Basins of attraction of equilibrium and boundary points of second-order difference equations

We investigate the global behaviour of the difference equation of the form with non-negative parameters and initial conditions such that . We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different...

Full description

Saved in:
Bibliographic Details
Published inJournal of difference equations and applications Vol. 20; no. 5-6; pp. 947 - 959
Main Authors Jasarevic, S, Kulenovic, MRS
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.06.2014
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate the global behaviour of the difference equation of the form with non-negative parameters and initial conditions such that . We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters are 0 are explained.
AbstractList We investigate the global behaviour of the difference equation of the form [Image omitted.]with non-negative parameters and initial conditions such that [Image omitted.]. We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters [Image omitted.] are 0 are explained.
We investigate the global behaviour of the difference equation of the form with non-negative parameters and initial conditions such that . We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters are 0 are explained.
We investigate the global behaviour of the difference equation of the form ... with non-negative parameters and initial conditions such that B > 0; b + d + e + f > 0. We give a precise description of the basins of attraction of different equilibrium points, and show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are in fact the global stable manifolds of neighbouring saddle or non-hyperbolic equilibrium points. Different types of bifurcations when one or more parameters b; d; e; f are 0 are explained. (ProQuest: ... denotes formulae/symbols omitted.)
Author Jašarević, S.
Kulenović, M.R.S.
Author_xml – sequence: 1
  givenname: S
  surname: Jasarevic
  fullname: Jasarevic, S
– sequence: 2
  givenname: MRS
  surname: Kulenovic
  fullname: Kulenovic, MRS
BookMark eNp9kEtLAzEUhYNUsK3-AxcDbtxMvUkmmXQlWnxBwY3uhJDJJJAyTdpkBum_N2N148LVffCdw71nhiY-eIPQJYYFBgE3GAjleCkWBDBdCMZqSk_QFDNOS4YJTHKfkXJkztAspQ0AyXs-RR_3KjmfimAL1fdR6d4FP05mP7jONdEN20L5tmjC4FsVD8UuON9_C5LRwbdliK2JReusNdF4bUapGm3SOTq1qkvm4qfO0fvjw9vquVy_Pr2s7talplz0peKE1JQxzMzSVpVoNW6ACK1rKypOuAYOVihMdV0rCg0FXbdaN6y2FbCmonN0ffTdxbAfTOrl1iVtuk55E4YkcfaGGmNOMnr1B92EIfp8XaYoo4KRCjJVHSkdQ0rRWLmLbpu_lxjkGLn8jVyOkctj5Fl2e5Q5b0Pcqs8Qu1b26tCFaKPy2iVJ_3X4AhBkiSY
CitedBy_id crossref_primary_10_1186_s13662_015_0525_4
crossref_primary_10_1007_s12346_015_0148_x
crossref_primary_10_1002_mma_3722
crossref_primary_10_1186_s13662_015_0503_x
crossref_primary_10_1155_2017_1295089
Cites_doi 10.1007/978-94-017-0417-5
10.1016/j.aml.2012.05.009
10.1201/9781420035353
10.1007/BF00276900
10.1155/JIA.2005.127
10.1080/10236190802054126
10.1080/10236190802125264
10.1080/10236190802040992
10.1080/10236190410001652711
10.1080/10236190412331335445
10.1080/10236199708808108
10.3934/dcds.2006.14.549
10.3934/dcdsb.2006.6.1141
10.3934/dcdsb.2009.12.133
10.1201/9781420035384
10.1142/S0218127410027118
10.1016/j.camwa.2008.10.064
10.1201/9781584887669
10.1080/10236190903049009
10.1016/0022-0396(86)90086-0
ContentType Journal Article
Copyright 2013 Taylor & Francis 2014
Copyright Taylor & Francis Ltd. 2014
Copyright_xml – notice: 2013 Taylor & Francis 2014
– notice: Copyright Taylor & Francis Ltd. 2014
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/10236198.2013.855733
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1563-5120
EndPage 959
ExternalDocumentID 3333797421
10_1080_10236198_2013_855733
855733
Genre Articles
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29K
30N
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
D-I
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
FUNRP
FVPDL
GTTXZ
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TTHFI
TWF
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
AHDZW
CITATION
H13
TBQAZ
TDBHL
TUROJ
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-a622735515e9f448dc1b028cc7f84626c060f8a13c77a30b30c7dccb57f405b43
ISSN 1023-6198
IngestDate Fri Oct 25 06:19:12 EDT 2024
Thu Oct 10 16:07:37 EDT 2024
Fri Aug 23 01:14:31 EDT 2024
Fri Nov 24 07:34:38 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5-6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-a622735515e9f448dc1b028cc7f84626c060f8a13c77a30b30c7dccb57f405b43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1535385240
PQPubID 53189
PageCount 13
ParticipantIDs proquest_journals_1535385240
proquest_miscellaneous_1551071162
crossref_primary_10_1080_10236198_2013_855733
informaworld_taylorfrancis_310_1080_10236198_2013_855733
PublicationCentury 2000
PublicationDate 20140603
PublicationDateYYYYMMDD 2014-06-03
PublicationDate_xml – month: 06
  year: 2014
  text: 20140603
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of difference equations and applications
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Kalabušić S. (cit0012) 2011
cit0010
Kulenović M.R.S. (cit0017) 2006; 6
Enciso E.G. (cit0007) 2006; 14
cit0015
cit0016
cit0013
cit0014
cit0023
cit0020
cit0021
Amleh A.M. (cit0001) 2008; 3
Kulenović M.R.S. (cit0022) 2006
Kulenović M.R.S. (cit0018) 2006; 6
Kalabušić S. (cit0011) 2009
Amleh A.M. (cit0002) 2008; 3
cit0008
Brett A. (cit0003) 2009; 5
cit0009
cit0006
cit0004
cit0026
cit0005
Kulenović M.R.S. (cit0019) 2009; 12
cit0027
cit0024
cit0025
References_xml – volume: 3
  start-page: 1
  year: 2008
  ident: cit0001
  publication-title: Int. J. Differ. Equ.
  contributor:
    fullname: Amleh A.M.
– year: 2009
  ident: cit0011
  publication-title: Adv. Differ. Equ.
  contributor:
    fullname: Kalabušić S.
– ident: cit0024
  doi: 10.1007/978-94-017-0417-5
– ident: cit0008
  doi: 10.1016/j.aml.2012.05.009
– ident: cit0016
  doi: 10.1201/9781420035353
– ident: cit0006
  doi: 10.1007/BF00276900
– ident: cit0021
  doi: 10.1155/JIA.2005.127
– ident: cit0025
  doi: 10.1080/10236190802054126
– year: 2006
  ident: cit0022
  publication-title: Adv. Differ. Equ.
  contributor:
    fullname: Kulenović M.R.S.
– ident: cit0004
  doi: 10.1080/10236190802125264
– ident: cit0013
  doi: 10.1080/10236190802040992
– ident: cit0023
  doi: 10.1080/10236190410001652711
– ident: cit0009
  doi: 10.1080/10236190412331335445
– ident: cit0027
  doi: 10.1080/10236199708808108
– volume: 14
  start-page: 549
  year: 2006
  ident: cit0007
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.14.549
  contributor:
    fullname: Enciso E.G.
– volume: 6
  start-page: 1141
  year: 2006
  ident: cit0018
  publication-title: Discrete Contin. Dyn. Syst. Ser.
  doi: 10.3934/dcdsb.2006.6.1141
  contributor:
    fullname: Kulenović M.R.S.
– volume: 5
  start-page: 211
  year: 2009
  ident: cit0003
  publication-title: Sarajevo J. Math.
  contributor:
    fullname: Brett A.
– volume: 12
  start-page: 133
  year: 2009
  ident: cit0019
  publication-title: Discrete Contin. Dyn. Syst. Ser.
  doi: 10.3934/dcdsb.2009.12.133
  contributor:
    fullname: Kulenović M.R.S.
– ident: cit0015
  doi: 10.1201/9781420035384
– year: 2011
  ident: cit0012
  publication-title: Adv. Differ. Equ.
  contributor:
    fullname: Kalabušić S.
– volume: 3
  start-page: 1
  year: 2008
  ident: cit0002
  publication-title: Int. J. Differ. Equ.
  contributor:
    fullname: Amleh A.M.
– ident: cit0020
  doi: 10.1142/S0218127410027118
– volume: 6
  start-page: 97
  year: 2006
  ident: cit0017
  publication-title: Discrete Contin. Dyn. Syst. Ser.
  contributor:
    fullname: Kulenović M.R.S.
– ident: cit0010
  doi: 10.1016/j.camwa.2008.10.064
– ident: cit0005
  doi: 10.1201/9781584887669
– ident: cit0014
  doi: 10.1080/10236190903049009
– ident: cit0026
  doi: 10.1016/0022-0396(86)90086-0
SSID ssj0021206
Score 2.055477
Snippet We investigate the global behaviour of the difference equation of the form with non-negative parameters and initial conditions such that . We give a precise...
We investigate the global behaviour of the difference equation of the form ... with non-negative parameters and initial conditions such that B > 0; b + d + e +...
We investigate the global behaviour of the difference equation of the form [Image omitted.]with non-negative parameters and initial conditions such that [Image...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 947
SubjectTerms Asymptotic properties
Attraction
attractivity
basin
Basins
Boundaries
Boundary layer
difference equation
Difference equations
Differential equations
Equilibrium
invariant manifolds
Mathematics
Neighbouring
Saddles
stable manifold
Title Basins of attraction of equilibrium and boundary points of second-order difference equations
URI https://www.tandfonline.com/doi/abs/10.1080/10236198.2013.855733
https://www.proquest.com/docview/1535385240
https://search.proquest.com/docview/1551071162
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWq3QscEJ-iy4KCxA2l5MtJelxgVxVsl0srKoRk2U4s9dIsTXKAK3-c59hJXbVaAT1EtZM4ied5_GyPZwh5I9NIBSKgfpajkSdKZD4vwxxEruC0UEUxVXpz8vwmnS2TTyu6Go1-O1ZLbSMm8tfRfSX_I1XkQa56l-w_SHYoFBn4D_niCAnj-Fcyfs_rtTFj402ztVG_kSp_tOvOlr81ATBEFztp-_PtbbW2Zi-1HggXfud5c4iSgjaOW505vEPWeuxS4_DVWQkfzHJ4zbUZsdybY_3coqerbO7cRmK2Ew9h0hlIxQNUFgcxQBxDJK1KwQYwMDUxpielVa9p7INiBK7-tSmDM-q76nRqvHEeqHljF6mfoB-gDfTiSU61a8ddt9Yv5d98YVfL62u2uFwt9s-aXhy_DIMq7YzgNIK2gpo8vZh9_PZ1GLfjfbtNav0H9Tsw8-DdsVfYYzh7_m8P-vuOxCwekgdWjt6FgdIjMio3j8l9xyclUvPBkW_9hHw3EPMq5e0gplMOxDyI3-sh5hmI6UtciHk73HgDbp6S5dXl4sPMtwE5fBmneePzNALbBcem5VRhXF_IUICfSpkp0NgolUEaqJyHscwyHgciDmRWSClopjAuEEn8jJxsqk35nHhUr7_TCKUkMgl5xOVUoCJpiaKDJBRj4veVyG6N3xUWWne2faUzXenMVPqY5G5Ns6ZDpzLAZPHdt573UmG2cdcMRABUgILvjsnr4TRUr15P45uyavU16NCyMEyjs7uLeEHu7RrQOTlptm35Ely2Ea8s1v4AYIidnA
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED2kztBmaNK0QZy6qQJklStKoiSPbRHD-fJkAxkKECRFAkZRObGkIfn1uaMkw27RDs0oUEdKJI_3SN69AzjXSWgDFXA_zVDJY6tSXxqWIZDLJc9tno8sBSffTpPJPL664503Ydm6VdIe2jZEEW6tJuWmw-jOJe4L0Q0g8HeeWdEw48Tp9wp2E-L_oiiOYLrec7HQpdckCZ9Euui5v9SyZZ22uEv_WKudARrvg-o-vfE7-TmsKzXUT7-xOr7o3w7gbQtPva_NfHoHO6Y4hL0N0sL38OObLBdF6S2tJ6tq1QRG0JN5qBcugqD-5WH7nnIZm1aP3v1yUVROoKTtd-47vk-vy82iDYk2J4cfYD6-mH2f-G2OBl9HSVb5MgkRACHs4mZkcauXa6YQsmidWkQ2YaKDJLCZZJFOUxkFKgp0mmuteGoRKqo4OoJesSzMMXicrmR5iLXEOmYylHqksCe4waqDmKk--N3YiPuGikOwluG06zVBvSaaXutDtjmAonJHILbJVyKif4sOusEWrU6XAm0DWgeOEKgPZ-ti1Ea6YpGFWdb0Dq5xKWNJePL_rX-G15PZ7Y24uZxef4Q3WBI757RoAL1qVZtPCIMqdeom-jNi1fq2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRarKgY-WiqVAU6nXLHYcJ9kjBVbQllUPXYlDJct2bGlVkSyb5ND-esZOgnZbtQc4Rs7Yie3xPNszbwA-6iSyRBEephkqeWxVGkpDMwRyueS5zfOxdcHJN9PkahZ_vuW3K1H8zq3S7aFtSxTh12qn3Ivc9h5xp45tAHG_d8xio4w7Sr8XsIlAgLiZzsj0cctFI59d00mETqQPnvtHLWvGaY269K-l2tufyQ7I_stbt5Ofo6ZWI_37D1LH5_zaLmx34DQ4a2fTHmyY4jVsrVAWvoEfn2Q1L6qgtIGs62UbFuGezH0z9_EDzV2AzQfK52ta_goW5byovUDlNt956Nk-gz4zizZOtD033IfZ5PL7-VXYZWgINUuyOpRJhPAHQRc3Y4sbvVxThYBF69QirokSTRJiM0mZTlPJiGJEp7nWiqcWgaKK2VsYFGVhDiDg7kKWR1hLrGMqI6nHCnuCG6yaxFQNIeyHRixaIg5BO37TvteE6zXR9toQstXxE7U_ALFtthLB_i961I-16DS6EmgZ0DZwBEBD-PBYjLroLlhkYcrGvYMrXEppEh0-vfX38PLbxUR8vZ5-eQevsCD2nmnsCAb1sjHHiIFqdeKn-QNlH_lj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basins+of+attraction+of+equilibrium+and+boundary+points+of+second-order+difference+equations&rft.jtitle=Journal+of+difference+equations+and+applications&rft.au=Jasarevic%2C+S&rft.au=Kulenovic%2C+MRS&rft.date=2014-06-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1023-6198&rft.eissn=1563-5120&rft.volume=20&rft.issue=5-6&rft.spage=947&rft_id=info:doi/10.1080%2F10236198.2013.855733&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3333797421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-6198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-6198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-6198&client=summon