An Accurate Method for Determining the Pre-Change Run Length Distribution of the Generalized Shiryaev-Roberts Detection Procedure

Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point d...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 33; no. 1; pp. 112 - 134
Main Authors Polunchenko, Aleksey S., Sokolov, Grigory, Du, Wenyu
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 01.01.2014
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0747-4946
1532-4176
DOI10.1080/07474946.2014.856642

Cover

Abstract Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point detection. Within the latter problem's context we apply the technique to develop a numerical method to compute the generalized Shiryaev-Roberts (GSR) detection procedure's pre-change run length distribution. Specifically, the method is based on the integral equations approach and uses the collocation framework with the basis functions chosen to exploit a certain change-of-measure identity and a specific martingale property of the GSR procedure's detection statistic. As a result, the method's accuracy and robustness improve substantially, even though the method's theoretical rate of convergence is shown to be merely quadratic. A tight upper bound on the method's error is supplied as well. The method is not restricted to a particular data distribution or to a specific value of the GSR detection statistic's head start. To conclude, we offer a case study to demonstrate the proposed method at work, drawing particular attention to the method's accuracy and its robustness with respect to three factors: (1) partition size (rough vs. fine), (2) change magnitude (faint vs. contrast), and (3) average run length (ARL) to false alarm level (low vs. high). Specifically, assuming independent standard Gaussian observations undergoing a surge in the mean, we employ the method to study the GSR procedure's run length's pre-change distribution, its average (i.e., the usual ARL to false alarm), and its standard deviation. As expected from the theoretical analysis, the method's high accuracy and robustness with respect to the foregoing three factors are confirmed experimentally. We also comment on extending the method to handle other performance measures and other procedures.
AbstractList Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point detection. Within the latter problem's context we apply the technique to develop a numerical method to compute the generalized Shiryaev-Roberts (GSR) detection procedure's pre-change run length distribution. Specifically, the method is based on the integral equations approach and uses the collocation framework with the basis functions chosen to exploit a certain change-of-measure identity and a specific martingale property of the GSR procedure's detection statistic. As a result, the method's accuracy and robustness improve substantially, even though the method's theoretical rate of convergence is shown to be merely quadratic. A tight upper bound on the method's error is supplied as well. The method is not restricted to a particular data distribution or to a specific value of the GSR detection statistic's head start. To conclude, we offer a case study to demonstrate the proposed method at work, drawing particular attention to the method's accuracy and its robustness with respect to three factors: (1) partition size (rough vs. fine), (2) change magnitude (faint vs. contrast), and (3) average run length (ARL) to false alarm level (low vs. high). Specifically, assuming independent standard Gaussian observations undergoing a surge in the mean, we employ the method to study the GSR procedure's run length's pre-change distribution, its average (i.e., the usual ARL to false alarm), and its standard deviation. As expected from the theoretical analysis, the method's high accuracy and robustness with respect to the foregoing three factors are confirmed experimentally. We also comment on extending the method to handle other performance measures and other procedures. [PUBLICATION ABSTRACT]
Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point detection. Within the latter problem's context we apply the technique to develop a numerical method to compute the generalized Shiryaev-Roberts (GSR) detection procedure's pre-change run length distribution. Specifically, the method is based on the integral equations approach and uses the collocation framework with the basis functions chosen to exploit a certain change-of-measure identity and a specific martingale property of the GSR procedure's detection statistic. As a result, the method's accuracy and robustness improve substantially, even though the method's theoretical rate of convergence is shown to be merely quadratic. A tight upper bound on the method's error is supplied as well. The method is not restricted to a particular data distribution or to a specific value of the GSR detection statistic's head start. To conclude, we offer a case study to demonstrate the proposed method at work, drawing particular attention to the method's accuracy and its robustness with respect to three factors: (1) partition size (rough vs. fine), (2) change magnitude (faint vs. contrast), and (3) average run length (ARL) to false alarm level (low vs. high). Specifically, assuming independent standard Gaussian observations undergoing a surge in the mean, we employ the method to study the GSR procedure's run length's pre-change distribution, its average (i.e., the usual ARL to false alarm), and its standard deviation. As expected from the theoretical analysis, the method's high accuracy and robustness with respect to the foregoing three factors are confirmed experimentally. We also comment on extending the method to handle other performance measures and other procedures.
Author Polunchenko, Aleksey S.
Sokolov, Grigory
Du, Wenyu
Author_xml – sequence: 1
  givenname: Aleksey S.
  surname: Polunchenko
  fullname: Polunchenko, Aleksey S.
  email: aleksey@binghamton.edu
  organization: Department of Mathematical Sciences , State University of New York at Binghamton
– sequence: 2
  givenname: Grigory
  surname: Sokolov
  fullname: Sokolov, Grigory
  organization: Department of Mathematics , University of Southern California
– sequence: 3
  givenname: Wenyu
  surname: Du
  fullname: Du, Wenyu
  organization: Department of Mathematical Sciences , State University of New York at Binghamton
BookMark eNqFkcFu1DAQhi1UJLaFN-BgiQuXLHbiOA4XtNpCQVpEVeBsOfZk11XWLmMHtL31zUl24dID-DC-fP-vGX3n5CzEAIS85GzJmWJvWCMa0Qq5LBkXS1VLKconZMHrqiwEb-QZWcxIMTPPyHlKt4xxxVmzIA-rQFfWjmgy0M-Qd9HRPiK9hAy498GHLc07oNcIxXpnwhbozRjoBsI27-ilTxl9N2YfA439kbyCAGgGfw-Oft15PBj4WdzEDjCnY6090tcYLbgR4Tl52pshwYs__wX5_uH9t_XHYvPl6tN6tSlsJVUuDHPQKdeoyrYVF8KqchpOSQDlJBddyZ2Qdnolt33PTd81gnFe9rVqpIPqgrw-9d5h_DFCynrvk4VhMAHimDSveVWzmtfNhL56hN7GEcO0neaibcqWtXKm3p4oizElhF5bn818XEbjB82Znu3ov3b0bEef7Exh8Sh8h35v8PC_2LtTzIfJ0t78ijg4nc1hiNijCdYnXf2z4TdfC6kA
CitedBy_id crossref_primary_10_1080_07474946_2016_1132066
crossref_primary_10_1080_03610918_2014_906611
crossref_primary_10_1002_asmb_2026
crossref_primary_10_1080_07474946_2021_1940501
crossref_primary_10_1109_TCOMM_2020_2969416
crossref_primary_10_1002_asmb_2372
crossref_primary_10_1080_03610918_2015_1039131
crossref_primary_10_1002_asmb_2181
Cites_doi 10.1007/BF01303967
10.1109/CDC.2005.1582175
10.1137/1108002
10.1080/07474941003740997
10.1017/CBO9780511754678
10.2307/1403593
10.1214/aos/1176350373
10.1080/00401706.1983.10487883
10.1109/JSTSP.2012.2233713
10.1080/03610919108812948
10.1002/9781118058114
10.1109/18.737522
10.1007/978-1-4757-1862-1
10.1214/aos/1176343284
10.1137/S0040585X97985534
10.1080/01966324.1991.10737312
10.1016/j.stamet.2005.05.003
10.1137/1.9781611970302
10.1007/s11009-011-9256-5
10.1080/00401706.1966.10490374
10.4064/fm-3-1-133-181
10.2307/2333009
10.1214/aos/1176346587
10.1214/aoms/1177729489
10.1214/09-AOS775
10.1080/00401706.1959.10489860
10.1080/00401706.1982.10487759
10.1093/biomet/59.3.539
10.1007/3-7908-1687-6_5
10.1080/03610920902947774
10.1080/02664760802005878
10.1214/aoms/1177693055
10.1137/S0040585X97983742
10.5705/ss.2011.026a
10.1080/07474940802446046
10.1081/SQA-200038994
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2014
Copyright Taylor & Francis Ltd. 2014
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2014
– notice: Copyright Taylor & Francis Ltd. 2014
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07474946.2014.856642
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1532-4176
EndPage 134
ExternalDocumentID 3216777071
10_1080_07474946_2014_856642
856642
Genre Feature
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c368t-a0deb8d783c93144c8244cd86ee8d614b21d46cccc21cff1afb740112f5876de3
ISSN 0747-4946
IngestDate Thu Sep 04 16:54:41 EDT 2025
Wed Aug 13 09:48:04 EDT 2025
Tue Jul 01 03:56:56 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
Wed Dec 25 09:01:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-a0deb8d783c93144c8244cd86ee8d614b21d46cccc21cff1afb740112f5876de3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1497290967
PQPubID 216170
PageCount 23
ParticipantIDs crossref_citationtrail_10_1080_07474946_2014_856642
proquest_journals_1497290967
proquest_miscellaneous_1513505157
crossref_primary_10_1080_07474946_2014_856642
informaworld_taylorfrancis_310_1080_07474946_2014_856642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Sequential analysis
PublicationYear 2014
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0030
CIT0034
CIT0033
Poor H. V. (CIT0032) 2008
Shiryaev A. N. (CIT0036) 1961; 2
Banach S. (CIT0003) 1922; 20
CIT0035
CIT0038
Pollak M. (CIT0027) 2009; 19
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
Montgomery D. C. (CIT0019) 2012
CIT0047
CIT0046
CIT0005
CIT0049
CIT0007
CIT0006
CIT0008
CIT0050
CIT0051
Basseville M. (CIT0004) 1993
CIT0011
Kantorovich L. V. (CIT0009) 1958
Kenett R. S. (CIT0010) 1998
CIT0014
Atkinson K. (CIT0002) 2009
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
Polunchenko A. S. (CIT0031) 2012; 31
CIT0021
CIT0020
CIT0023
CIT0022
Wald A. (CIT0048) 1947
Kryloff N. (CIT0012) 1929; 11
CIT0025
CIT0024
CIT0026
CIT0029
CIT0028
References_xml – volume-title: Detection of Abrupt Changes: Theory and Application
  year: 1993
  ident: CIT0004
– volume-title: Modern Industrial Statistics: Design and Control of Quality and Reliability,
  year: 1998
  ident: CIT0010
– ident: CIT0007
  doi: 10.1007/BF01303967
– ident: CIT0039
  doi: 10.1109/CDC.2005.1582175
– ident: CIT0037
  doi: 10.1137/1108002
– ident: CIT0044
– ident: CIT0041
  doi: 10.1080/07474941003740997
– volume-title: Quickest Detection
  year: 2008
  ident: CIT0032
  doi: 10.1017/CBO9780511754678
– ident: CIT0051
  doi: 10.2307/1403593
– ident: CIT0024
  doi: 10.1214/aos/1176350373
– ident: CIT0049
  doi: 10.1080/00401706.1983.10487883
– volume-title: Approximate Methods of Higher Analysis,
  year: 1958
  ident: CIT0009
– ident: CIT0045
  doi: 10.1109/JSTSP.2012.2233713
– ident: CIT0006
  doi: 10.1080/03610919108812948
– volume-title: Theoretical Numerical Analysis: A Functional Analysis Framework,
  year: 2009
  ident: CIT0002
– volume: 11
  start-page: 283
  year: 1929
  ident: CIT0012
  publication-title: Comptes Rendus de l'Académie des Sciences de l’URSS
– ident: CIT0035
  doi: 10.1002/9781118058114
– ident: CIT0013
  doi: 10.1109/18.737522
– ident: CIT0047
– ident: CIT0038
  doi: 10.1007/978-1-4757-1862-1
– ident: CIT0025
  doi: 10.1214/aos/1176343284
– ident: CIT0043
  doi: 10.1137/S0040585X97985534
– ident: CIT0001
– volume: 2
  start-page: 795
  year: 1961
  ident: CIT0036
  publication-title: Soviet Mathematics-Doklady
– ident: CIT0018
  doi: 10.1080/01966324.1991.10737312
– ident: CIT0042
– ident: CIT0046
  doi: 10.1016/j.stamet.2005.05.003
– ident: CIT0050
  doi: 10.1137/1.9781611970302
– volume: 31
  start-page: 409
  year: 2012
  ident: CIT0031
  publication-title: Sequential Analysis
– ident: CIT0030
  doi: 10.1007/s11009-011-9256-5
– ident: CIT0034
  doi: 10.1080/00401706.1966.10490374
– volume: 20
  start-page: 133
  year: 1922
  ident: CIT0003
  publication-title: Fundamenta Mathematicae
  doi: 10.4064/fm-3-1-133-181
– ident: CIT0022
  doi: 10.2307/2333009
– volume-title: Sequential Analysis
  year: 1947
  ident: CIT0048
– volume: 19
  start-page: 1729
  year: 2009
  ident: CIT0027
  publication-title: Statistica Sinica
– ident: CIT0023
  doi: 10.1214/aos/1176346587
– ident: CIT0008
  doi: 10.1214/aoms/1177729489
– ident: CIT0029
  doi: 10.1214/09-AOS775
– ident: CIT0033
  doi: 10.1080/00401706.1959.10489860
– ident: CIT0016
  doi: 10.1080/00401706.1982.10487759
– ident: CIT0005
  doi: 10.1093/biomet/59.3.539
– ident: CIT0011
  doi: 10.1007/3-7908-1687-6_5
– ident: CIT0020
  doi: 10.1080/03610920902947774
– ident: CIT0017
  doi: 10.1080/02664760802005878
– ident: CIT0015
  doi: 10.1214/aoms/1177693055
– ident: CIT0026
  doi: 10.1137/S0040585X97983742
– ident: CIT0021
  doi: 10.5705/ss.2011.026a
– ident: CIT0028
– ident: CIT0040
  doi: 10.1080/07474940802446046
– ident: CIT0014
  doi: 10.1081/SQA-200038994
– volume-title: Introduction to Statistical Quality Control,
  year: 2012
  ident: CIT0019
SSID ssj0018107
Score 1.9907326
Snippet Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald's likelihood ratio identity, the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms Accuracy
Asymptotic properties
Basis functions
False alarms
Fredholm integral equations of the second kind
Mathematical models
Normal distribution
Numerical analysis
Robustness
Sequential analysis
Sequential change-point detection
Shiryaev-Roberts procedure
Shiryaev-Roberts-r procedure
Statistical methods
Statistics
Surges
Title An Accurate Method for Determining the Pre-Change Run Length Distribution of the Generalized Shiryaev-Roberts Detection Procedure
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2014.856642
https://www.proquest.com/docview/1497290967
https://www.proquest.com/docview/1513505157
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBWhe9keRvfFsnVDg70FFcuWLfsxrC1lJNnYEsibiSW5DRn2SOxC-9Z_s5-5K8lynKZ0H3kwwVYuie_J1ZV87rkIfZQwh0maLEjCMligcC5ILDkjKpQJJHSQoBu1_fEkOp-xz_Nw3uv96rCW6io7Fjf31pX8j1fhHPhVV8n-g2dbo3AC3oN_4QgehuNf-Xhouj3UWu1hMDatoA1r8KShuLhKqK9rRWwVweBbXQxGqrioLrXuZtvtyjEFGhHq5Y1OQy-X6-uFuiKWfL0xZm1jcVNdIBstEpfafjek7GppxAes0kkbd-EuFICOYuWKalYbHbTa7Z1yBTH4ytbMLC_KLTX5pDYkQFVc1939Ccru7E9M91qFdPhKGyOYzQlLmn1I5aKwTxi1jWFcmLZ6GTtwtDGXWh723lzQkCfBvjavWXzsOIbs1ap57UpvT76kZ7PRKJ2ezqe7V-1UD6DlnHtarOCRz7khBATepH1eFVNbmO9-jCvS1Cru93yBnSRoRyJ3LyUwec70ED1tFih4aNH2DPVU8Rw9GbfqvpsX6HZYYIc7bHGHwTbu4A7DcLzFHQbcYYs73MUdLnMzsoM7fBd3uMUdbnH3Es3OTqefzknTyoOIIIorsvCkyiAIxIFIAljDixjSSiHjSKlYQoaY-VSySMDLpyLP6SLPdKtI6uchTNdSBa_QQVEW6jXCXDAeMR76MJMwkShY8ctIUC6k8nzpJX0UuHubikbnXrdb-ZFSJ4fbeCTVHkmtR_qItJ_6aXVe_jA-7rotrQzMc4vwNHj4o0fOxWkTTDawAk9gmeslEe-jD-1lCPX6-d2iUGUNY0IahLonE3_zsIm36PH2n3iEDqp1rd5B7lxl7w1sfwM9V8Ef
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFLYQHJg5sAwzoqweiatLnTixc6xYVKCtEIs0tyixHUCgFLUJEtz45zwvqVg0gzTkaj8ndp7fYr_3PYR2FOgwRZOMJCwHB4VzSYTijOhIJWDQgYFu0fYHw7h3yY7_RE004cSHVRofunBAEVZWm81tDqObkLhdA_rOEmYiDChrC7BIGEjhuQhMd8PkYWc4vUgQ1GVMAwUxJE323F9GeaOd3mCXfpDVVgEdLqK8-XQXd3Lbrqu8LZ_eoTp-aW5LaMGbp7jr-GkZzejyB_o-mGK7TlbQc7fEXSlrgzGBB7YANYYJ4H0fWAO6EEN3fDrWxOUu4LO6xH1dXlXXeN8A9foaW3hU2J4e-vrmSSt8fn0zfsz0A3Eh3xM7rM29wDanQdVj_RNdHh5c7PWIL-RAZBiLimQdpXNgARHKJAQPTgowKqQSsdZCgX2QB1SxWMITUFkUNCtyUyiQBkUEwlrp8BeaLUelXkWYS8ZjxqMA5AiTiQZ_T8WScql0J1CdpIXC5gem0qOcm2IbdyltwFD9AqdmgVO3wC1EplT3DuXjk_7iNW-klT1dKVwplDT8N-lGw0epFxcT8L8ScHLAm-Qt9HvaDBvd3N5kpR7V0CeiYWQq8vC1_3_7NprvXQz6af9oeLKOvpkWd560gWarca03wcKq8i27h14Ay1MX3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELdQkdD2wMc-tEIBT-LVXZ04sfNYUSpgtKrGKvUtSmxnVKC0ahMk-sZ_ztlOKmDaJo28-s5xnPP5zr77HUInCvYwRaOERCwFB4VzSYTijOhARWDQgYFu0fYHw_B8zC4nweRZFr8JqzQ-dOaAIqyuNot7rrI6Iu6bwXxnETMBBpS1BRgkDJTwZgjWiQnq8zvD9T2CoC5hGjiIYamT5_7Qy4vN6QV06W-q2u4__R2U1CN3YSe37bJI23L1CtTxLZ-2i7Yr4xR3nTTtoQ2df0DvB2tk1-VH9NjNcVfK0iBM4IEtP41h_LhXhdXAToiBHI8WmrjMBfyjzPGVzn8VN7hnYHqrClt4llnKCvh6utIKX99MFw-Jvicu4Htpu7WZF9hmNKhyoT-hcf_s5-k5qco4EOmHoiBJR-kUBED4MvLBf5MCTAqpRKi1UGAdpB5VLJTweFRmGU2y1JQJpF4WgKpW2v-MGvks118Q5pLxkPHAAy3CZKTB21OhpFwq3fFUJ2oiv_5_sawwzk2pjbuY1lCo1QTHZoJjN8FNRNZcc4fx8Q968Vw04sKerWSuEErs_521VYtRXCmLJXhfEbg44EvyJvq6boZlbu5uklzPSqAJqB-Yejx8___ffoy2Rr1-fHUx_H6A3pkGd5jUQo1iUepDMK-K9MiuoCc9SxaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Accurate+Method+for+Determining+the+Pre-Change+Run+Length+Distribution+of+the+Generalized+Shiryaev-Roberts+Detection+Procedure&rft.jtitle=Sequential+analysis&rft.au=Polunchenko%2C+Aleksey+S&rft.au=Sokolov%2C+Grigory&rft.au=Du%2C+Wenyu&rft.date=2014-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=33&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1080%2F07474946.2014.856642&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3216777071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon