peer reviewed scientific papers and books. Michael Dickey received his BS in Chemical Engineering from Georgia Institute of Technology (1999) and his PhD in Chemical Engineering from the University of Texas at Austin (2006). From 2006-2008 he was a post-doctoral fellow in the lab of Professor George Whitesides at Harvard University. In August 2008, he joined the Department of Chemical & Biomolecular Engineering at North Carolina State University where he is currently a Professor. His research interests include studying new ways to pattern, actuate, and control soft materials (gels, polymers, liquid metals), and unconventional fabrication techniques. Jiu Yang Zhu received his Master's Degree in Electronics and Telecommunication Engineering from the University of Melbourne, Australia, in 2013. He is currently a third year PhD student at RMIT University's School of Engineering. His research interests include liquid metal enabled fluidic actuators for convective cooling of hot spots. Dr. Khashayar Khoshmanesh received his PhD in Biomechanical Engineering from Deakin University, Australia, in 2010. He is the named author of over 70 journal papers and the recipient of several awards, including the 2012-2015 Discovery Early Career Researcher Award by the Australian Research Council, 2012 American-Australian Association Fellowship, and 2010 Endeavour Fellowship. He is currently a Senior Research Fellow at RMIT University's School of Engineering, leading a group of PhD students. His research interests include microfluidics for various cellular assays and liquid metal enabled fluidic actuators. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6036-7371 |
PMID | 28225135 |
PQID | 1870987740 |
PQPubID | 23479 |
PageCount | 2 |
ParticipantIDs | crossref_primary_10_1039_C7LC00046D pubmed_primary_28225135 proquest_miscellaneous_1870987740 proquest_miscellaneous_1893884461 crossref_citationtrail_10_1039_C7LC00046D rsc_primary_c7lc00046d |
ProviderPackageCode | J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG 1TJ SKA -JG AGSTE AUDPV EF- BSQNT ADSRN ABGFH 705 R7B AAEMU CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170314 |
PublicationDateYYYYMMDD | 2017-03-14 |
PublicationDate_xml | – month: 3 year: 2017 text: 20170314 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Lab on a chip |
PublicationTitleAlternate | Lab Chip |
PublicationYear | 2017 |
References | Roberts (C7LC00046D-(cit46)/*[position()=1]) 1997; 69 Ladd (C7LC00046D-(cit53)/*[position()=1]) 2013; 25 Lin (C7LC00046D-(cit7)/*[position()=1]) 2015; 11 Baratchi (C7LC00046D-(cit78)/*[position()=1]) 2014; 32 Palleau (C7LC00046D-(cit22)/*[position()=1]) 2013; 25 Döpper (C7LC00046D-(cit62)/*[position()=1]) 1997; 7 Cubaud (C7LC00046D-(cit129)/*[position()=1]) 2009; 11 Lemoff (C7LC00046D-(cit65)/*[position()=1]) 2000; 63 Wang (C7LC00046D-(cit2)/*[position()=1]) 2012; 20 Miner (C7LC00046D-(cit123)/*[position()=1]) 2004; 85 Andersson (C7LC00046D-(cit89)/*[position()=1]) 2001; 22 Yaralioglu (C7LC00046D-(cit104)/*[position()=1]) 2004; 76 Kim (C7LC00046D-(cit18)/*[position()=1]) 2008 Huang (C7LC00046D-(cit25)/*[position()=1]) 2014; 14 McKnight (C7LC00046D-(cit63)/*[position()=1]) 2001; 73 Regan (C7LC00046D-(cit8)/*[position()=1]) 1997; 55 Khan (C7LC00046D-(cit135)/*[position()=1]) 2014; 6 Li (C7LC00046D-(cit127)/*[position()=1]) 2014; 14 Cheng (C7LC00046D-(cit41)/*[position()=1]) 2012; 12 Lazarus (C7LC00046D-(cit31)/*[position()=1]) 2014; 23 Cheng (C7LC00046D-(cit23)/*[position()=1]) 2010; 10 Ma (C7LC00046D-(cit125)/*[position()=1]) 2007; 361 Grover (C7LC00046D-(cit57)/*[position()=1]) 2003; 89 Breadmore (C7LC00046D-(cit116)/*[position()=1]) 2013; 34 Hong (C7LC00046D-(cit100)/*[position()=1]) 2004; 4 Fassler (C7LC00046D-(cit29)/*[position()=1]) 2013; 13 So (C7LC00046D-(cit107)/*[position()=1]) 2011; 11 Boyd-Moss (C7LC00046D-(cit142)/*[position()=1]) 2016; 16 Wang (C7LC00046D-(cit26)/*[position()=1]) 2015 Darabi (C7LC00046D-(cit64)/*[position()=1]) 2001; 10 Beni (C7LC00046D-(cit72)/*[position()=1]) 1982; 40 Meng (C7LC00046D-(cit68)/*[position()=1]) 2000; 2 Khan (C7LC00046D-(cit17)/*[position()=1]) 2014; 111 Lazarus (C7LC00046D-(cit121)/*[position()=1]) 2016; 1 Liu (C7LC00046D-(cit44)/*[position()=1]) 2012; 21 Stroock (C7LC00046D-(cit99)/*[position()=1]) 2002; 295 Adamo (C7LC00046D-(cit118)/*[position()=1]) 2013; 85 Saffman (C7LC00046D-(cit138)/*[position()=1]) 1965 Dickey (C7LC00046D-(cit1)/*[position()=1]) 2014; 6 Gao (C7LC00046D-(cit77)/*[position()=1]) 2014; 14 Joshipura (C7LC00046D-(cit43)/*[position()=1]) 2015; 3 Deng (C7LC00046D-(cit126)/*[position()=1]) 2010; 46 Wego (C7LC00046D-(cit61)/*[position()=1]) 2001; 88 Liu (C7LC00046D-(cit101)/*[position()=1]) 2000; 9 Sia (C7LC00046D-(cit45)/*[position()=1]) 2003; 24 Do (C7LC00046D-(cit67)/*[position()=1]) 2008; 8 Khan (C7LC00046D-(cit52)/*[position()=1]) 2015; 25 Kim (C7LC00046D-(cit27)/*[position()=1]) 2014; 105 Khan (C7LC00046D-(cit24)/*[position()=1]) 2012; 22 Beebe (C7LC00046D-(cit90)/*[position()=1]) 2000; 404 Li (C7LC00046D-(cit34)/*[position()=1]) 2015; 15 Jeong (C7LC00046D-(cit32)/*[position()=1]) 2012; 12 Zavabeti (C7LC00046D-(cit76)/*[position()=1]) 2016 Tarik (C7LC00046D-(cit59)/*[position()=1]) 1997; 7 Sciambi (C7LC00046D-(cit114)/*[position()=1]) 2014; 14 Wu (C7LC00046D-(cit119)/*[position()=1]) 2015 Anderson (C7LC00046D-(cit47)/*[position()=1]) 2000; 72 Eaker (C7LC00046D-(cit42)/*[position()=1]) 2016; 3 Sudarsan (C7LC00046D-(cit102)/*[position()=1]) 2006; 103 Juncker (C7LC00046D-(cit69)/*[position()=1]) 2002; 74 Ralf (C7LC00046D-(cit134)/*[position()=1]) 2012; 75 Jung (C7LC00046D-(cit38)/*[position()=1]) 2015; 15 Tang (C7LC00046D-(cit16)/*[position()=1]) 2015; 15 Wang (C7LC00046D-(cit108)/*[position()=1]) 2008; 4 Pekas (C7LC00046D-(cit91)/*[position()=1]) 2012 Laser (C7LC00046D-(cit56)/*[position()=1]) 2004; 14 Waheed (C7LC00046D-(cit49)/*[position()=1]) 2016; 16 Hessel (C7LC00046D-(cit96)/*[position()=1]) 2005; 60 Kim (C7LC00046D-(cit19)/*[position()=1]) 2009; 18 Tang (C7LC00046D-(cit15)/*[position()=1]) 2016; 28 Zhang (C7LC00046D-(cit144)/*[position()=1]) 2015; 27 Mohammed (C7LC00046D-(cit146)/*[position()=1]) 2013; 193 Deng (C7LC00046D-(cit124)/*[position()=1]) 2013; 3 Thelen (C7LC00046D-(cit12)/*[position()=1]) 2012; 12 Hallfors (C7LC00046D-(cit94)/*[position()=1]) 2013; 13 Mohammed (C7LC00046D-(cit133)/*[position()=1]) 2014; 4 Ota (C7LC00046D-(cit36)/*[position()=1]) 2014 Böhm (C7LC00046D-(cit60)/*[position()=1]) 1999; 77 Yang (C7LC00046D-(cit86)/*[position()=1]) 1998; 64 Jeon (C7LC00046D-(cit128)/*[position()=1]) 2017; 17 Wanliang (C7LC00046D-(cit132)/*[position()=1]) 2013; 22 Therriault (C7LC00046D-(cit51)/*[position()=1]) 2003; 2 Boley (C7LC00046D-(cit54)/*[position()=1]) 2014; 24 White (C7LC00046D-(cit122)/*[position()=1]) 2013; 85 Wang (C7LC00046D-(cit3)/*[position()=1]) 2012; 20 Xu (C7LC00046D-(cit105)/*[position()=1]) 2010; 4 Junghoon (C7LC00046D-(cit70)/*[position()=1]) 2000; 9 Oddy (C7LC00046D-(cit106)/*[position()=1]) 2001; 73 Krupenkin (C7LC00046D-(cit147)/*[position()=1]) 2011; 2 Tang (C7LC00046D-(cit71)/*[position()=1]) 2014; 111 Giguère (C7LC00046D-(cit9)/*[position()=1]) 1954; 120 Bartlett (C7LC00046D-(cit141)/*[position()=1]) 2016; 28 Gol (C7LC00046D-(cit137)/*[position()=1]) 2015; 15 Yun (C7LC00046D-(cit4)/*[position()=1]) 2002; 11 Tang (C7LC00046D-(cit109)/*[position()=1]) 2014; 24 Cumby (C7LC00046D-(cit28)/*[position()=1]) 2012 Tabatabai (C7LC00046D-(cit30)/*[position()=1]) 2013; 29 Hutter (C7LC00046D-(cit10)/*[position()=1]) 2012; 22 Liang-Hsuan (C7LC00046D-(cit103)/*[position()=1]) 2002; 11 Parekh (C7LC00046D-(cit11)/*[position()=1]) 2016; 16 Khoshmanesh (C7LC00046D-(cit113)/*[position()=1]) 2011; 26 Böhm (C7LC00046D-(cit85)/*[position()=1]) 2000; 80 So (C7LC00046D-(cit20)/*[position()=1]) 2009; 19 Gu (C7LC00046D-(cit82)/*[position()=1]) 2007; 90 Yong-Lae (C7LC00046D-(cit39)/*[position()=1]) 2010; 20 Dickey (C7LC00046D-(cit6)/*[position()=1]) 2008; 18 Gol (C7LC00046D-(cit139)/*[position()=1]) 2016; 108 Richards (C7LC00046D-(cit110)/*[position()=1]) 2012; 22 Nguyen (C7LC00046D-(cit55)/*[position()=1]) 2002; 124 Cho (C7LC00046D-(cit93)/*[position()=1]) 2003; 12 Li (C7LC00046D-(cit83)/*[position()=1]) 2004; 111 Johnson (C7LC00046D-(cit88)/*[position()=1]) 2001; 73 Sivan (C7LC00046D-(cit145)/*[position()=1]) 2013; 23 Gobby (C7LC00046D-(cit98)/*[position()=1]) 2001; 11 Briant (C7LC00046D-(cit40)/*[position()=1]) 2013 Sen (C7LC00046D-(cit5)/*[position()=1]) 2009; 56 Gough (C7LC00046D-(cit14)/*[position()=1]) 2015; 3 Li (C7LC00046D-(cit35)/*[position()=1]) 2016; 16 Tang (C7LC00046D-(cit37)/*[position()=1]) 2016; 12 Mohammadi (C7LC00046D-(cit117)/*[position()=1]) 2002; 23 Zhu (C7LC00046D-(cit74)/*[position()=1]) 2016; 8 Koo (C7LC00046D-(cit136)/*[position()=1]) 2015; 24 Tang (C7LC00046D-(cit112)/*[position()=1]) 2015; 25 Lee (C7LC00046D-(cit73)/*[position()=1]) 2000; 9 Moon (C7LC00046D-(cit92)/*[position()=1]) 2002; 92 Xie (C7LC00046D-(cit66)/*[position()=1]) 2004; 76 Yamada (C7LC00046D-(cit87)/*[position()=1]) 2004; 76 Nam (C7LC00046D-(cit115)/*[position()=1]) 2016; 16 Reus (C7LC00046D-(cit143)/*[position()=1]) 2012; 6 Cheng (C7LC00046D-(cit21)/*[position()=1]) 2009; 94 Nam-Trung (C7LC00046D-(cit97)/*[position()=1]) 2005; 15 Koo (C7LC00046D-(cit111)/*[position()=1]) 2011; 23 Squires (C7LC00046D-(cit95)/*[position()=1]) 2005; 77 Tang (C7LC00046D-(cit75)/*[position()=1]) 2013; 5 Smits (C7LC00046D-(cit58)/*[position()=1]) 1990; 21 Kwang (C7LC00046D-(cit79)/*[position()=1]) 2006; 16 Xue'en (C7LC00046D-(cit84)/*[position()=1]) 2004; 13 Zhang (C7LC00046D-(cit130)/*[position()=1]) 2014; 24 Jeong (C7LC00046D-(cit33)/*[position()=1]) 2015 Je (C7LC00046D-(cit120)/*[position()=1]) 2014; 23 van Hoeve (C7LC00046D-(cit140)/*[position()=1]) 2010; 22 Boley (C7LC00046D-(cit13)/*[position()=1]) 2015; 27 Yazdi (C7LC00046D-(cit48)/*[position()=1]) 2016; 20 Bartlett (C7LC00046D-(cit131)/*[position()=1]) 2016; 28 Unger (C7LC00046D-(cit81)/*[position()=1]) 2000; 288 Wu (C7LC00046D-(cit50)/*[position()=1]) 2006; 181 Elizabeth Hulme (C7LC00046D-(cit80)/*[position()=1]) 2009; 9 |
References_xml | – issn: 2013 publication-title: Embrittlement of engineering alloys doi: Briant – volume: 11 start-page: 454 year: 2002 ident: C7LC00046D-(cit4)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2002.803286 – volume: 22 start-page: 115012 year: 2012 ident: C7LC00046D-(cit110)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/11/115012 – volume: 20 start-page: 125029 year: 2010 ident: C7LC00046D-(cit39)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/12/125029 – volume: 23 start-page: 3559 year: 2011 ident: C7LC00046D-(cit111)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201101257 – volume: 7 start-page: 230 year: 1997 ident: C7LC00046D-(cit62)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/7/3/040 – start-page: 9 year: 2015 ident: C7LC00046D-(cit119)/*[position()=1] publication-title: Biomicrofluidics – volume: 22 start-page: 249 year: 2001 ident: C7LC00046D-(cit89)/*[position()=1] publication-title: Electrophoresis doi: 10.1002/1522-2683(200101)22:2<249::AID-ELPS249>3.0.CO;2-4 – volume: 11 start-page: 075029 year: 2009 ident: C7LC00046D-(cit129)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/11/7/075029 – volume: 5 start-page: 5949 year: 2013 ident: C7LC00046D-(cit75)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr00185g – volume: 90 start-page: 033505 year: 2007 ident: C7LC00046D-(cit82)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2431771 – volume: 16 start-page: 1812 year: 2016 ident: C7LC00046D-(cit11)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC00198J – volume: 29 start-page: 6194 year: 2013 ident: C7LC00046D-(cit30)/*[position()=1] publication-title: Langmuir doi: 10.1021/la401245d – volume: 6 start-page: 4806 year: 2012 ident: C7LC00046D-(cit143)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn205089u – volume: 21 start-page: 443 year: 2012 ident: C7LC00046D-(cit44)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2011.2174421 – volume: 2 start-page: 448 year: 2011 ident: C7LC00046D-(cit147)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1454 – volume: 20 start-page: 1 year: 2016 ident: C7LC00046D-(cit48)/*[position()=1] publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-016-1715-4 – volume: 24 start-page: 5851 year: 2014 ident: C7LC00046D-(cit109)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400689 – volume: 6 start-page: 22467 year: 2014 ident: C7LC00046D-(cit135)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am506496u – volume: 22 start-page: 577 year: 2012 ident: C7LC00046D-(cit24)/*[position()=1] publication-title: IEEE Microwave Wireless Compon. Lett. doi: 10.1109/LMWC.2012.2223754 – start-page: 5 year: 2014 ident: C7LC00046D-(cit36)/*[position()=1] publication-title: Nat. Commun. – volume: 18 start-page: 138 year: 2009 ident: C7LC00046D-(cit19)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2008.2011118 – volume: 6 start-page: 18369 year: 2014 ident: C7LC00046D-(cit1)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5043017 – volume: 25 start-page: 1589 year: 2013 ident: C7LC00046D-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201203921 – volume: 18 start-page: 1097 year: 2008 ident: C7LC00046D-(cit6)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200701216 – volume: 76 start-page: 3756 year: 2004 ident: C7LC00046D-(cit66)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac035188u – volume: 14 start-page: 200 year: 2014 ident: C7LC00046D-(cit127)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C3LC50952D – volume: 105 start-page: 234104 year: 2014 ident: C7LC00046D-(cit27)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4903882 – volume: 23 start-page: 085036 year: 2014 ident: C7LC00046D-(cit31)/*[position()=1] publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/8/085036 – volume: 111 start-page: 51 year: 2004 ident: C7LC00046D-(cit83)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2003.10.013 – volume: 11 start-page: 462 year: 2002 ident: C7LC00046D-(cit103)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2002.802899 – volume: 85 start-page: 506 year: 2004 ident: C7LC00046D-(cit123)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1772862 – volume: 295 start-page: 647 year: 2002 ident: C7LC00046D-(cit99)/*[position()=1] publication-title: Science doi: 10.1126/science.1066238 – volume: 46 start-page: 1327 year: 2010 ident: C7LC00046D-(cit126)/*[position()=1] publication-title: Heat Mass Transfer doi: 10.1007/s00231-010-0658-7 – volume: 32 start-page: 333 year: 2014 ident: C7LC00046D-(cit78)/*[position()=1] publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.11.008 – volume: 13 start-page: 660 year: 2004 ident: C7LC00046D-(cit84)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2004.832184 – volume: 74 start-page: 6139 year: 2002 ident: C7LC00046D-(cit69)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac0261449 – volume: 288 start-page: 113 year: 2000 ident: C7LC00046D-(cit81)/*[position()=1] publication-title: Science doi: 10.1126/science.288.5463.113 – volume: 94 start-page: 144103 year: 2009 ident: C7LC00046D-(cit21)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3114381 – volume: 80 start-page: 77 year: 2000 ident: C7LC00046D-(cit85)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/S0924-4247(99)00298-8 – volume: 1 start-page: 1600130 year: 2016 ident: C7LC00046D-(cit121)/*[position()=1] publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600130 – volume: 19 start-page: 3632 year: 2009 ident: C7LC00046D-(cit20)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900604 – volume: 16 start-page: R13 year: 2006 ident: C7LC00046D-(cit79)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/5/R01 – start-page: 22 year: 1965 ident: C7LC00046D-(cit138)/*[position()=1] publication-title: J. Fluid Mech. – volume: 23 start-page: 144 year: 2013 ident: C7LC00046D-(cit145)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200837 – volume: 10 start-page: 98 year: 2001 ident: C7LC00046D-(cit64)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/84.911097 – volume: 12 start-page: 70 year: 2003 ident: C7LC00046D-(cit93)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2002.807467 – volume: 16 start-page: 1366 year: 2016 ident: C7LC00046D-(cit35)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC00046K – volume: 193 start-page: 246 year: 2013 ident: C7LC00046D-(cit146)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2013.01.031 – volume: 28 start-page: 604 year: 2016 ident: C7LC00046D-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503875 – volume: 60 start-page: 2479 year: 2005 ident: C7LC00046D-(cit96)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.11.033 – volume: 73 start-page: 5822 year: 2001 ident: C7LC00046D-(cit106)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac0155411 – volume: 92 start-page: 4080 year: 2002 ident: C7LC00046D-(cit92)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1504171 – volume: 111 start-page: 14047 year: 2014 ident: C7LC00046D-(cit17)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1412227111 – volume: 9 start-page: 79 year: 2009 ident: C7LC00046D-(cit80)/*[position()=1] publication-title: Lab Chip doi: 10.1039/B809673B – volume-title: Embrittlement of engineering alloys year: 2013 ident: C7LC00046D-(cit40)/*[position()=1] – volume: 404 start-page: 588 year: 2000 ident: C7LC00046D-(cit90)/*[position()=1] publication-title: Nature doi: 10.1038/35007047 – volume: 3 start-page: 031103 year: 2016 ident: C7LC00046D-(cit42)/*[position()=1] publication-title: Appl. Phys. Rev. doi: 10.1063/1.4959898 – volume: 111 start-page: 3304 year: 2014 ident: C7LC00046D-(cit71)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1319878111 – volume: 361 start-page: 252 year: 2007 ident: C7LC00046D-(cit125)/*[position()=1] publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2006.09.041 – volume: 3 start-page: 1171 year: 2013 ident: C7LC00046D-(cit124)/*[position()=1] publication-title: IEEE Trans. Compon., Packag., Manuf. Technol. doi: 10.1109/TCPMT.2013.2251931 – volume: 20 start-page: 2346 year: 2012 ident: C7LC00046D-(cit2)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.20.002346 – volume: 7 start-page: 186 year: 1997 ident: C7LC00046D-(cit59)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/7/3/028 – volume: 25 start-page: 5081 year: 2013 ident: C7LC00046D-(cit53)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201301400 – volume: 24 start-page: 3501 year: 2014 ident: C7LC00046D-(cit54)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303220 – volume: 11 start-page: 905 year: 2011 ident: C7LC00046D-(cit107)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c0lc00501k – volume: 14 start-page: 2605 year: 2014 ident: C7LC00046D-(cit114)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C4LC00078A – volume: 21 start-page: 203 year: 1990 ident: C7LC00046D-(cit58)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/0924-4247(90)85039-7 – volume: 22 start-page: 2624 year: 2012 ident: C7LC00046D-(cit10)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200324 – volume: 12 start-page: 2782 year: 2012 ident: C7LC00046D-(cit41)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c2lc21176a – start-page: 92 year: 2008 ident: C7LC00046D-(cit18)/*[position()=1] publication-title: Appl. Phys. Lett. – volume: 73 start-page: 3940 year: 2001 ident: C7LC00046D-(cit88)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac0102819 – volume: 24 start-page: 3563 year: 2003 ident: C7LC00046D-(cit45)/*[position()=1] publication-title: Electrophoresis doi: 10.1002/elps.200305584 – volume: 14 start-page: 1866 year: 2014 ident: C7LC00046D-(cit77)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C4LC00111G – volume: 10 start-page: 3227 year: 2010 ident: C7LC00046D-(cit23)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c005159d – volume: 88 start-page: 220 year: 2001 ident: C7LC00046D-(cit61)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/S0924-4247(00)00519-7 – volume: 64 start-page: 101 year: 1998 ident: C7LC00046D-(cit86)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/S0924-4247(97)01660-9 – volume: 11 start-page: 126 year: 2001 ident: C7LC00046D-(cit98)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/11/2/307 – volume: 27 start-page: 2355 year: 2015 ident: C7LC00046D-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404790 – volume: 11 start-page: 6397 year: 2015 ident: C7LC00046D-(cit7)/*[position()=1] publication-title: Small doi: 10.1002/smll.201502692 – volume: 13 start-page: 4442 year: 2013 ident: C7LC00046D-(cit29)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c3lc50833a – volume: 24 start-page: 3799 year: 2014 ident: C7LC00046D-(cit130)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201304064 – volume: 108 start-page: 164101 year: 2016 ident: C7LC00046D-(cit139)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4947272 – start-page: 7 year: 2016 ident: C7LC00046D-(cit76)/*[position()=1] publication-title: Nat. Commun. – start-page: 101 year: 2012 ident: C7LC00046D-(cit28)/*[position()=1] publication-title: Appl. Phys. Lett. – volume: 23 start-page: 1156 year: 2014 ident: C7LC00046D-(cit120)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2307358 – volume: 85 start-page: 7182 year: 2013 ident: C7LC00046D-(cit122)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac400896j – volume: 17 start-page: 128 year: 2017 ident: C7LC00046D-(cit128)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC01255H – volume: 22 start-page: 085005 year: 2013 ident: C7LC00046D-(cit132)/*[position()=1] publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/8/085005 – volume: 56 start-page: 1314 year: 2009 ident: C7LC00046D-(cit5)/*[position()=1] publication-title: IEEE Trans. Ind. Electron. Control Instrum. doi: 10.1109/TIE.2008.2006954 – volume: 20 start-page: 12119 year: 2012 ident: C7LC00046D-(cit3)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.20.012119 – volume: 8 start-page: 2173 year: 2016 ident: C7LC00046D-(cit74)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10769 – volume: 63 start-page: 178 year: 2000 ident: C7LC00046D-(cit65)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/S0925-4005(00)00355-5 – volume: 26 start-page: 1800 year: 2011 ident: C7LC00046D-(cit113)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.09.022 – volume: 15 start-page: 766 year: 2015 ident: C7LC00046D-(cit34)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C4LC01013B – volume: 77 start-page: 223 year: 1999 ident: C7LC00046D-(cit60)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/S0924-4247(99)00192-2 – volume: 4 start-page: 044102 year: 2010 ident: C7LC00046D-(cit105)/*[position()=1] publication-title: Biomicrofluidics doi: 10.1063/1.3496359 – volume: 23 start-page: 2729 year: 2002 ident: C7LC00046D-(cit117)/*[position()=1] publication-title: Electrophoresis doi: 10.1002/1522-2683(200208)23:16<2729::AID-ELPS2729>3.0.CO;2-I – volume: 77 start-page: 977 year: 2005 ident: C7LC00046D-(cit95)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.977 – volume: 28 start-page: 3791 year: 2016 ident: C7LC00046D-(cit131)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201670133 – volume: 89 start-page: 315 year: 2003 ident: C7LC00046D-(cit57)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/S0925-4005(02)00468-9 – volume: 55 start-page: 10786 year: 1997 ident: C7LC00046D-(cit8)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.55.10786 – volume: 4 start-page: 465 year: 2014 ident: C7LC00046D-(cit133)/*[position()=1] publication-title: Metals doi: 10.3390/met4040465 – volume: 9 start-page: 190 year: 2000 ident: C7LC00046D-(cit101)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/84.846699 – start-page: 117 year: 2015 ident: C7LC00046D-(cit26)/*[position()=1] publication-title: J. Appl. Phys. – volume: 76 start-page: 895 year: 2004 ident: C7LC00046D-(cit87)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac0350007 – volume: 3 start-page: 3834 year: 2015 ident: C7LC00046D-(cit43)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00330J – volume: 28 start-page: 3726 year: 2016 ident: C7LC00046D-(cit141)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201506243 – volume: 15 start-page: 3905 year: 2015 ident: C7LC00046D-(cit16)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C5LC00742A – volume: 15 start-page: R1 year: 2005 ident: C7LC00046D-(cit97)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/15/2/R01 – volume: 4 start-page: 375 year: 2008 ident: C7LC00046D-(cit108)/*[position()=1] publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-007-0188-x – volume: 25 start-page: 4445 year: 2015 ident: C7LC00046D-(cit112)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501296 – volume: 24 start-page: 1069 year: 2015 ident: C7LC00046D-(cit136)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2381555 – volume: 181 start-page: 1 year: 2006 ident: C7LC00046D-(cit50)/*[position()=1] publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2006.03.004 – volume: 69 start-page: 2035 year: 1997 ident: C7LC00046D-(cit46)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac961038q – volume: 4 start-page: 109 year: 2004 ident: C7LC00046D-(cit100)/*[position()=1] publication-title: Lab Chip doi: 10.1039/b305892a – volume: 22 start-page: 122003 year: 2010 ident: C7LC00046D-(cit140)/*[position()=1] publication-title: Phys. Fluids doi: 10.1063/1.3524533 – volume: 40 start-page: 912 year: 1982 ident: C7LC00046D-(cit72)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.92952 – volume: 27 start-page: 2648 year: 2015 ident: C7LC00046D-(cit144)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405438 – volume: 76 start-page: 3694 year: 2004 ident: C7LC00046D-(cit104)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac035220k – volume: 72 start-page: 3158 year: 2000 ident: C7LC00046D-(cit47)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac9912294 – volume: 15 start-page: 2476 year: 2015 ident: C7LC00046D-(cit137)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C5LC00415B – volume: 85 start-page: 1637 year: 2013 ident: C7LC00046D-(cit118)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac302887a – start-page: 5 year: 2015 ident: C7LC00046D-(cit33)/*[position()=1] publication-title: Sci. Rep. – start-page: 22 year: 2012 ident: C7LC00046D-(cit91)/*[position()=1] publication-title: J. Micromech. Microeng. – volume: 15 start-page: 11823 year: 2015 ident: C7LC00046D-(cit38)/*[position()=1] publication-title: Sensors doi: 10.3390/s150511823 – volume: 73 start-page: 4045 year: 2001 ident: C7LC00046D-(cit63)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac010048a – volume: 12 start-page: 3861 year: 2016 ident: C7LC00046D-(cit37)/*[position()=1] publication-title: Small doi: 10.1002/smll.201600737 – volume: 16 start-page: 1993 year: 2016 ident: C7LC00046D-(cit49)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC00284F – volume: 34 start-page: 29 year: 2013 ident: C7LC00046D-(cit116)/*[position()=1] publication-title: Electrophoresis doi: 10.1002/elps.201200396 – volume: 14 start-page: R35 year: 2004 ident: C7LC00046D-(cit56)/*[position()=1] publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/14/6/R01 – volume: 103 start-page: 7228 year: 2006 ident: C7LC00046D-(cit102)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507976103 – volume: 8 start-page: 2113 year: 2008 ident: C7LC00046D-(cit67)/*[position()=1] publication-title: Lab Chip doi: 10.1039/b811169c – volume: 12 start-page: 3961 year: 2012 ident: C7LC00046D-(cit12)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c2lc40492c – volume: 124 start-page: 384 year: 2002 ident: C7LC00046D-(cit55)/*[position()=1] publication-title: J. Fluids Eng. doi: 10.1115/1.1459075 – volume: 12 start-page: 4657 year: 2012 ident: C7LC00046D-(cit32)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c2lc40628d – volume: 2 start-page: 265 year: 2003 ident: C7LC00046D-(cit51)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat863 – volume: 9 start-page: 171 year: 2000 ident: C7LC00046D-(cit70)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/84.846697 – volume: 9 start-page: 171 year: 2000 ident: C7LC00046D-(cit73)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/84.896767 – volume: 25 start-page: 671 year: 2015 ident: C7LC00046D-(cit52)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403042 – volume: 14 start-page: 4205 year: 2014 ident: C7LC00046D-(cit25)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C4LC00762J – volume: 13 start-page: 522 year: 2013 ident: C7LC00046D-(cit94)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C2LC40954B – volume: 75 start-page: 016601 year: 2012 ident: C7LC00046D-(cit134)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/1/016601 – volume: 120 start-page: 390 year: 1954 ident: C7LC00046D-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.120.3114.390 – volume: 3 start-page: 1 year: 2015 ident: C7LC00046D-(cit14)/*[position()=1] publication-title: Micro Nano Syst. Lett. doi: 10.1186/s40486-015-0017-z – volume: 16 start-page: 3177 year: 2016 ident: C7LC00046D-(cit142)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC00712K – volume: 16 start-page: 3750 year: 2016 ident: C7LC00046D-(cit115)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC00827E – volume: 2 start-page: 169 year: 2000 ident: C7LC00046D-(cit68)/*[position()=1] publication-title: Biomed. Microdevices doi: 10.1023/A:1009905926740 |
SSID | ssj0015468 |
Score | 2.6434371 |
SecondaryResourceType | review_article |
Snippet | Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as... Several gallium-based liquid metal alloys are liquid at room temperature. As ‘liquid’, such alloys have a low viscosity and a high surface tension while as... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 974 |
SubjectTerms | Electrodes Gallium base alloys Heaters Liquid metals Liquids Mercury (metal) Microfluidics Toxicity |
Title | Liquid metal enabled microfluidics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28225135 https://www.proquest.com/docview/1870987740 https://www.proquest.com/docview/1893884461 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegEwIOCAqDjA-FjwtCGU3sJM5xKp0GhHEglcopcmxHidS1pW0O46_n2Y7TTKvQ4JKkjpVUfi_vw_49_xB6F0qp9IZ4YVEIj3AceEwBbETI_QjcGQs0ePzbeXQ2JV9m4cwyZLfVJdvimP_eW1fyP1KFNpCrqpL9B8l2D4UGuAb5whEkDMcbyTitfzW1UCzQMNBSV0HBLwWxK-dwwwLZu3LnQi0NMFXAveoMbbXcVBcMDJ6eX_lasU3FLlkH2c3sfHJVez9Z6-b0RHOjFaBuPvSbfygQftmSebGLes360wrgqhRGjfQsIYkV0MqAZ49lv81w_nTmM-6pSd8WJoZ-p3WriSFCvGaxR1hteMrjOdeFrGLnl-xa_Pn3_HSapnk2mWW30UEA-UAwQAcnk-xz2i0YhcRUPdp_bXeixcnH3bOvxh7XEgoIL9aW9kWHF9lD9KDNC9wTI-RH6JZcDNEdwxR6OUR3x5aYb4ju9_aQfIzeGCVwtRK4rRK4V5TgCZqeTrLxmdcSX3gcR3TrMSap4KMiECXTZjIOeZgwyNQZFjQuacC4L-DjCzjlI-YLOMkSg2ktIP4tMT5Eg8VyIZ8hV0pcxAWPMKOQaTIBnWOOaUBwxJKSCAe9t0OS83ZXeEVOMs81OgEn-ThOx3r4Pjnobdd3ZfZC2dvrtR3ZHAZGrT-BEi-bTe6Db0go5Bujv_VJMKWERL6DnhqxdO9SiOfQx6GDDkFOXfNOvg462n8jX4ny6AbvfI7u7b6FF2iwXTfyJQSd2-JVq3B_AKHHf4s |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+metal+enabled+microfluidics&rft.jtitle=Lab+on+a+chip&rft.au=Khoshmanesh%2C+Khashayar&rft.au=Tang%2C+Shi-Yang&rft.au=Zhu%2C+Jiu+Yang&rft.au=Schaefer%2C+Samira&rft.date=2017-03-14&rft.issn=1473-0197&rft.eissn=1473-0189&rft.volume=17&rft.issue=6&rft.spage=974&rft.epage=993&rft_id=info:doi/10.1039%2Fc7lc00046d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon |