An Accurate Method for Determining the Pre-Change Run Length Distribution of the Generalized Shiryaev-Roberts Detection Procedure
Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point d...
Saved in:
Published in | Sequential analysis Vol. 33; no. 1; pp. 112 - 134 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Group
01.01.2014
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0747-4946 1532-4176 |
DOI | 10.1080/07474946.2014.856642 |
Cover
Abstract | Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point detection. Within the latter problem's context we apply the technique to develop a numerical method to compute the generalized Shiryaev-Roberts (GSR) detection procedure's pre-change run length distribution. Specifically, the method is based on the integral equations approach and uses the collocation framework with the basis functions chosen to exploit a certain change-of-measure identity and a specific martingale property of the GSR procedure's detection statistic. As a result, the method's accuracy and robustness improve substantially, even though the method's theoretical rate of convergence is shown to be merely quadratic. A tight upper bound on the method's error is supplied as well. The method is not restricted to a particular data distribution or to a specific value of the GSR detection statistic's head start. To conclude, we offer a case study to demonstrate the proposed method at work, drawing particular attention to the method's accuracy and its robustness with respect to three factors: (1) partition size (rough vs. fine), (2) change magnitude (faint vs. contrast), and (3) average run length (ARL) to false alarm level (low vs. high). Specifically, assuming independent standard Gaussian observations undergoing a surge in the mean, we employ the method to study the GSR procedure's run length's pre-change distribution, its average (i.e., the usual ARL to false alarm), and its standard deviation. As expected from the theoretical analysis, the method's high accuracy and robustness with respect to the foregoing three factors are confirmed experimentally. We also comment on extending the method to handle other performance measures and other procedures. |
---|---|
AbstractList | Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point detection. Within the latter problem's context we apply the technique to develop a numerical method to compute the generalized Shiryaev-Roberts (GSR) detection procedure's pre-change run length distribution. Specifically, the method is based on the integral equations approach and uses the collocation framework with the basis functions chosen to exploit a certain change-of-measure identity and a specific martingale property of the GSR procedure's detection statistic. As a result, the method's accuracy and robustness improve substantially, even though the method's theoretical rate of convergence is shown to be merely quadratic. A tight upper bound on the method's error is supplied as well. The method is not restricted to a particular data distribution or to a specific value of the GSR detection statistic's head start. To conclude, we offer a case study to demonstrate the proposed method at work, drawing particular attention to the method's accuracy and its robustness with respect to three factors: (1) partition size (rough vs. fine), (2) change magnitude (faint vs. contrast), and (3) average run length (ARL) to false alarm level (low vs. high). Specifically, assuming independent standard Gaussian observations undergoing a surge in the mean, we employ the method to study the GSR procedure's run length's pre-change distribution, its average (i.e., the usual ARL to false alarm), and its standard deviation. As expected from the theoretical analysis, the method's high accuracy and robustness with respect to the foregoing three factors are confirmed experimentally. We also comment on extending the method to handle other performance measures and other procedures. [PUBLICATION ABSTRACT] Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point detection. Within the latter problem's context we apply the technique to develop a numerical method to compute the generalized Shiryaev-Roberts (GSR) detection procedure's pre-change run length distribution. Specifically, the method is based on the integral equations approach and uses the collocation framework with the basis functions chosen to exploit a certain change-of-measure identity and a specific martingale property of the GSR procedure's detection statistic. As a result, the method's accuracy and robustness improve substantially, even though the method's theoretical rate of convergence is shown to be merely quadratic. A tight upper bound on the method's error is supplied as well. The method is not restricted to a particular data distribution or to a specific value of the GSR detection statistic's head start. To conclude, we offer a case study to demonstrate the proposed method at work, drawing particular attention to the method's accuracy and its robustness with respect to three factors: (1) partition size (rough vs. fine), (2) change magnitude (faint vs. contrast), and (3) average run length (ARL) to false alarm level (low vs. high). Specifically, assuming independent standard Gaussian observations undergoing a surge in the mean, we employ the method to study the GSR procedure's run length's pre-change distribution, its average (i.e., the usual ARL to false alarm), and its standard deviation. As expected from the theoretical analysis, the method's high accuracy and robustness with respect to the foregoing three factors are confirmed experimentally. We also comment on extending the method to handle other performance measures and other procedures. |
Author | Polunchenko, Aleksey S. Sokolov, Grigory Du, Wenyu |
Author_xml | – sequence: 1 givenname: Aleksey S. surname: Polunchenko fullname: Polunchenko, Aleksey S. email: aleksey@binghamton.edu organization: Department of Mathematical Sciences , State University of New York at Binghamton – sequence: 2 givenname: Grigory surname: Sokolov fullname: Sokolov, Grigory organization: Department of Mathematics , University of Southern California – sequence: 3 givenname: Wenyu surname: Du fullname: Du, Wenyu organization: Department of Mathematical Sciences , State University of New York at Binghamton |
BookMark | eNqFkcFu1DAQhi1UJLaFN-BgiQuXLHbiOA4XtNpCQVpEVeBsOfZk11XWLmMHtL31zUl24dID-DC-fP-vGX3n5CzEAIS85GzJmWJvWCMa0Qq5LBkXS1VLKconZMHrqiwEb-QZWcxIMTPPyHlKt4xxxVmzIA-rQFfWjmgy0M-Qd9HRPiK9hAy498GHLc07oNcIxXpnwhbozRjoBsI27-ilTxl9N2YfA439kbyCAGgGfw-Oft15PBj4WdzEDjCnY6090tcYLbgR4Tl52pshwYs__wX5_uH9t_XHYvPl6tN6tSlsJVUuDHPQKdeoyrYVF8KqchpOSQDlJBddyZ2Qdnolt33PTd81gnFe9rVqpIPqgrw-9d5h_DFCynrvk4VhMAHimDSveVWzmtfNhL56hN7GEcO0neaibcqWtXKm3p4oizElhF5bn818XEbjB82Znu3ov3b0bEef7Exh8Sh8h35v8PC_2LtTzIfJ0t78ijg4nc1hiNijCdYnXf2z4TdfC6kA |
CitedBy_id | crossref_primary_10_1080_07474946_2016_1132066 crossref_primary_10_1080_03610918_2014_906611 crossref_primary_10_1002_asmb_2026 crossref_primary_10_1080_07474946_2021_1940501 crossref_primary_10_1109_TCOMM_2020_2969416 crossref_primary_10_1002_asmb_2372 crossref_primary_10_1080_03610918_2015_1039131 crossref_primary_10_1002_asmb_2181 |
Cites_doi | 10.1007/BF01303967 10.1109/CDC.2005.1582175 10.1137/1108002 10.1080/07474941003740997 10.1017/CBO9780511754678 10.2307/1403593 10.1214/aos/1176350373 10.1080/00401706.1983.10487883 10.1109/JSTSP.2012.2233713 10.1080/03610919108812948 10.1002/9781118058114 10.1109/18.737522 10.1007/978-1-4757-1862-1 10.1214/aos/1176343284 10.1137/S0040585X97985534 10.1080/01966324.1991.10737312 10.1016/j.stamet.2005.05.003 10.1137/1.9781611970302 10.1007/s11009-011-9256-5 10.1080/00401706.1966.10490374 10.4064/fm-3-1-133-181 10.2307/2333009 10.1214/aos/1176346587 10.1214/aoms/1177729489 10.1214/09-AOS775 10.1080/00401706.1959.10489860 10.1080/00401706.1982.10487759 10.1093/biomet/59.3.539 10.1007/3-7908-1687-6_5 10.1080/03610920902947774 10.1080/02664760802005878 10.1214/aoms/1177693055 10.1137/S0040585X97983742 10.5705/ss.2011.026a 10.1080/07474940802446046 10.1081/SQA-200038994 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2014 Copyright Taylor & Francis Ltd. 2014 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2014 – notice: Copyright Taylor & Francis Ltd. 2014 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07474946.2014.856642 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1532-4176 |
EndPage | 134 |
ExternalDocumentID | 3216777071 10_1080_07474946_2014_856642 856642 |
Genre | Feature |
GroupedDBID | .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c368t-a0deb8d783c93144c8244cd86ee8d614b21d46cccc21cff1afb740112f5876de3 |
ISSN | 0747-4946 |
IngestDate | Thu Sep 04 16:54:41 EDT 2025 Wed Aug 13 09:48:04 EDT 2025 Tue Jul 01 03:56:56 EDT 2025 Thu Apr 24 22:56:36 EDT 2025 Wed Dec 25 09:01:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-a0deb8d783c93144c8244cd86ee8d614b21d46cccc21cff1afb740112f5876de3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1497290967 |
PQPubID | 216170 |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1080_07474946_2014_856642 proquest_journals_1497290967 proquest_miscellaneous_1513505157 crossref_primary_10_1080_07474946_2014_856642 informaworld_taylorfrancis_310_1080_07474946_2014_856642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Sequential analysis |
PublicationYear | 2014 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | CIT0030 CIT0034 CIT0033 Poor H. V. (CIT0032) 2008 Shiryaev A. N. (CIT0036) 1961; 2 Banach S. (CIT0003) 1922; 20 CIT0035 CIT0038 Pollak M. (CIT0027) 2009; 19 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 Montgomery D. C. (CIT0019) 2012 CIT0047 CIT0046 CIT0005 CIT0049 CIT0007 CIT0006 CIT0008 CIT0050 CIT0051 Basseville M. (CIT0004) 1993 CIT0011 Kantorovich L. V. (CIT0009) 1958 Kenett R. S. (CIT0010) 1998 CIT0014 Atkinson K. (CIT0002) 2009 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 Polunchenko A. S. (CIT0031) 2012; 31 CIT0021 CIT0020 CIT0023 CIT0022 Wald A. (CIT0048) 1947 Kryloff N. (CIT0012) 1929; 11 CIT0025 CIT0024 CIT0026 CIT0029 CIT0028 |
References_xml | – volume-title: Detection of Abrupt Changes: Theory and Application year: 1993 ident: CIT0004 – volume-title: Modern Industrial Statistics: Design and Control of Quality and Reliability, year: 1998 ident: CIT0010 – ident: CIT0007 doi: 10.1007/BF01303967 – ident: CIT0039 doi: 10.1109/CDC.2005.1582175 – ident: CIT0037 doi: 10.1137/1108002 – ident: CIT0044 – ident: CIT0041 doi: 10.1080/07474941003740997 – volume-title: Quickest Detection year: 2008 ident: CIT0032 doi: 10.1017/CBO9780511754678 – ident: CIT0051 doi: 10.2307/1403593 – ident: CIT0024 doi: 10.1214/aos/1176350373 – ident: CIT0049 doi: 10.1080/00401706.1983.10487883 – volume-title: Approximate Methods of Higher Analysis, year: 1958 ident: CIT0009 – ident: CIT0045 doi: 10.1109/JSTSP.2012.2233713 – ident: CIT0006 doi: 10.1080/03610919108812948 – volume-title: Theoretical Numerical Analysis: A Functional Analysis Framework, year: 2009 ident: CIT0002 – volume: 11 start-page: 283 year: 1929 ident: CIT0012 publication-title: Comptes Rendus de l'Académie des Sciences de l’URSS – ident: CIT0035 doi: 10.1002/9781118058114 – ident: CIT0013 doi: 10.1109/18.737522 – ident: CIT0047 – ident: CIT0038 doi: 10.1007/978-1-4757-1862-1 – ident: CIT0025 doi: 10.1214/aos/1176343284 – ident: CIT0043 doi: 10.1137/S0040585X97985534 – ident: CIT0001 – volume: 2 start-page: 795 year: 1961 ident: CIT0036 publication-title: Soviet Mathematics-Doklady – ident: CIT0018 doi: 10.1080/01966324.1991.10737312 – ident: CIT0042 – ident: CIT0046 doi: 10.1016/j.stamet.2005.05.003 – ident: CIT0050 doi: 10.1137/1.9781611970302 – volume: 31 start-page: 409 year: 2012 ident: CIT0031 publication-title: Sequential Analysis – ident: CIT0030 doi: 10.1007/s11009-011-9256-5 – ident: CIT0034 doi: 10.1080/00401706.1966.10490374 – volume: 20 start-page: 133 year: 1922 ident: CIT0003 publication-title: Fundamenta Mathematicae doi: 10.4064/fm-3-1-133-181 – ident: CIT0022 doi: 10.2307/2333009 – volume-title: Sequential Analysis year: 1947 ident: CIT0048 – volume: 19 start-page: 1729 year: 2009 ident: CIT0027 publication-title: Statistica Sinica – ident: CIT0023 doi: 10.1214/aos/1176346587 – ident: CIT0008 doi: 10.1214/aoms/1177729489 – ident: CIT0029 doi: 10.1214/09-AOS775 – ident: CIT0033 doi: 10.1080/00401706.1959.10489860 – ident: CIT0016 doi: 10.1080/00401706.1982.10487759 – ident: CIT0005 doi: 10.1093/biomet/59.3.539 – ident: CIT0011 doi: 10.1007/3-7908-1687-6_5 – ident: CIT0020 doi: 10.1080/03610920902947774 – ident: CIT0017 doi: 10.1080/02664760802005878 – ident: CIT0015 doi: 10.1214/aoms/1177693055 – ident: CIT0026 doi: 10.1137/S0040585X97983742 – ident: CIT0021 doi: 10.5705/ss.2011.026a – ident: CIT0028 – ident: CIT0040 doi: 10.1080/07474940802446046 – ident: CIT0014 doi: 10.1081/SQA-200038994 – volume-title: Introduction to Statistical Quality Control, year: 2012 ident: CIT0019 |
SSID | ssj0018107 |
Score | 1.9907326 |
Snippet | Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | Accuracy Asymptotic properties Basis functions False alarms Fredholm integral equations of the second kind Mathematical models Normal distribution Numerical analysis Robustness Sequential analysis Sequential change-point detection Shiryaev-Roberts procedure Shiryaev-Roberts-r procedure Statistical methods Statistics Surges |
Title | An Accurate Method for Determining the Pre-Change Run Length Distribution of the Generalized Shiryaev-Roberts Detection Procedure |
URI | https://www.tandfonline.com/doi/abs/10.1080/07474946.2014.856642 https://www.proquest.com/docview/1497290967 https://www.proquest.com/docview/1513505157 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBWhe9keRvfFsnVDg70FFcuWLfsxrC1lJNnYEsibiSW5DRn2SOxC-9Z_s5-5K8lynKZ0H3kwwVYuie_J1ZV87rkIfZQwh0maLEjCMligcC5ILDkjKpQJJHSQoBu1_fEkOp-xz_Nw3uv96rCW6io7Fjf31pX8j1fhHPhVV8n-g2dbo3AC3oN_4QgehuNf-Xhouj3UWu1hMDatoA1r8KShuLhKqK9rRWwVweBbXQxGqrioLrXuZtvtyjEFGhHq5Y1OQy-X6-uFuiKWfL0xZm1jcVNdIBstEpfafjek7GppxAes0kkbd-EuFICOYuWKalYbHbTa7Z1yBTH4ytbMLC_KLTX5pDYkQFVc1939Ccru7E9M91qFdPhKGyOYzQlLmn1I5aKwTxi1jWFcmLZ6GTtwtDGXWh723lzQkCfBvjavWXzsOIbs1ap57UpvT76kZ7PRKJ2ezqe7V-1UD6DlnHtarOCRz7khBATepH1eFVNbmO9-jCvS1Cru93yBnSRoRyJ3LyUwec70ED1tFih4aNH2DPVU8Rw9GbfqvpsX6HZYYIc7bHGHwTbu4A7DcLzFHQbcYYs73MUdLnMzsoM7fBd3uMUdbnH3Es3OTqefzknTyoOIIIorsvCkyiAIxIFIAljDixjSSiHjSKlYQoaY-VSySMDLpyLP6SLPdKtI6uchTNdSBa_QQVEW6jXCXDAeMR76MJMwkShY8ctIUC6k8nzpJX0UuHubikbnXrdb-ZFSJ4fbeCTVHkmtR_qItJ_6aXVe_jA-7rotrQzMc4vwNHj4o0fOxWkTTDawAk9gmeslEe-jD-1lCPX6-d2iUGUNY0IahLonE3_zsIm36PH2n3iEDqp1rd5B7lxl7w1sfwM9V8Ef |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFLYQHJg5sAwzoqweiatLnTixc6xYVKCtEIs0tyixHUCgFLUJEtz45zwvqVg0gzTkaj8ndp7fYr_3PYR2FOgwRZOMJCwHB4VzSYTijOhIJWDQgYFu0fYHw7h3yY7_RE004cSHVRofunBAEVZWm81tDqObkLhdA_rOEmYiDChrC7BIGEjhuQhMd8PkYWc4vUgQ1GVMAwUxJE323F9GeaOd3mCXfpDVVgEdLqK8-XQXd3Lbrqu8LZ_eoTp-aW5LaMGbp7jr-GkZzejyB_o-mGK7TlbQc7fEXSlrgzGBB7YANYYJ4H0fWAO6EEN3fDrWxOUu4LO6xH1dXlXXeN8A9foaW3hU2J4e-vrmSSt8fn0zfsz0A3Eh3xM7rM29wDanQdVj_RNdHh5c7PWIL-RAZBiLimQdpXNgARHKJAQPTgowKqQSsdZCgX2QB1SxWMITUFkUNCtyUyiQBkUEwlrp8BeaLUelXkWYS8ZjxqMA5AiTiQZ_T8WScql0J1CdpIXC5gem0qOcm2IbdyltwFD9AqdmgVO3wC1EplT3DuXjk_7iNW-klT1dKVwplDT8N-lGw0epFxcT8L8ScHLAm-Qt9HvaDBvd3N5kpR7V0CeiYWQq8vC1_3_7NprvXQz6af9oeLKOvpkWd560gWarca03wcKq8i27h14Ay1MX3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELdQkdD2wMc-tEIBT-LVXZ04sfNYUSpgtKrGKvUtSmxnVKC0ahMk-sZ_ztlOKmDaJo28-s5xnPP5zr77HUInCvYwRaOERCwFB4VzSYTijOhARWDQgYFu0fYHw_B8zC4nweRZFr8JqzQ-dOaAIqyuNot7rrI6Iu6bwXxnETMBBpS1BRgkDJTwZgjWiQnq8zvD9T2CoC5hGjiIYamT5_7Qy4vN6QV06W-q2u4__R2U1CN3YSe37bJI23L1CtTxLZ-2i7Yr4xR3nTTtoQ2df0DvB2tk1-VH9NjNcVfK0iBM4IEtP41h_LhXhdXAToiBHI8WmrjMBfyjzPGVzn8VN7hnYHqrClt4llnKCvh6utIKX99MFw-Jvicu4Htpu7WZF9hmNKhyoT-hcf_s5-k5qco4EOmHoiBJR-kUBED4MvLBf5MCTAqpRKi1UGAdpB5VLJTweFRmGU2y1JQJpF4WgKpW2v-MGvks118Q5pLxkPHAAy3CZKTB21OhpFwq3fFUJ2oiv_5_sawwzk2pjbuY1lCo1QTHZoJjN8FNRNZcc4fx8Q968Vw04sKerWSuEErs_521VYtRXCmLJXhfEbg44EvyJvq6boZlbu5uklzPSqAJqB-Yejx8___ffoy2Rr1-fHUx_H6A3pkGd5jUQo1iUepDMK-K9MiuoCc9SxaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Accurate+Method+for+Determining+the+Pre-Change+Run+Length+Distribution+of+the+Generalized+Shiryaev-Roberts+Detection+Procedure&rft.jtitle=Sequential+analysis&rft.au=Polunchenko%2C+Aleksey+S&rft.au=Sokolov%2C+Grigory&rft.au=Du%2C+Wenyu&rft.date=2014-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=33&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1080%2F07474946.2014.856642&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3216777071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon |