A multimodal approach to estimating vigilance using EEG and forehead EOG

Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained f...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 14; no. 2; pp. 26017 - 26030
Main Authors Zheng, Wei-Long, Lu, Bao-Liang
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2017
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/aa5a98

Cover

Loading…
Abstract Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
AbstractList Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals.OBJECTIVECovert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals.The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency.APPROACHThe PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency.We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states.MAIN RESULTSWe propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states.The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.SIGNIFICANCEThe forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
Author Lu, Bao-Liang
Zheng, Wei-Long
Author_xml – sequence: 1
  givenname: Wei-Long
  surname: Zheng
  fullname: Zheng, Wei-Long
  email: weilong@sjtu.edu.cn
  organization: Shanghai Jiao Tong University Center for Brain-like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai, People's Republic of China
– sequence: 2
  givenname: Bao-Liang
  surname: Lu
  fullname: Lu, Bao-Liang
  email: bllu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University Brain Science and Technology Research Center, Shanghai, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28102833$$D View this record in MEDLINE/PubMed
BookMark eNp9kL1PwzAQxS1URD9gZ0LeYKDUl8SOM1ZVaJEqdYHZchynTZXEIU6Q-O9xlNIBoU6-O_2e9d6bolFlKo3QPZAXIJwvIAxg7lHqLaSkMuJXaHI-jc4zI2M0tfZIiA9hRG7Q2ONAPO77E7RZ4rIr2rw0qSywrOvGSHXArcHauqts82qPv_J9XshKadzZfo_jNZZVijPT6IOWKY5361t0ncnC6rvTO0Mfr_H7ajPf7tZvq-V2rnzG23kUQJSmkVSUkIwENOCScu5RjzCAJILUbZnmPg1loiLOslAFLkACjIR-JMGfoafhX-f0s3MmRZlbpQvnT5vOCuAMaMiBMoc-nNAuKXUq6sYFar7Fb3oHkAFQjbG20dkZASL6gkXfoOjbFEPBTsL-SFTeupZM1TYyLy4JnwdhbmpxNF1TuZYu4Y__4MdKCwiEJ4jHCISiTjP_B7arl08
CODEN JNEIEZ
CitedBy_id crossref_primary_10_3390_s22134914
crossref_primary_10_1057_s41599_024_03691_1
crossref_primary_10_34172_jrcm_34638
crossref_primary_10_3390_s20051340
crossref_primary_10_3390_e23101316
crossref_primary_10_1007_s11571_024_10105_0
crossref_primary_10_32604_cmc_2022_022553
crossref_primary_10_1016_j_compbiomed_2021_104696
crossref_primary_10_1109_TIM_2023_3307756
crossref_primary_10_1109_JSEN_2024_3494745
crossref_primary_10_1155_2017_2107451
crossref_primary_10_1016_j_engappai_2022_105309
crossref_primary_10_1088_1741_2552_ad1ac1
crossref_primary_10_1109_JBHI_2024_3519730
crossref_primary_10_3390_s22031100
crossref_primary_10_3390_s22052069
crossref_primary_10_1016_j_bmt_2024_10_003
crossref_primary_10_1109_JBHI_2021_3096984
crossref_primary_10_1109_JSEN_2021_3058658
crossref_primary_10_1109_TBCAS_2021_3060617
crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_1109_TITS_2024_3442249
crossref_primary_10_1016_j_bspc_2020_102075
crossref_primary_10_1109_TCYB_2019_2940509
crossref_primary_10_1016_j_neucom_2024_128961
crossref_primary_10_1109_ACCESS_2024_3460393
crossref_primary_10_1016_j_compbiolchem_2023_107863
crossref_primary_10_3390_s18072074
crossref_primary_10_1109_JBHI_2024_3377373
crossref_primary_10_1109_TITS_2022_3189346
crossref_primary_10_3390_electronics13101798
crossref_primary_10_1016_j_engappai_2023_106237
crossref_primary_10_1063_5_0133092
crossref_primary_10_1016_j_dsp_2024_104856
crossref_primary_10_1109_TIM_2021_3094619
crossref_primary_10_1109_JSEN_2021_3077021
crossref_primary_10_1109_TCYB_2020_3022647
crossref_primary_10_1016_j_bspc_2024_106685
crossref_primary_10_1145_3614442
crossref_primary_10_1016_j_neunet_2024_106767
crossref_primary_10_1088_1741_2552_acf345
crossref_primary_10_3389_fphys_2023_1196919
crossref_primary_10_1109_ACCESS_2023_3296382
crossref_primary_10_1016_j_eswa_2023_120177
crossref_primary_10_3390_s22207824
crossref_primary_10_1007_s11517_024_03033_y
crossref_primary_10_1038_s41597_024_03729_8
crossref_primary_10_1109_TIM_2022_3214265
crossref_primary_10_1063_5_0056139
crossref_primary_10_1016_j_ifacol_2021_04_188
crossref_primary_10_1109_JSEN_2023_3303441
crossref_primary_10_1007_s13755_024_00271_0
crossref_primary_10_1016_j_engappai_2023_107660
crossref_primary_10_1049_sil2_12076
crossref_primary_10_1016_j_ipm_2023_103614
crossref_primary_10_1007_s00521_022_07466_0
crossref_primary_10_1109_ACCESS_2022_3185251
crossref_primary_10_1016_j_neucom_2023_126709
crossref_primary_10_1109_TCDS_2018_2889223
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_1109_TIM_2024_3451583
crossref_primary_10_1109_ACCESS_2020_3009226
crossref_primary_10_1155_2020_8875426
crossref_primary_10_1109_ACCESS_2022_3151372
crossref_primary_10_3390_brainsci13040638
crossref_primary_10_3390_s23052455
crossref_primary_10_4108_eetpht_8_3432
crossref_primary_10_1049_ell2_12275
crossref_primary_10_1109_ACCESS_2025_3545094
crossref_primary_10_1109_TNSRE_2021_3089594
crossref_primary_10_1007_s00530_021_00786_6
crossref_primary_10_1007_s00521_023_08343_0
crossref_primary_10_1109_TCSII_2022_3211931
crossref_primary_10_3389_fnins_2022_985709
crossref_primary_10_1007_s11042_023_15054_0
crossref_primary_10_1109_JBHI_2024_3446952
crossref_primary_10_1109_ACCESS_2021_3068343
crossref_primary_10_3390_s20247083
crossref_primary_10_1016_j_compbiomed_2021_104350
crossref_primary_10_1016_j_jneumeth_2023_109983
crossref_primary_10_3389_fnrgo_2020_606719
crossref_primary_10_1109_TCSVT_2021_3061719
crossref_primary_10_1016_j_neucom_2019_05_108
crossref_primary_10_1016_j_bspc_2023_105411
crossref_primary_10_3390_brainsci14050436
crossref_primary_10_1080_03772063_2021_1913070
crossref_primary_10_1109_ACCESS_2019_2915533
crossref_primary_10_1016_j_aei_2021_101359
crossref_primary_10_1016_j_knosys_2021_108047
crossref_primary_10_3390_s21010056
crossref_primary_10_1109_TETCI_2018_2848289
crossref_primary_10_1109_TIM_2022_3216409
crossref_primary_10_1109_TCDS_2021_3061564
crossref_primary_10_1109_TCDS_2021_3082803
crossref_primary_10_3389_fnins_2023_1275065
crossref_primary_10_1109_TITS_2021_3120435
crossref_primary_10_1109_JBHI_2023_3285268
crossref_primary_10_1088_1741_2552_ad546d
crossref_primary_10_1016_j_artmed_2024_102996
crossref_primary_10_3390_app9235004
crossref_primary_10_1016_j_bspc_2024_107262
crossref_primary_10_1007_s11633_024_1492_6
crossref_primary_10_1016_j_bspc_2023_105488
crossref_primary_10_3389_fnins_2021_738167
crossref_primary_10_1016_j_bspc_2023_104831
crossref_primary_10_1016_j_eswa_2019_02_005
crossref_primary_10_1155_2024_9898333
crossref_primary_10_1007_s13246_021_01020_3
crossref_primary_10_1109_TNSRE_2022_3175464
crossref_primary_10_7717_peerj_15744
crossref_primary_10_1007_s12559_023_10233_5
crossref_primary_10_1016_j_measurement_2024_115940
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_3390_s20164551
crossref_primary_10_1007_s10044_019_00860_w
crossref_primary_10_1109_MCI_2021_3061875
crossref_primary_10_3390_bioengineering10010054
crossref_primary_10_1016_j_jneumeth_2025_110385
crossref_primary_10_3389_fncom_2019_00053
crossref_primary_10_1088_2057_1976_ad0f3f
crossref_primary_10_1109_ACCESS_2018_2811723
crossref_primary_10_1109_TCDS_2019_2963073
crossref_primary_10_26599_BSA_2020_9050026
crossref_primary_10_1109_JSEN_2024_3406047
crossref_primary_10_1515_bmt_2022_0354
crossref_primary_10_1002_jsid_667
crossref_primary_10_1007_s11571_021_09714_w
crossref_primary_10_1016_j_aei_2024_102575
crossref_primary_10_3390_s21175746
crossref_primary_10_1109_TBME_2023_3328942
crossref_primary_10_1109_TETCI_2023_3332549
crossref_primary_10_3934_Neuroscience_2024006
crossref_primary_10_3389_fnins_2023_1136609
crossref_primary_10_1016_j_bspc_2024_107132
crossref_primary_10_1109_THMS_2019_2938156
crossref_primary_10_1145_3654664
crossref_primary_10_1109_JSEN_2023_3273556
crossref_primary_10_1016_j_cmpb_2023_107773
crossref_primary_10_1007_s11831_023_09920_1
crossref_primary_10_1109_JSEN_2018_2883497
crossref_primary_10_3390_s21041255
crossref_primary_10_1109_TITS_2018_2889962
crossref_primary_10_3390_mti6060047
crossref_primary_10_1038_s41598_025_86234_1
crossref_primary_10_1038_s41598_023_43477_0
crossref_primary_10_1016_j_bspc_2024_106770
crossref_primary_10_3390_computers13100246
crossref_primary_10_1109_TAFFC_2020_2981440
crossref_primary_10_1016_j_dsp_2022_103433
crossref_primary_10_1016_j_neucom_2020_12_026
crossref_primary_10_1016_j_bspc_2023_105045
crossref_primary_10_1177_1071181322661512
crossref_primary_10_1109_JPROC_2023_3277471
crossref_primary_10_1063_1_5120538
crossref_primary_10_1016_j_bspc_2023_104744
crossref_primary_10_1016_j_compbiomed_2022_106431
crossref_primary_10_1016_j_neunet_2024_106617
crossref_primary_10_1109_TCYB_2021_3123842
crossref_primary_10_3389_fnbot_2021_796895
crossref_primary_10_3390_s21103439
crossref_primary_10_1016_j_chaos_2021_110671
crossref_primary_10_1109_TNNLS_2022_3190448
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1109_TNNLS_2018_2886414
crossref_primary_10_1109_JBHI_2020_2980056
crossref_primary_10_1155_2021_7799793
crossref_primary_10_1016_j_engappai_2024_109825
crossref_primary_10_1016_j_engappai_2024_109153
crossref_primary_10_1021_acsnano_1c00536
crossref_primary_10_1016_j_jneumeth_2020_108927
crossref_primary_10_1088_1741_2552_aca1e2
crossref_primary_10_1109_JSEN_2022_3228534
crossref_primary_10_1088_1741_2552_ac7ba8
crossref_primary_10_1109_JSEN_2022_3177931
crossref_primary_10_31083_j_jin2206146
crossref_primary_10_1038_s41598_024_59469_7
crossref_primary_10_1109_TBME_2024_3468351
crossref_primary_10_1109_ACCESS_2020_3004504
crossref_primary_10_1016_j_neucom_2024_128920
crossref_primary_10_3390_s20205881
crossref_primary_10_1007_s00521_024_10282_3
crossref_primary_10_1007_s10055_024_01067_z
crossref_primary_10_1038_s41551_019_0347_x
crossref_primary_10_1016_j_asoc_2022_108982
crossref_primary_10_1155_2019_4721863
crossref_primary_10_1016_j_measurement_2019_107003
crossref_primary_10_1016_j_jksuci_2021_03_009
crossref_primary_10_1016_j_patrec_2020_11_019
crossref_primary_10_1016_j_patrec_2023_05_011
crossref_primary_10_3390_informatics9010026
crossref_primary_10_1016_j_bbr_2024_114898
crossref_primary_10_3390_life15040536
crossref_primary_10_1007_s11571_022_09898_9
crossref_primary_10_3390_electronics13112084
crossref_primary_10_1007_s11571_025_10224_2
Cites_doi 10.1109/TNSRE.2015.2415520
10.1016/S0167-8760(00)00088-X
10.1088/1741-2560/11/4/046018
10.1007/978-3-319-26561-2_8
10.1016/j.eswa.2007.12.043
10.1109/TBME.2010.2077291
10.1088/1741-2560/12/3/031001
10.1016/j.patrec.2015.06.013
10.1088/1741-2560/8/2/025005
10.1088/1741-2560/9/1/016003
10.1016/j.jneumeth.2010.05.008
10.1109/TBME.2015.2481482
10.1016/j.jneumeth.2003.10.009
10.1109/TITS.2008.928241
10.1109/T-AFFC.2011.9
10.1109/TBME.2007.893452
10.1016/j.neucom.2012.02.041
10.1109/TNSRE.2013.2294685
10.1016/j.clinph.2007.04.031
10.1109/TNSRE.2014.2346621
10.1088/1741-2560/8/1/016003
10.1038/nn.4179
10.1088/1741-2560/10/5/056024
10.1016/j.clinph.2007.06.004
10.1109/FG.2013.6553785
10.1518/hfes.45.3.349.27253
10.1073/pnas.1516947113
10.1053/smrv.2000.0138
10.2174/2213385202666141218104855
10.1109/TITS.2010.2092770
10.1088/1741-2560/12/4/046027
10.1038/nrn1931
10.1088/1741-2560/11/3/035009
10.1016/0013-4694(93)90064-3
10.1109/T-AFFC.2010.12
10.3390/s121216937
10.1088/1741-2560/12/1/016001
10.1088/1741-2560/11/5/056011
10.1523/JNEUROSCI.5967-08.2009
10.1109/TITS.2006.869598
10.1007/978-3-642-02812-0_47
10.1126/science.3992243
10.1109/TAMD.2015.2431497
10.1109/TVT.2004.830974
10.1109/T-AFFC.2010.1
10.1088/1741-2560/8/2/025008
10.1016/j.neuroimage.2010.04.250
10.1016/j.neuroimage.2015.02.015
10.1109/TKDE.2009.191
10.1109/TBCAS.2014.2316224
10.1109/TPAMI.2010.86
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/aa5a98
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate A multimodal approach to estimating vigilance using EEG and forehead EOG
EISSN 1741-2552
ExternalDocumentID 28102833
10_1088_1741_2552_aa5a98
jneaa5a98
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Major Basic Research Program of Shanghai Science and Technology Committee
  grantid: 15JC1400103
– fundername: Technology Research and Development Program of China Railway Corporation
  grantid: 2016Z003-B
– fundername: National Basic Research Program of China
  grantid: 2013CB329401
– fundername: National Natural Science Foundation of China
  grantid: 61272248; 61673266
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
CITATION
02O
1WK
AERVB
AHSEE
ARNYC
BBWZM
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
JCGBZ
NPM
Q02
RNS
S3P
7X8
AEINN
ID FETCH-LOGICAL-c368t-9419dd9ac500f04548a5882520611b91d588fe8357abc986f7c4560b160739a13
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Sep 04 21:24:50 EDT 2025
Wed Feb 19 02:42:28 EST 2025
Tue Jul 01 01:58:37 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Fri Jan 08 09:41:23 EST 2021
Wed Aug 21 03:33:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-9419dd9ac500f04548a5882520611b91d588fe8357abc986f7c4560b160739a13
Notes JNE-101438.R1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 28102833
PQID 1861578156
PQPubID 23479
PageCount 14
ParticipantIDs crossref_citationtrail_10_1088_1741_2552_aa5a98
proquest_miscellaneous_1861578156
pubmed_primary_28102833
iop_journals_10_1088_1741_2552_aa5a98
crossref_primary_10_1088_1741_2552_aa5a98
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Huang R S (22) 2009
44
45
46
47
Shi L C (57) 2013
48
49
Trutschel U (61) 2011; 2011
D’mello S K (12) 2015; 47
50
10
54
55
56
13
15
59
17
18
19
Shi L C (58) 2010
3
Baltrušaitis T (2) 2014
5
Baltrusaitis T (1) 2013
6
7
8
Berka C (4) 2007; 78
9
60
62
63
Zhang Y Q (69) 2015
20
64
Dinges D F (11) 1998
21
65
Pfurtscheller G (52) 2010; 4
66
67
25
26
27
Ma J X (39) 2010
28
29
Lu Y (36) 2015
Imbrasaite V (24) 2014
Gao X Y (16) 2015
Zheng W L (72) 2016
71
30
32
33
34
Peng J (51) 2009
35
Mühl C (43) 2014; 8
Zhang Y F (68) 2015
37
38
Ranney T A (53) 2008
Lafferty J (31) 2001
Duan R N (14) 2013
Zheng W L (70) 2014
40
41
42
Huo X Q (23) 2016
References_xml – ident: 63
  doi: 10.1109/TNSRE.2015.2415520
– ident: 27
  doi: 10.1016/S0167-8760(00)00088-X
– ident: 19
  doi: 10.1088/1741-2560/11/4/046018
– start-page: 61
  year: 2015
  ident: 69
  publication-title: Int. Conf. on Neural Information Processing
  doi: 10.1007/978-3-319-26561-2_8
– ident: 25
  doi: 10.1016/j.eswa.2007.12.043
– start-page: 1170
  year: 2015
  ident: 36
  publication-title: Int. Joint Conf. on Artificial Intelligence
– volume: 2011
  start-page: 6th
  year: 2011
  ident: 61
  publication-title: Driving Assess.
– start-page: 5040
  year: 2014
  ident: 70
  publication-title: 36th Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society
– ident: 29
  doi: 10.1109/TBME.2010.2077291
– ident: 62
  doi: 10.1088/1741-2560/12/3/031001
– ident: 28
  doi: 10.1016/j.patrec.2015.06.013
– ident: 67
  doi: 10.1088/1741-2560/8/2/025005
– ident: 66
  doi: 10.1088/1741-2560/9/1/016003
– volume: 47
  start-page: 43
  year: 2015
  ident: 12
  publication-title: ACM Comput. Surv.
– ident: 32
  doi: 10.1016/j.jneumeth.2010.05.008
– start-page: 1419
  year: 2009
  ident: 51
  publication-title: Advances in Neural Information Processing Systems
– start-page: 6587
  year: 2010
  ident: 58
  publication-title: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
– start-page: 767
  year: 2015
  ident: 16
  publication-title: 7th Int. IEEE/EMBS Conf. on Neural Engineering
– ident: 44
  doi: 10.1109/TBME.2015.2481482
– ident: 10
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: 8
  doi: 10.1109/TITS.2008.928241
– ident: 45
  doi: 10.1109/T-AFFC.2011.9
– ident: 9
  doi: 10.1109/TBME.2007.893452
– ident: 59
  doi: 10.1016/j.neucom.2012.02.041
– ident: 41
  doi: 10.1109/TNSRE.2013.2294685
– ident: 49
  doi: 10.1016/j.clinph.2007.04.031
– ident: 7
  doi: 10.1109/TNSRE.2014.2346621
– ident: 50
  doi: 10.1088/1741-2560/8/1/016003
– ident: 55
  doi: 10.1038/nn.4179
– year: 1998
  ident: 11
  publication-title: US Department of Transportation, Federal Highway Administration, Publication Number FHWA-MCRT-98-006
– ident: 35
  doi: 10.1088/1741-2560/10/5/056024
– ident: 47
  doi: 10.1016/j.clinph.2007.06.004
– start-page: 1
  year: 2013
  ident: 1
  publication-title: 10th IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition
  doi: 10.1109/FG.2013.6553785
– start-page: 81
  year: 2013
  ident: 14
  publication-title: 6th Int. IEEE/EMBS Conf. on Neural Engineering
– start-page: 6591
  year: 2010
  ident: 39
  publication-title: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
– ident: 17
  doi: 10.1518/hfes.45.3.349.27253
– ident: 60
  doi: 10.1073/pnas.1516947113
– ident: 15
  doi: 10.1053/smrv.2000.0138
– ident: 40
  doi: 10.2174/2213385202666141218104855
– ident: 13
  doi: 10.1109/TITS.2010.2092770
– ident: 64
  doi: 10.1088/1741-2560/12/4/046027
– ident: 21
  doi: 10.1038/nrn1931
– ident: 38
  doi: 10.1088/1741-2560/11/3/035009
– start-page: 2732
  year: 2016
  ident: 72
  publication-title: Int. Joint Conf. on Artificial Intelligence
– start-page: 6627
  year: 2013
  ident: 57
  publication-title: 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
– start-page: 897
  year: 2016
  ident: 23
  publication-title: Int. Joint Conf. on Neural Networks
– ident: 37
  doi: 10.1016/0013-4694(93)90064-3
– ident: 65
  doi: 10.1109/T-AFFC.2010.12
– ident: 56
  doi: 10.3390/s121216937
– volume: 78
  start-page: B231
  year: 2007
  ident: 4
  publication-title: Aviat. Space Environ. Med.
– ident: 30
  doi: 10.1088/1741-2560/12/1/016001
– ident: 20
  doi: 10.1088/1741-2560/11/5/056011
– volume: 8
  year: 2014
  ident: 43
  publication-title: Frontiers Neurosci.
– ident: 46
  doi: 10.1523/JNEUROSCI.5967-08.2009
– ident: 3
  doi: 10.1109/TITS.2006.869598
– start-page: 707
  year: 2015
  ident: 68
  publication-title: 7th Int. IEEE/EMBS Conf. on Neural Engineering
– start-page: 394
  year: 2009
  ident: 22
  publication-title: Foundations of Augmented Cognition, Neuroergonomics and Operational Neuroscience
  doi: 10.1007/978-3-642-02812-0_47
– ident: 54
  doi: 10.1126/science.3992243
– volume: 4
  start-page: 3
  year: 2010
  ident: 52
  publication-title: Frontiers Neurosci.
– ident: 71
  doi: 10.1109/TAMD.2015.2431497
– start-page: 1
  year: 2014
  ident: 24
  publication-title: IEEE Int. Conf. on Multimedia and Expo Workshops
– ident: 26
  doi: 10.1109/TVT.2004.830974
– year: 2008
  ident: 53
– start-page: 282
  year: 2001
  ident: 31
  publication-title: 18th Int. Conf. on Machine Learning
– ident: 6
  doi: 10.1109/T-AFFC.2010.1
– ident: 18
  doi: 10.1088/1741-2560/8/2/025008
– ident: 34
  doi: 10.1016/j.neuroimage.2010.04.250
– ident: 42
  doi: 10.1016/j.neuroimage.2015.02.015
– ident: 48
  doi: 10.1109/TKDE.2009.191
– ident: 33
  doi: 10.1109/TBCAS.2014.2316224
– start-page: 593
  year: 2014
  ident: 2
  publication-title: Computer Vision–ECCV
– ident: 5
  doi: 10.1109/TPAMI.2010.86
SSID ssj0031790
Score 2.6088967
Snippet Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on...
Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26017
SubjectTerms Adult
Algorithms
Arousal - physiology
Brain Waves - physiology
brain-computer interfaces
EEG
Electroencephalography - methods
Electrooculography - methods
EOG
Female
Humans
Male
multimodal approach
Pattern Recognition, Automated - methods
Psychomotor Performance - physiology
Reproducibility of Results
Sensitivity and Specificity
temporal dependency
vigilance estimation
Title A multimodal approach to estimating vigilance using EEG and forehead EOG
URI https://iopscience.iop.org/article/10.1088/1741-2552/aa5a98
https://www.ncbi.nlm.nih.gov/pubmed/28102833
https://www.proquest.com/docview/1861578156
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215cIFCgW6fMlIgMQhu0mcxLY4rdC2WyQoByr1gGTZsbMqtMkKskjtr--Mk6xURKuqt0QaO854Yj_Hz28A3qqcW1-VPMpy4SOcj1UkM6ciExuSB-OCh9yAX74W86Ps83F-vAEf12dhmmU_9I_xshMK7lzYE-LkBDF0EiESTifG5EbJTbjHZVFQ3oaDw2_DMMxJeqo7DUnWRdzvUf6vhitz0iY-93q4GaadvYfwY2hwxzb5NV61dlxe_KPleMc32oYHPRxl0870EWz4-jHsTGtcip-ds_csEETDn_cdmE9ZoB-eNQ6LDGLkrG0YKXUQ8q0X7O_J4uSUIokRo37BZrN9ZmrHEBt7HPcdmx3uP4Gjvdn3T_OoT8QQlbyQbaSyRDmnTJnHcUWafdLkiMzzFMFAYlXi8K7yiOWEsaWSRSVKxGWxJfE6rkzCn8JW3dR-Fxh3pRJYE1FAs6pSNjcVF7hOS60sbCpGMBm6Qpe9SjklyzjVYbdcSk3O0uQs3TlrBB_WJZadQscNtu-wD3T_mf65wY5dsftZe1wj6VQHBTahl64awZshRDR-kbTNYmrfrLBSiShRkArPCJ51sbNuWCoDoOPPb9mQF3A_JRwRqEIvYav9vfKvEAW19nWI9ktBO_nX
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB31Q0JcgFIoW6AYCZA4ZDeJ49g-rmC32xbaHqjUm7FjZ1Vok1XJIsGvZ-wklVrRColbIo0dZzyxn-PnNwBvJKPGlQWNMsZdhPOxjERmZaRj7eXBKKchN-Dnw3x2ku2fstMuz2k4C1MvuqF_iJetUHDrwo4QJ0aIoZMIkXA60pppKUYLW67COqM59SkM9o6O-6GYevmp9kSkL5HH3T7l32q5Ni-t4rNvh5xh6pk-hK99o1vGyffhsjHD4vcNPcf_eKtH8KCDpWTcmm_Aiqsew-a4wiX5xS_yjgSiaPgDvwmzMQk0xIvaYpFelJw0NfGKHR4BV3Py82x-du4jinhm_ZxMJrtEV5YgRnY4_lsyOdp9AifTyZcPs6hLyBAVNBdNJLNEWit1weK49Np9QjNE6CxFUJAYmVi8Kx1iOq5NIUVe8gLxWWy8iB2VOqFPYa2qK_cMCLWF5FiTp4JmZSkN0yXluF5LjchNygcw6rtDFZ1auU-aca7CrrkQyjtMeYep1mEDeH9VYtEqddxh-xb7QXWf64877Mg1u2-Vw7WSSlVQYuMK-2gAr_swUfhl-u0WXbl6iZUKRIvcq_EMYKuNn6uGpSIAO7r9jw15BfeOP07Vp73Dg-dwP_XQIrCHXsBac7l0LxEYNWYnBP8fXsb_Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multimodal+approach+to+estimating+vigilance+using+EEG+and+forehead+EOG&rft.jtitle=Journal+of+neural+engineering&rft.au=Zheng%2C+Wei-Long&rft.au=Lu%2C+Bao-Liang&rft.date=2017-04-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Faa5a98&rft.externalDocID=jneaa5a98
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon