Multi-task clustering via domain adaptation
Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients...
Saved in:
Published in | Pattern recognition Vol. 45; no. 1; pp. 465 - 473 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients of different shopping websites, in which data of different subjects are collected for each task. These tasks are cross-domains but closely related. It is proved that we can improve the individual performance of each clustering task by appropriately utilizing the underling relation. In this paper, we will propose a new approach, which performs multiple related clustering tasks simultaneously through domain adaptation. A shared subspace will be learned through domain adaptation, where the gap of distributions among tasks is reduced, and the shared knowledge will be transferred through all tasks by exploiting the strengthened relation in the learned subspace. Then the object is set as the best clustering in both the original and learned spaces. An alternating optimization method is introduced and its convergence is theoretically guaranteed. Experiments on both synthetic and real data sets demonstrate the effectiveness of the proposed approach.
► We propose a novel multi-task clustering approach based on domain adaption. ► We can utilize strengthened relation in the shared space among multiple tasks. ► An alternating optimization method is introduced in this paper. |
---|---|
AbstractList | Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients of different shopping websites, in which data of different subjects are collected for each task. These tasks are cross-domains but closely related. It is proved that we can improve the individual performance of each clustering task by appropriately utilizing the underling relation. In this paper, we will propose a new approach, which performs multiple related clustering tasks simultaneously through domain adaptation. A shared subspace will be learned through domain adaptation, where the gap of distributions among tasks is reduced, and the shared knowledge will be transferred through all tasks by exploiting the strengthened relation in the learned subspace. Then the object is set as the best clustering in both the original and learned spaces. An alternating optimization method is introduced and its convergence is theoretically guaranteed. Experiments on both synthetic and real data sets demonstrate the effectiveness of the proposed approach.
► We propose a novel multi-task clustering approach based on domain adaption. ► We can utilize strengthened relation in the shared space among multiple tasks. ► An alternating optimization method is introduced in this paper. Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients of different shopping websites, in which data of different subjects are collected for each task. These tasks are cross-domains but closely related. It is proved that we can improve the individual performance of each clustering task by appropriately utilizing the underling relation. In this paper, we will propose a new approach, which performs multiple related clustering tasks simultaneously through domain adaptation. A shared subspace will be learned through domain adaptation, where the gap of distributions among tasks is reduced, and the shared knowledge will be transferred through all tasks by exploiting the strengthened relation in the learned subspace. Then the object is set as the best clustering in both the original and learned spaces. An alternating optimization method is introduced and its convergence is theoretically guaranteed. Experiments on both synthetic and real data sets demonstrate the effectiveness of the proposed approach. |
Author | Zhou, Jie Zhang, Zhihao |
Author_xml | – sequence: 1 givenname: Zhihao surname: Zhang fullname: Zhang, Zhihao email: zhangzh06@mails.tsinghua.edu.cn – sequence: 2 givenname: Jie surname: Zhou fullname: Zhou, Jie email: jzhou@tsinghua.edu.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755324$$DView record in Pascal Francis |
BookMark | eNqFkM9LwzAYhoNMcJv-Bx56EQ_SmqRJmnoQZPgLJl70HLI0HZldUpN04H9vRocHD3p64fue9z08MzCxzmoAzhEsEETselP0Miq3LjBEqIC0SHEEpohXZU4RwRMwhbBEeYlheQJmIWwgRFV6TMHVy9BFk0cZPjLVDSFqb-w62xmZNW4rjc1kI_soo3H2FBy3sgv67JBz8P5w_7Z4ypevj8-Lu2WuSsZjzleIQawRlbRaYYJTklpBxShHkvEVZ4inG6NEt4xBxhuIlW4JreuKN0iXc3A57vbefQ46RLE1Qemuk1a7IYgaM8wJKXkiLw6kDEp2rZdWmSB6b7bSfwlMKkpLTBJHRk55F4LX7Q-CoNgrFBsxKhR7hQJSkSLVbn7VlBlVRC9N91_5dizrpGpntBdBGW2VbozXKorGmb8HvgFpuI7Q |
CODEN | PTNRA8 |
CitedBy_id | crossref_primary_10_1109_TNNLS_2018_2839114 crossref_primary_10_1016_j_neucom_2021_11_043 crossref_primary_10_1016_j_knosys_2017_05_018 crossref_primary_10_1109_TPAMI_2014_2343221 crossref_primary_10_1145_2747879 crossref_primary_10_1109_ACCESS_2018_2825352 crossref_primary_10_1109_TFUZZ_2015_2505330 crossref_primary_10_1016_j_patcog_2022_108616 crossref_primary_10_1016_j_patcog_2018_08_021 crossref_primary_10_1109_TCYB_2014_2344015 crossref_primary_10_1007_s00521_012_1084_1 crossref_primary_10_12677_CSA_2016_612095 crossref_primary_10_1007_s00521_018_3851_0 crossref_primary_10_1016_j_ins_2024_120147 crossref_primary_10_1016_j_ins_2014_12_007 crossref_primary_10_1016_j_neucom_2019_03_062 crossref_primary_10_1016_j_neucom_2017_03_062 crossref_primary_10_1016_j_engappai_2016_01_022 crossref_primary_10_1016_j_knosys_2022_109798 crossref_primary_10_1109_TKDE_2016_2603983 crossref_primary_10_3233_ICA_210655 crossref_primary_10_1007_s00530_019_00627_7 crossref_primary_10_1016_j_patcog_2022_108742 crossref_primary_10_1016_j_knosys_2021_107195 crossref_primary_10_1007_s13042_021_01421_6 crossref_primary_10_1016_j_eswa_2021_115973 crossref_primary_10_1109_ACCESS_2019_2937124 crossref_primary_10_1109_TCYB_2023_3273535 crossref_primary_10_1109_TITS_2020_2987724 crossref_primary_10_1109_TKDE_2019_2937026 crossref_primary_10_1016_j_neucom_2017_04_029 crossref_primary_10_1016_j_patcog_2018_04_018 crossref_primary_10_1109_TCYB_2016_2616119 crossref_primary_10_1109_TCYB_2014_2330844 crossref_primary_10_1109_TKDE_2018_2818705 |
Cites_doi | 10.1007/s10994-008-5084-4 10.1109/TPAMI.2008.277 10.1016/j.patrec.2009.09.011 10.1016/S0378-3758(00)00115-4 10.1109/TSP.2008.924798 10.1093/biomet/asp021 10.3233/IDA-2002-6504 10.1023/A:1007379606734 10.1613/jair.1872 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patcog.2011.05.011 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1873-5142 |
EndPage | 473 |
ExternalDocumentID | 24755324 10_1016_j_patcog_2011_05_011 S0031320311002378 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-8b1602e15a57b2425a549c0c6581a68b86185a5654ef66068d02cef459978d1e3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Mon Jul 21 09:20:07 EDT 2025 Mon Jul 21 09:17:03 EDT 2025 Tue Jul 01 02:36:11 EDT 2025 Thu Apr 24 23:07:55 EDT 2025 Fri Feb 23 02:33:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multi-task clustering Domain adaptation Multi-task learning Learning Performance evaluation Multiple task Automatic classification Subspace method Pattern recognition Signal classification Optimization |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-8b1602e15a57b2425a549c0c6581a68b86185a5654ef66068d02cef459978d1e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 926284438 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_926284438 pascalfrancis_primary_24755324 crossref_primary_10_1016_j_patcog_2011_05_011 crossref_citationtrail_10_1016_j_patcog_2011_05_011 elsevier_sciencedirect_doi_10_1016_j_patcog_2011_05_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012 2012-01-00 20120101 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Pattern recognition |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Dhillon (bib10) 2001 Dunson (bib28) 2009; 96 Pan, Kwok, Yang (bib25) 2008 Chen, Tang, Liu, Ye (bib17) 2009 Argyriou, Micchelli, Pontil, Ying (bib16) 2008 Shi, Malik (bib9) 2002; 22 Satpal, Sarawagi (bib26) 2007 Dhillon, Mallela, Modha (bib11) 2003 Ding, Li, Peng, Park (bib12) 2006 Wang, Li, Zhang (bib6) 2008 Caruana (bib14) 1997; 28 Dunson (bib29) 2009; 20 Japkowicz, Stephen (bib32) 2002; 6 Boyd, Vandenberghe (bib37) 2004 Daumé, Marcu (bib31) 2006; 26 Blitzer, McDonald, Pereira (bib23) 2006 Raina, Battle, Lee, Packer, Ng (bib24) 2007 Ng, Jordan, Weiss (bib7) 2001 Zadrozny (bib34) 2004 Gu, Zhou (bib13) 2009 Li, Ding, Jordan (bib5) 2007 Chen, Lam, Tsang, Wong (bib27) 2009 Ding, Li, Jordan (bib38) 2010; 99 Jain (bib1) 2010; 31 Jain, Dubes (bib2) 1988 Zelnik-Manor, Perona (bib8) 2004 Shimodaira (bib33) 2000; 90 Zhang, Zhang (bib21) 2010 Cai, He, Wu, Han (bib40) 2008 Gretton, Borgwardt, Rasch, Scholkopf, Smola (bib35) 2006 Schölkopf, Smola (bib36) 2002 Xue, Liao, Carin, Krishnapuram (bib18) 2007; 8 Lee, Seung (bib39) 2000 Basu, Bilenko, Mooney (bib3) 2004 Kulis, Basu, Dhillon, Mooney (bib4) 2009; 74 Ando, Zhang (bib15) 2005; 6 Gu, Zhou (bib22) 2009 Blitzer, Crammer, Kulesza, Pereira, Wortman (bib30) 2008 Wang, An, Carin, Dunson (bib20) 2009 Ni, Paisley, Carin, Dunson (bib19) 2008; 56 Gretton (10.1016/j.patcog.2011.05.011_bib35) 2006 Jain (10.1016/j.patcog.2011.05.011_bib2) 1988 Basu (10.1016/j.patcog.2011.05.011_bib3) 2004 Shi (10.1016/j.patcog.2011.05.011_bib9) 2002; 22 Raina (10.1016/j.patcog.2011.05.011_bib24) 2007 Kulis (10.1016/j.patcog.2011.05.011_bib4) 2009; 74 Schölkopf (10.1016/j.patcog.2011.05.011_bib36) 2002 Zelnik-Manor (10.1016/j.patcog.2011.05.011_bib8) 2004 Zadrozny (10.1016/j.patcog.2011.05.011_bib34) 2004 Ando (10.1016/j.patcog.2011.05.011_bib15) 2005; 6 Pan (10.1016/j.patcog.2011.05.011_bib25) 2008 Jain (10.1016/j.patcog.2011.05.011_bib1) 2010; 31 Argyriou (10.1016/j.patcog.2011.05.011_bib16) 2008 Chen (10.1016/j.patcog.2011.05.011_bib17) 2009 Blitzer (10.1016/j.patcog.2011.05.011_bib30) 2008 Shimodaira (10.1016/j.patcog.2011.05.011_bib33) 2000; 90 Gu (10.1016/j.patcog.2011.05.011_bib13) 2009 Ding (10.1016/j.patcog.2011.05.011_bib12) 2006 Chen (10.1016/j.patcog.2011.05.011_bib27) 2009 Ding (10.1016/j.patcog.2011.05.011_bib38) 2010; 99 Daumé (10.1016/j.patcog.2011.05.011_bib31) 2006; 26 Lee (10.1016/j.patcog.2011.05.011_bib39) 2000 Dhillon (10.1016/j.patcog.2011.05.011_bib10) 2001 Blitzer (10.1016/j.patcog.2011.05.011_bib23) 2006 Satpal (10.1016/j.patcog.2011.05.011_bib26) 2007 Ni (10.1016/j.patcog.2011.05.011_bib19) 2008; 56 Xue (10.1016/j.patcog.2011.05.011_bib18) 2007; 8 Wang (10.1016/j.patcog.2011.05.011_bib20) 2009 Dunson (10.1016/j.patcog.2011.05.011_bib28) 2009; 96 Gu (10.1016/j.patcog.2011.05.011_bib22) 2009 Ng (10.1016/j.patcog.2011.05.011_bib7) 2001 Cai (10.1016/j.patcog.2011.05.011_bib40) 2008 Dunson (10.1016/j.patcog.2011.05.011_bib29) 2009; 20 Japkowicz (10.1016/j.patcog.2011.05.011_bib32) 2002; 6 Zhang (10.1016/j.patcog.2011.05.011_bib21) 2010 Li (10.1016/j.patcog.2011.05.011_bib5) 2007 Boyd (10.1016/j.patcog.2011.05.011_bib37) 2004 Wang (10.1016/j.patcog.2011.05.011_bib6) 2008 Caruana (10.1016/j.patcog.2011.05.011_bib14) 1997; 28 Dhillon (10.1016/j.patcog.2011.05.011_bib11) 2003 |
References_xml | – volume: 99 start-page: 45 year: 2010 end-page: 55 ident: bib38 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 759 year: 2007 end-page: 766 ident: bib24 article-title: Self-taught learning: transfer learning from unlabeled data publication-title: ICML – volume: 26 start-page: 101 year: 2006 end-page: 126 ident: bib31 article-title: Domain adaptation for statistical classifiers publication-title: Journal of Artificial Intelligence Research – start-page: 59 year: 2004 end-page: 68 ident: bib3 article-title: A probabilistic framework for semi-supervised clustering publication-title: KDD – year: 2004 ident: bib37 article-title: Convex Optimization – start-page: 1569 year: 2009 end-page: 1572 ident: bib20 article-title: Multi-task classification with infinite local experts publication-title: ICASSP – start-page: 120 year: 2006 end-page: 128 ident: bib23 article-title: Domain adaptation with structural correspondence learning publication-title: EMNLP – start-page: 677 year: 2008 end-page: 682 ident: bib25 article-title: Transfer learning via dimensionality reduction publication-title: AAAI – start-page: 849 year: 2001 end-page: 856 ident: bib7 article-title: On spectral clustering: analysis and an algorithm publication-title: NIPS – start-page: 1 year: 2008 end-page: 12 ident: bib6 article-title: Semi-supervised clustering via matrix factorization publication-title: SDM – start-page: 359 year: 2009 end-page: 368 ident: bib13 article-title: Co-clustering on manifolds publication-title: KDD – start-page: 269 year: 2001 end-page: 274 ident: bib10 article-title: Co-clustering documents and words using bipartite spectral graph partitioning publication-title: KDD – start-page: 137 year: 2009 end-page: 144 ident: bib17 article-title: A convex formulation for learning shared structures from multiple tasks publication-title: ICML – start-page: 556 year: 2000 end-page: 562 ident: bib39 article-title: Algorithms for non-negative matrix factorization publication-title: NIPS – start-page: 129 year: 2008 end-page: 136 ident: bib30 article-title: Learning bounds for domain adaptation publication-title: NIPS – start-page: 1601 year: 2004 end-page: 1608 ident: bib8 article-title: Self-tuning spectral clustering publication-title: NIPS – volume: 20 start-page: 1395 year: 2009 end-page: 1422 ident: bib29 article-title: Multivariate kernel partition process mixtures publication-title: Statistica Sinica – year: 2002 ident: bib36 article-title: Learning with Kernels – year: 1988 ident: bib2 article-title: Algorithms for Clustering Data – volume: 96 start-page: 249 year: 2009 end-page: 262 ident: bib28 article-title: Nonparametric Bayes local partition models for random effects publication-title: Biometrika – start-page: 179 year: 2009 end-page: 188 ident: bib27 article-title: Extracting discriminative concepts for domain adaptation in text mining publication-title: KDD – start-page: 577 year: 2007 end-page: 582 ident: bib5 article-title: Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization publication-title: ICDM – start-page: 25 year: 2008 end-page: 32 ident: bib16 article-title: A spectral regularization framework for multi-task structure learning publication-title: NIPS – volume: 56 start-page: 3918 year: 2008 end-page: 3931 ident: bib19 article-title: Multi-task learning for analyzing and sorting large databases of sequential data publication-title: IEEE Transactions on Signal Processing – start-page: 224 year: 2007 end-page: 235 ident: bib26 article-title: Domain adaptation of conditional probability models via feature subsetting publication-title: PKDD – volume: 22 start-page: 888 year: 2002 end-page: 905 ident: bib9 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 90 start-page: 227 year: 2000 end-page: 244 ident: bib33 article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function publication-title: Journal of Statistical Planning and Inference – start-page: 126 year: 2006 end-page: 135 ident: bib12 article-title: Orthogonal nonnegative matrix t-factorizations for clustering publication-title: KDD – start-page: 903 year: 2004 end-page: 910 ident: bib34 article-title: Learning and evaluating classifiers under sample selection bias publication-title: ICML – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: bib14 article-title: Multitask learning publication-title: Machine Learning – volume: 8 start-page: 35 year: 2007 end-page: 63 ident: bib18 article-title: Multi-task learning for classification with Dirichlet process priors publication-title: The Journal of Machine Learning Research – volume: 74 start-page: 1 year: 2009 end-page: 22 ident: bib4 article-title: Semi-supervised graph clustering: a kernel approach publication-title: Machine learning – start-page: 89 year: 2003 end-page: 98 ident: bib11 article-title: Information-theoretic co-clustering publication-title: KDD – volume: 6 start-page: 1817 year: 2005 end-page: 1853 ident: bib15 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: The Journal of Machine Learning Research – volume: 6 start-page: 429 year: 2002 end-page: 449 ident: bib32 article-title: The class imbalance problem: a systematic study publication-title: Intelligent Data Analysis – start-page: 513 year: 2006 end-page: 520 ident: bib35 article-title: A kernel method for the two-sample-problem publication-title: NIPS – start-page: 63 year: 2008 end-page: 72 ident: bib40 article-title: Non-negative matrix factorization on manifold publication-title: ICDM – start-page: 655 year: 2010 end-page: 660 ident: bib21 article-title: Multitask Bregman clustering publication-title: AAAI – start-page: 159 year: 2009 end-page: 168 ident: bib22 article-title: Learning the shared subspace for multi-task clustering and transductive transfer classification publication-title: ICDM – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib1 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognition Letters – volume: 74 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib4 article-title: Semi-supervised graph clustering: a kernel approach publication-title: Machine learning doi: 10.1007/s10994-008-5084-4 – volume: 20 start-page: 1395 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib29 article-title: Multivariate kernel partition process mixtures publication-title: Statistica Sinica – year: 1988 ident: 10.1016/j.patcog.2011.05.011_bib2 – start-page: 513 year: 2006 ident: 10.1016/j.patcog.2011.05.011_bib35 article-title: A kernel method for the two-sample-problem – volume: 99 start-page: 45 issue: 1 year: 2010 ident: 10.1016/j.patcog.2011.05.011_bib38 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.277 – volume: 31 start-page: 651 issue: 8 year: 2010 ident: 10.1016/j.patcog.2011.05.011_bib1 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2009.09.011 – start-page: 577 year: 2007 ident: 10.1016/j.patcog.2011.05.011_bib5 article-title: Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization – start-page: 224 year: 2007 ident: 10.1016/j.patcog.2011.05.011_bib26 article-title: Domain adaptation of conditional probability models via feature subsetting – start-page: 63 year: 2008 ident: 10.1016/j.patcog.2011.05.011_bib40 article-title: Non-negative matrix factorization on manifold – start-page: 25 year: 2008 ident: 10.1016/j.patcog.2011.05.011_bib16 article-title: A spectral regularization framework for multi-task structure learning – start-page: 179 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib27 article-title: Extracting discriminative concepts for domain adaptation in text mining – start-page: 359 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib13 article-title: Co-clustering on manifolds – volume: 90 start-page: 227 issue: 2 year: 2000 ident: 10.1016/j.patcog.2011.05.011_bib33 article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function publication-title: Journal of Statistical Planning and Inference doi: 10.1016/S0378-3758(00)00115-4 – start-page: 137 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib17 article-title: A convex formulation for learning shared structures from multiple tasks – start-page: 89 year: 2003 ident: 10.1016/j.patcog.2011.05.011_bib11 article-title: Information-theoretic co-clustering – start-page: 556 year: 2000 ident: 10.1016/j.patcog.2011.05.011_bib39 article-title: Algorithms for non-negative matrix factorization – start-page: 269 year: 2001 ident: 10.1016/j.patcog.2011.05.011_bib10 article-title: Co-clustering documents and words using bipartite spectral graph partitioning – year: 2002 ident: 10.1016/j.patcog.2011.05.011_bib36 – start-page: 759 year: 2007 ident: 10.1016/j.patcog.2011.05.011_bib24 article-title: Self-taught learning: transfer learning from unlabeled data – start-page: 655 year: 2010 ident: 10.1016/j.patcog.2011.05.011_bib21 article-title: Multitask Bregman clustering – volume: 56 start-page: 3918 issue: 8 year: 2008 ident: 10.1016/j.patcog.2011.05.011_bib19 article-title: Multi-task learning for analyzing and sorting large databases of sequential data publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2008.924798 – volume: 96 start-page: 249 issue: 2 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib28 article-title: Nonparametric Bayes local partition models for random effects publication-title: Biometrika doi: 10.1093/biomet/asp021 – start-page: 126 year: 2006 ident: 10.1016/j.patcog.2011.05.011_bib12 article-title: Orthogonal nonnegative matrix t-factorizations for clustering – start-page: 59 year: 2004 ident: 10.1016/j.patcog.2011.05.011_bib3 article-title: A probabilistic framework for semi-supervised clustering – volume: 6 start-page: 1817 year: 2005 ident: 10.1016/j.patcog.2011.05.011_bib15 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: The Journal of Machine Learning Research – start-page: 677 year: 2008 ident: 10.1016/j.patcog.2011.05.011_bib25 article-title: Transfer learning via dimensionality reduction – volume: 6 start-page: 429 issue: 5 year: 2002 ident: 10.1016/j.patcog.2011.05.011_bib32 article-title: The class imbalance problem: a systematic study publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2002-6504 – start-page: 903 year: 2004 ident: 10.1016/j.patcog.2011.05.011_bib34 article-title: Learning and evaluating classifiers under sample selection bias – start-page: 1569 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib20 article-title: Multi-task classification with infinite local experts – volume: 22 start-page: 888 issue: 8 year: 2002 ident: 10.1016/j.patcog.2011.05.011_bib9 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 159 year: 2009 ident: 10.1016/j.patcog.2011.05.011_bib22 article-title: Learning the shared subspace for multi-task clustering and transductive transfer classification – start-page: 129 year: 2008 ident: 10.1016/j.patcog.2011.05.011_bib30 article-title: Learning bounds for domain adaptation – volume: 28 start-page: 41 issue: 1 year: 1997 ident: 10.1016/j.patcog.2011.05.011_bib14 article-title: Multitask learning publication-title: Machine Learning doi: 10.1023/A:1007379606734 – start-page: 120 year: 2006 ident: 10.1016/j.patcog.2011.05.011_bib23 article-title: Domain adaptation with structural correspondence learning – start-page: 1601 year: 2004 ident: 10.1016/j.patcog.2011.05.011_bib8 article-title: Self-tuning spectral clustering – volume: 8 start-page: 35 year: 2007 ident: 10.1016/j.patcog.2011.05.011_bib18 article-title: Multi-task learning for classification with Dirichlet process priors publication-title: The Journal of Machine Learning Research – year: 2004 ident: 10.1016/j.patcog.2011.05.011_bib37 – start-page: 1 year: 2008 ident: 10.1016/j.patcog.2011.05.011_bib6 article-title: Semi-supervised clustering via matrix factorization – volume: 26 start-page: 101 issue: 1 year: 2006 ident: 10.1016/j.patcog.2011.05.011_bib31 article-title: Domain adaptation for statistical classifiers publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1872 – start-page: 849 year: 2001 ident: 10.1016/j.patcog.2011.05.011_bib7 article-title: On spectral clustering: analysis and an algorithm |
SSID | ssj0017142 |
Score | 2.1866138 |
Snippet | Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 465 |
SubjectTerms | Adaptation Applied sciences Clustering Convergence Domain adaptation Exact sciences and technology Information, signal and communications theory Multi-task clustering Multi-task learning Optimization Pattern recognition Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Subspaces Tasks Telecommunications and information theory |
Title | Multi-task clustering via domain adaptation |
URI | https://dx.doi.org/10.1016/j.patcog.2011.05.011 https://www.proquest.com/docview/926284438 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXgTxW5wfowdvEtePJM2OYyhTYScHu4XXNpXqbIvrPPq3-9K0gyEy8NKSkpDy8vI-kvd-j5AbgZvId2NOXUiBMhCagkixGUvOIs55FNUBslMxmbGnOZ93yLjNhTFhlY3stzK9ltbNl0FDzUGZZSbH18AO4sOgiAahSfhlLDRcfve9DvMw9b0tYnjgUdO7TZ-rY7xKFHfFawPkafA7vb_U014JSyRaaqtd_BLctTZ6OCT7jRnpjOyfHpGOzo_JQVuiwWl27Am5rRNsaQXLdyderAwqAuoq5ysDJyk-IMsdSKC01_GnZPZw_zKe0KY-Ao0DISsqI0-4vvY48DAyrgOgsxe7MRoVHggZSYHKGNBiYzoV6KjIxPVjnTI-RNcx8XRwRrp5ketz4nBfwFAnQidaMvATOYzQcglTL0xdluqkR4KWLCpuwMNNDYuFaqPE3pQlpjLEVC5X-OoRuh5VWvCMLf3DluJqgwkUyvctI_sbC7Sezmch52g09ojTrpjCDWRuRSDXxWqpDGCiZCyQF_-e_ZLsYsu3JzNXpFt9rvQ12ipV1K-ZsU92Ro_Pk-kPYqLnbg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HhTEt1ifOXiTpXnsbrZHEaW-elLobZkkG6nWNNjW3-9ssikUkYKXhDyGDbM7r-zMNwCXkoQo9FPBfMyRcZSGoczpMlWCJ0KIJKkSZPuy98ofBmKwAjdNLYxNq3S6v9bplbZ2dzqOm51yOLQ1vhZ2kA4WRTSK1SqsWXQq0YK16_vHXn--mRAHvAYNjwJmCZoKuirNqySNN35zWJ4WwjP4y0JtljghvuV1w4tfursySHc7sOU8Se-6_thdWDHFHmw3XRo8J7T7cFXV2LIpTj68dDSzwAhkrrzvIXrZ-BOHhYcZlvWO_AG83t2-3PSYa5HA0kiqKVNJIP3QBAJFnNjoASneS_2U_IoApUqUJHuM5LRxk0uKVVTmh6nJuehS9JgFJjqEVjEuzBF4IpTYNZk0mVEcw0x1E3Je4jyIc5_nJmtD1LBFpw4_3LaxGOkmUexd18zUlpnaF5pObWBzqrLGz1jyftxwXC-sA00qfgnl-cIEzYcLaU0I8hvb4DUzpkmG7MYIFmY8m2iLmag4j9Txv0e_gPXey_OTfrrvP57ABj0J6x81p9Cafs3MGbku0-TcLc0fWkjqHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+clustering+via+domain+adaptation&rft.jtitle=Pattern+recognition&rft.au=ZHIHAO+ZHANG&rft.au=JIE+ZHOU&rft.date=2012&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=45&rft.issue=1&rft.spage=465&rft.epage=473&rft_id=info:doi/10.1016%2Fj.patcog.2011.05.011&rft.externalDBID=n%2Fa&rft.externalDocID=24755324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |