Basins of attraction of equilibrium and boundary points of second-order difference equations
We investigate the global behaviour of the difference equation of the form with non-negative parameters and initial conditions such that . We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different...
Saved in:
Published in | Journal of difference equations and applications Vol. 20; no. 5-6; pp. 947 - 959 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.06.2014
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate the global behaviour of the difference equation of the form
with non-negative parameters and initial conditions such that
. We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters
are 0 are explained. |
---|---|
AbstractList | We investigate the global behaviour of the difference equation of the form [Image omitted.]with non-negative parameters and initial conditions such that [Image omitted.]. We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters [Image omitted.] are 0 are explained. We investigate the global behaviour of the difference equation of the form with non-negative parameters and initial conditions such that . We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters are 0 are explained. We investigate the global behaviour of the difference equation of the form ... with non-negative parameters and initial conditions such that B > 0; b + d + e + f > 0. We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters b; d; e; f are 0 are explained. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Jašarević, S. Kulenović, M.R.S. |
Author_xml | – sequence: 1 givenname: S surname: Jasarevic fullname: Jasarevic, S – sequence: 2 givenname: MRS surname: Kulenovic fullname: Kulenovic, MRS |
BookMark | eNp9kEtLAzEUhYNUsK3-AxcDbtxMvUkmmXQlWnxBwY3uhJDJJJAyTdpkBum_N2N148LVffCdw71nhiY-eIPQJYYFBgE3GAjleCkWBDBdCMZqSk_QFDNOS4YJTHKfkXJkztAspQ0AyXs-RR_3KjmfimAL1fdR6d4FP05mP7jONdEN20L5tmjC4FsVD8UuON9_C5LRwbdliK2JReusNdF4bUapGm3SOTq1qkvm4qfO0fvjw9vquVy_Pr2s7talplz0peKE1JQxzMzSVpVoNW6ACK1rKypOuAYOVihMdV0rCg0FXbdaN6y2FbCmonN0ffTdxbAfTOrl1iVtuk55E4YkcfaGGmNOMnr1B92EIfp8XaYoo4KRCjJVHSkdQ0rRWLmLbpu_lxjkGLn8jVyOkctj5Fl2e5Q5b0Pcqs8Qu1b26tCFaKPy2iVJ_3X4AhBkiSY |
CitedBy_id | crossref_primary_10_1186_s13662_015_0525_4 crossref_primary_10_1007_s12346_015_0148_x crossref_primary_10_1002_mma_3722 crossref_primary_10_1186_s13662_015_0503_x crossref_primary_10_1155_2017_1295089 |
Cites_doi | 10.1007/978-94-017-0417-5 10.1016/j.aml.2012.05.009 10.1201/9781420035353 10.1007/BF00276900 10.1155/JIA.2005.127 10.1080/10236190802054126 10.1080/10236190802125264 10.1080/10236190802040992 10.1080/10236190410001652711 10.1080/10236190412331335445 10.1080/10236199708808108 10.3934/dcds.2006.14.549 10.3934/dcdsb.2006.6.1141 10.3934/dcdsb.2009.12.133 10.1201/9781420035384 10.1142/S0218127410027118 10.1016/j.camwa.2008.10.064 10.1201/9781584887669 10.1080/10236190903049009 10.1016/0022-0396(86)90086-0 |
ContentType | Journal Article |
Copyright | 2013 Taylor & Francis 2014 Copyright Taylor & Francis Ltd. 2014 |
Copyright_xml | – notice: 2013 Taylor & Francis 2014 – notice: Copyright Taylor & Francis Ltd. 2014 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/10236198.2013.855733 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1563-5120 |
EndPage | 959 |
ExternalDocumentID | 3333797421 10_1080_10236198_2013_855733 855733 |
Genre | Articles |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29K 30N 4.4 5GY 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 D-I DGEBU DKSSO DU5 EBS EJD E~A E~B FUNRP FVPDL GTTXZ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TTHFI TWF UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ AHDZW CITATION H13 TBQAZ TDBHL TUROJ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-a622735515e9f448dc1b028cc7f84626c060f8a13c77a30b30c7dccb57f405b43 |
ISSN | 1023-6198 |
IngestDate | Fri Oct 25 06:19:12 EDT 2024 Thu Oct 10 16:07:37 EDT 2024 Fri Aug 23 01:14:31 EDT 2024 Fri Nov 24 07:34:38 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-a622735515e9f448dc1b028cc7f84626c060f8a13c77a30b30c7dccb57f405b43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1535385240 |
PQPubID | 53189 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1535385240 proquest_miscellaneous_1551071162 crossref_primary_10_1080_10236198_2013_855733 informaworld_taylorfrancis_310_1080_10236198_2013_855733 |
PublicationCentury | 2000 |
PublicationDate | 20140603 |
PublicationDateYYYYMMDD | 2014-06-03 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140603 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of difference equations and applications |
PublicationYear | 2014 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Kalabušić S. (cit0012) 2011 cit0010 Kulenović M.R.S. (cit0017) 2006; 6 Enciso E.G. (cit0007) 2006; 14 cit0015 cit0016 cit0013 cit0014 cit0023 cit0020 cit0021 Amleh A.M. (cit0001) 2008; 3 Kulenović M.R.S. (cit0022) 2006 Kulenović M.R.S. (cit0018) 2006; 6 Kalabušić S. (cit0011) 2009 Amleh A.M. (cit0002) 2008; 3 cit0008 Brett A. (cit0003) 2009; 5 cit0009 cit0006 cit0004 cit0026 cit0005 Kulenović M.R.S. (cit0019) 2009; 12 cit0027 cit0024 cit0025 |
References_xml | – volume: 3 start-page: 1 year: 2008 ident: cit0001 publication-title: Int. J. Differ. Equ. contributor: fullname: Amleh A.M. – year: 2009 ident: cit0011 publication-title: Adv. Differ. Equ. contributor: fullname: Kalabušić S. – ident: cit0024 doi: 10.1007/978-94-017-0417-5 – ident: cit0008 doi: 10.1016/j.aml.2012.05.009 – ident: cit0016 doi: 10.1201/9781420035353 – ident: cit0006 doi: 10.1007/BF00276900 – ident: cit0021 doi: 10.1155/JIA.2005.127 – ident: cit0025 doi: 10.1080/10236190802054126 – year: 2006 ident: cit0022 publication-title: Adv. Differ. Equ. contributor: fullname: Kulenović M.R.S. – ident: cit0004 doi: 10.1080/10236190802125264 – ident: cit0013 doi: 10.1080/10236190802040992 – ident: cit0023 doi: 10.1080/10236190410001652711 – ident: cit0009 doi: 10.1080/10236190412331335445 – ident: cit0027 doi: 10.1080/10236199708808108 – volume: 14 start-page: 549 year: 2006 ident: cit0007 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2006.14.549 contributor: fullname: Enciso E.G. – volume: 6 start-page: 1141 year: 2006 ident: cit0018 publication-title: Discrete Contin. Dyn. Syst. Ser. doi: 10.3934/dcdsb.2006.6.1141 contributor: fullname: Kulenović M.R.S. – volume: 5 start-page: 211 year: 2009 ident: cit0003 publication-title: Sarajevo J. Math. contributor: fullname: Brett A. – volume: 12 start-page: 133 year: 2009 ident: cit0019 publication-title: Discrete Contin. Dyn. Syst. Ser. doi: 10.3934/dcdsb.2009.12.133 contributor: fullname: Kulenović M.R.S. – ident: cit0015 doi: 10.1201/9781420035384 – year: 2011 ident: cit0012 publication-title: Adv. Differ. Equ. contributor: fullname: Kalabušić S. – volume: 3 start-page: 1 year: 2008 ident: cit0002 publication-title: Int. J. Differ. Equ. contributor: fullname: Amleh A.M. – ident: cit0020 doi: 10.1142/S0218127410027118 – volume: 6 start-page: 97 year: 2006 ident: cit0017 publication-title: Discrete Contin. Dyn. Syst. Ser. contributor: fullname: Kulenović M.R.S. – ident: cit0010 doi: 10.1016/j.camwa.2008.10.064 – ident: cit0005 doi: 10.1201/9781584887669 – ident: cit0014 doi: 10.1080/10236190903049009 – ident: cit0026 doi: 10.1016/0022-0396(86)90086-0 |
SSID | ssj0021206 |
Score | 2.055477 |
Snippet | We investigate the global behaviour of the difference equation of the form
with non-negative parameters and initial conditions such that
. We give a precise... We investigate the global behaviour of the difference equation of the form ... with non-negative parameters and initial conditions such that B > 0; b + d + e +... We investigate the global behaviour of the difference equation of the form [Image omitted.]with non-negative parameters and initial conditions such that [Image... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 947 |
SubjectTerms | Asymptotic properties Attraction attractivity basin Basins Boundaries Boundary layer difference equation Difference equations Differential equations Equilibrium invariant manifolds Mathematics Neighbouring Saddles stable manifold |
Title | Basins of attraction of equilibrium and boundary points of second-order difference equations |
URI | https://www.tandfonline.com/doi/abs/10.1080/10236198.2013.855733 https://www.proquest.com/docview/1535385240 https://search.proquest.com/docview/1551071162 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWq3QscEJ-iy4KCxA2l5MtJelxgVxVsl0srKoRk2U4s9dIsTXKAK3-c59hJXbVaAT1EtZM4ied5_GyPZwh5I9NIBSKgfpajkSdKZD4vwxxEruC0UEUxVXpz8vwmnS2TTyu6Go1-O1ZLbSMm8tfRfSX_I1XkQa56l-w_SHYoFBn4D_niCAnj-Fcyfs_rtTFj402ztVG_kSp_tOvOlr81ATBEFztp-_PtbbW2Zi-1HggXfud5c4iSgjaOW505vEPWeuxS4_DVWQkfzHJ4zbUZsdybY_3coqerbO7cRmK2Ew9h0hlIxQNUFgcxQBxDJK1KwQYwMDUxpielVa9p7INiBK7-tSmDM-q76nRqvHEeqHljF6mfoB-gDfTiSU61a8ddt9Yv5d98YVfL62u2uFwt9s-aXhy_DIMq7YzgNIK2gpo8vZh9_PZ1GLfjfbtNav0H9Tsw8-DdsVfYYzh7_m8P-vuOxCwekgdWjt6FgdIjMio3j8l9xyclUvPBkW_9hHw3EPMq5e0gplMOxDyI3-sh5hmI6UtciHk73HgDbp6S5dXl4sPMtwE5fBmneePzNALbBcem5VRhXF_IUICfSpkp0NgolUEaqJyHscwyHgciDmRWSClopjAuEEn8jJxsqk35nHhUr7_TCKUkMgl5xOVUoCJpiaKDJBRj4veVyG6N3xUWWne2faUzXenMVPqY5G5Ns6ZDpzLAZPHdt573UmG2cdcMRABUgILvjsnr4TRUr15P45uyavU16NCyMEyjs7uLeEHu7RrQOTlptm35Ely2Ea8s1v4AYIidnA |
link.rule.ids | 315,783,787,27936,27937,60214,61003 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED2kztBmaNK0QZy6qQJklStKoiSPbRHD-fJkAxkKECRFAkZRObGkIfn1uaMkw27RDs0oUEdKJI_3SN69AzjXSWgDFXA_zVDJY6tSXxqWIZDLJc9tno8sBSffTpPJPL664503Ydm6VdIe2jZEEW6tJuWmw-jOJe4L0Q0g8HeeWdEw48Tp9wp2E-L_oiiOYLrec7HQpdckCZ9Euui5v9SyZZ22uEv_WKudARrvg-o-vfE7-TmsKzXUT7-xOr7o3w7gbQtPva_NfHoHO6Y4hL0N0sL38OObLBdF6S2tJ6tq1QRG0JN5qBcugqD-5WH7nnIZm1aP3v1yUVROoKTtd-47vk-vy82iDYk2J4cfYD6-mH2f-G2OBl9HSVb5MgkRACHs4mZkcauXa6YQsmidWkQ2YaKDJLCZZJFOUxkFKgp0mmuteGoRKqo4OoJesSzMMXicrmR5iLXEOmYylHqksCe4waqDmKk--N3YiPuGikOwluG06zVBvSaaXutDtjmAonJHILbJVyKif4sOusEWrU6XAm0DWgeOEKgPZ-ti1Ea6YpGFWdb0Dq5xKWNJePL_rX-G15PZ7Y24uZxef4Q3WBI757RoAL1qVZtPCIMqdeom-jNi1fq2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRarKgY-WiqVAU6nXLHYcJ9kjBVbQllUPXYlDJct2bGlVkSyb5ND-esZOgnZbtQc4Rs7Yie3xPNszbwA-6iSyRBEephkqeWxVGkpDMwRyueS5zfOxdcHJN9PkahZ_vuW3K1H8zq3S7aFtSxTh12qn3Ivc9h5xp45tAHG_d8xio4w7Sr8XsIlAgLiZzsj0cctFI59d00mETqQPnvtHLWvGaY269K-l2tufyQ7I_stbt5Ofo6ZWI_37D1LH5_zaLmx34DQ4a2fTHmyY4jVsrVAWvoEfn2Q1L6qgtIGs62UbFuGezH0z9_EDzV2AzQfK52ta_goW5byovUDlNt956Nk-gz4zizZOtD033IfZ5PL7-VXYZWgINUuyOpRJhPAHQRc3Y4sbvVxThYBF69QirokSTRJiM0mZTlPJiGJEp7nWiqcWgaKK2VsYFGVhDiDg7kKWR1hLrGMqI6nHCnuCG6yaxFQNIeyHRixaIg5BO37TvteE6zXR9toQstXxE7U_ALFtthLB_i961I-16DS6EmgZ0DZwBEBD-PBYjLroLlhkYcrGvYMrXEppEh0-vfX38PLbxUR8vZ5-eQevsCD2nmnsCAb1sjHHiIFqdeKn-QNlH_lj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basins+of+attraction+of+equilibrium+and+boundary+points+of+second-order+difference+equations&rft.jtitle=Journal+of+difference+equations+and+applications&rft.au=Jasarevic%2C+S&rft.au=Kulenovic%2C+MRS&rft.date=2014-06-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1023-6198&rft.eissn=1563-5120&rft.volume=20&rft.issue=5-6&rft.spage=947&rft_id=info:doi/10.1080%2F10236198.2013.855733&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3333797421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-6198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-6198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-6198&client=summon |