Multi-task clustering via domain adaptation

Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 45; no. 1; pp. 465 - 473
Main Authors Zhang, Zhihao, Zhou, Jie
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients of different shopping websites, in which data of different subjects are collected for each task. These tasks are cross-domains but closely related. It is proved that we can improve the individual performance of each clustering task by appropriately utilizing the underling relation. In this paper, we will propose a new approach, which performs multiple related clustering tasks simultaneously through domain adaptation. A shared subspace will be learned through domain adaptation, where the gap of distributions among tasks is reduced, and the shared knowledge will be transferred through all tasks by exploiting the strengthened relation in the learned subspace. Then the object is set as the best clustering in both the original and learned spaces. An alternating optimization method is introduced and its convergence is theoretically guaranteed. Experiments on both synthetic and real data sets demonstrate the effectiveness of the proposed approach. ► We propose a novel multi-task clustering approach based on domain adaption. ► We can utilize strengthened relation in the shared space among multiple tasks. ► An alternating optimization method is introduced in this paper.
AbstractList Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients of different shopping websites, in which data of different subjects are collected for each task. These tasks are cross-domains but closely related. It is proved that we can improve the individual performance of each clustering task by appropriately utilizing the underling relation. In this paper, we will propose a new approach, which performs multiple related clustering tasks simultaneously through domain adaptation. A shared subspace will be learned through domain adaptation, where the gap of distributions among tasks is reduced, and the shared knowledge will be transferred through all tasks by exploiting the strengthened relation in the learned subspace. Then the object is set as the best clustering in both the original and learned spaces. An alternating optimization method is introduced and its convergence is theoretically guaranteed. Experiments on both synthetic and real data sets demonstrate the effectiveness of the proposed approach. ► We propose a novel multi-task clustering approach based on domain adaption. ► We can utilize strengthened relation in the shared space among multiple tasks. ► An alternating optimization method is introduced in this paper.
Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients of different shopping websites, in which data of different subjects are collected for each task. These tasks are cross-domains but closely related. It is proved that we can improve the individual performance of each clustering task by appropriately utilizing the underling relation. In this paper, we will propose a new approach, which performs multiple related clustering tasks simultaneously through domain adaptation. A shared subspace will be learned through domain adaptation, where the gap of distributions among tasks is reduced, and the shared knowledge will be transferred through all tasks by exploiting the strengthened relation in the learned subspace. Then the object is set as the best clustering in both the original and learned spaces. An alternating optimization method is introduced and its convergence is theoretically guaranteed. Experiments on both synthetic and real data sets demonstrate the effectiveness of the proposed approach.
Author Zhou, Jie
Zhang, Zhihao
Author_xml – sequence: 1
  givenname: Zhihao
  surname: Zhang
  fullname: Zhang, Zhihao
  email: zhangzh06@mails.tsinghua.edu.cn
– sequence: 2
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  email: jzhou@tsinghua.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755324$$DView record in Pascal Francis
BookMark eNqFkM9LwzAYhoNMcJv-Bx56EQ_SmqRJmnoQZPgLJl70HLI0HZldUpN04H9vRocHD3p64fue9z08MzCxzmoAzhEsEETselP0Miq3LjBEqIC0SHEEpohXZU4RwRMwhbBEeYlheQJmIWwgRFV6TMHVy9BFk0cZPjLVDSFqb-w62xmZNW4rjc1kI_soo3H2FBy3sgv67JBz8P5w_7Z4ypevj8-Lu2WuSsZjzleIQawRlbRaYYJTklpBxShHkvEVZ4inG6NEt4xBxhuIlW4JreuKN0iXc3A57vbefQ46RLE1Qemuk1a7IYgaM8wJKXkiLw6kDEp2rZdWmSB6b7bSfwlMKkpLTBJHRk55F4LX7Q-CoNgrFBsxKhR7hQJSkSLVbn7VlBlVRC9N91_5dizrpGpntBdBGW2VbozXKorGmb8HvgFpuI7Q
CODEN PTNRA8
CitedBy_id crossref_primary_10_1109_TNNLS_2018_2839114
crossref_primary_10_1016_j_neucom_2021_11_043
crossref_primary_10_1016_j_knosys_2017_05_018
crossref_primary_10_1109_TPAMI_2014_2343221
crossref_primary_10_1145_2747879
crossref_primary_10_1109_ACCESS_2018_2825352
crossref_primary_10_1109_TFUZZ_2015_2505330
crossref_primary_10_1016_j_patcog_2022_108616
crossref_primary_10_1016_j_patcog_2018_08_021
crossref_primary_10_1109_TCYB_2014_2344015
crossref_primary_10_1007_s00521_012_1084_1
crossref_primary_10_12677_CSA_2016_612095
crossref_primary_10_1007_s00521_018_3851_0
crossref_primary_10_1016_j_ins_2024_120147
crossref_primary_10_1016_j_ins_2014_12_007
crossref_primary_10_1016_j_neucom_2019_03_062
crossref_primary_10_1016_j_neucom_2017_03_062
crossref_primary_10_1016_j_engappai_2016_01_022
crossref_primary_10_1016_j_knosys_2022_109798
crossref_primary_10_1109_TKDE_2016_2603983
crossref_primary_10_3233_ICA_210655
crossref_primary_10_1007_s00530_019_00627_7
crossref_primary_10_1016_j_patcog_2022_108742
crossref_primary_10_1016_j_knosys_2021_107195
crossref_primary_10_1007_s13042_021_01421_6
crossref_primary_10_1016_j_eswa_2021_115973
crossref_primary_10_1109_ACCESS_2019_2937124
crossref_primary_10_1109_TCYB_2023_3273535
crossref_primary_10_1109_TITS_2020_2987724
crossref_primary_10_1109_TKDE_2019_2937026
crossref_primary_10_1016_j_neucom_2017_04_029
crossref_primary_10_1016_j_patcog_2018_04_018
crossref_primary_10_1109_TCYB_2016_2616119
crossref_primary_10_1109_TCYB_2014_2330844
crossref_primary_10_1109_TKDE_2018_2818705
Cites_doi 10.1007/s10994-008-5084-4
10.1109/TPAMI.2008.277
10.1016/j.patrec.2009.09.011
10.1016/S0378-3758(00)00115-4
10.1109/TSP.2008.924798
10.1093/biomet/asp021
10.3233/IDA-2002-6504
10.1023/A:1007379606734
10.1613/jair.1872
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2011.05.011
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 473
ExternalDocumentID 24755324
10_1016_j_patcog_2011_05_011
S0031320311002378
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-8b1602e15a57b2425a549c0c6581a68b86185a5654ef66068d02cef459978d1e3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Mon Jul 21 09:20:07 EDT 2025
Mon Jul 21 09:17:03 EDT 2025
Tue Jul 01 02:36:11 EDT 2025
Thu Apr 24 23:07:55 EDT 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-task clustering
Domain adaptation
Multi-task learning
Learning
Performance evaluation
Multiple task
Automatic classification
Subspace method
Pattern recognition
Signal classification
Optimization
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-8b1602e15a57b2425a549c0c6581a68b86185a5654ef66068d02cef459978d1e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 926284438
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_926284438
pascalfrancis_primary_24755324
crossref_primary_10_1016_j_patcog_2011_05_011
crossref_citationtrail_10_1016_j_patcog_2011_05_011
elsevier_sciencedirect_doi_10_1016_j_patcog_2011_05_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-01-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dhillon (bib10) 2001
Dunson (bib28) 2009; 96
Pan, Kwok, Yang (bib25) 2008
Chen, Tang, Liu, Ye (bib17) 2009
Argyriou, Micchelli, Pontil, Ying (bib16) 2008
Shi, Malik (bib9) 2002; 22
Satpal, Sarawagi (bib26) 2007
Dhillon, Mallela, Modha (bib11) 2003
Ding, Li, Peng, Park (bib12) 2006
Wang, Li, Zhang (bib6) 2008
Caruana (bib14) 1997; 28
Dunson (bib29) 2009; 20
Japkowicz, Stephen (bib32) 2002; 6
Boyd, Vandenberghe (bib37) 2004
Daumé, Marcu (bib31) 2006; 26
Blitzer, McDonald, Pereira (bib23) 2006
Raina, Battle, Lee, Packer, Ng (bib24) 2007
Ng, Jordan, Weiss (bib7) 2001
Zadrozny (bib34) 2004
Gu, Zhou (bib13) 2009
Li, Ding, Jordan (bib5) 2007
Chen, Lam, Tsang, Wong (bib27) 2009
Ding, Li, Jordan (bib38) 2010; 99
Jain (bib1) 2010; 31
Jain, Dubes (bib2) 1988
Zelnik-Manor, Perona (bib8) 2004
Shimodaira (bib33) 2000; 90
Zhang, Zhang (bib21) 2010
Cai, He, Wu, Han (bib40) 2008
Gretton, Borgwardt, Rasch, Scholkopf, Smola (bib35) 2006
Schölkopf, Smola (bib36) 2002
Xue, Liao, Carin, Krishnapuram (bib18) 2007; 8
Lee, Seung (bib39) 2000
Basu, Bilenko, Mooney (bib3) 2004
Kulis, Basu, Dhillon, Mooney (bib4) 2009; 74
Ando, Zhang (bib15) 2005; 6
Gu, Zhou (bib22) 2009
Blitzer, Crammer, Kulesza, Pereira, Wortman (bib30) 2008
Wang, An, Carin, Dunson (bib20) 2009
Ni, Paisley, Carin, Dunson (bib19) 2008; 56
Gretton (10.1016/j.patcog.2011.05.011_bib35) 2006
Jain (10.1016/j.patcog.2011.05.011_bib2) 1988
Basu (10.1016/j.patcog.2011.05.011_bib3) 2004
Shi (10.1016/j.patcog.2011.05.011_bib9) 2002; 22
Raina (10.1016/j.patcog.2011.05.011_bib24) 2007
Kulis (10.1016/j.patcog.2011.05.011_bib4) 2009; 74
Schölkopf (10.1016/j.patcog.2011.05.011_bib36) 2002
Zelnik-Manor (10.1016/j.patcog.2011.05.011_bib8) 2004
Zadrozny (10.1016/j.patcog.2011.05.011_bib34) 2004
Ando (10.1016/j.patcog.2011.05.011_bib15) 2005; 6
Pan (10.1016/j.patcog.2011.05.011_bib25) 2008
Jain (10.1016/j.patcog.2011.05.011_bib1) 2010; 31
Argyriou (10.1016/j.patcog.2011.05.011_bib16) 2008
Chen (10.1016/j.patcog.2011.05.011_bib17) 2009
Blitzer (10.1016/j.patcog.2011.05.011_bib30) 2008
Shimodaira (10.1016/j.patcog.2011.05.011_bib33) 2000; 90
Gu (10.1016/j.patcog.2011.05.011_bib13) 2009
Ding (10.1016/j.patcog.2011.05.011_bib12) 2006
Chen (10.1016/j.patcog.2011.05.011_bib27) 2009
Ding (10.1016/j.patcog.2011.05.011_bib38) 2010; 99
Daumé (10.1016/j.patcog.2011.05.011_bib31) 2006; 26
Lee (10.1016/j.patcog.2011.05.011_bib39) 2000
Dhillon (10.1016/j.patcog.2011.05.011_bib10) 2001
Blitzer (10.1016/j.patcog.2011.05.011_bib23) 2006
Satpal (10.1016/j.patcog.2011.05.011_bib26) 2007
Ni (10.1016/j.patcog.2011.05.011_bib19) 2008; 56
Xue (10.1016/j.patcog.2011.05.011_bib18) 2007; 8
Wang (10.1016/j.patcog.2011.05.011_bib20) 2009
Dunson (10.1016/j.patcog.2011.05.011_bib28) 2009; 96
Gu (10.1016/j.patcog.2011.05.011_bib22) 2009
Ng (10.1016/j.patcog.2011.05.011_bib7) 2001
Cai (10.1016/j.patcog.2011.05.011_bib40) 2008
Dunson (10.1016/j.patcog.2011.05.011_bib29) 2009; 20
Japkowicz (10.1016/j.patcog.2011.05.011_bib32) 2002; 6
Zhang (10.1016/j.patcog.2011.05.011_bib21) 2010
Li (10.1016/j.patcog.2011.05.011_bib5) 2007
Boyd (10.1016/j.patcog.2011.05.011_bib37) 2004
Wang (10.1016/j.patcog.2011.05.011_bib6) 2008
Caruana (10.1016/j.patcog.2011.05.011_bib14) 1997; 28
Dhillon (10.1016/j.patcog.2011.05.011_bib11) 2003
References_xml – volume: 99
  start-page: 45
  year: 2010
  end-page: 55
  ident: bib38
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 759
  year: 2007
  end-page: 766
  ident: bib24
  article-title: Self-taught learning: transfer learning from unlabeled data
  publication-title: ICML
– volume: 26
  start-page: 101
  year: 2006
  end-page: 126
  ident: bib31
  article-title: Domain adaptation for statistical classifiers
  publication-title: Journal of Artificial Intelligence Research
– start-page: 59
  year: 2004
  end-page: 68
  ident: bib3
  article-title: A probabilistic framework for semi-supervised clustering
  publication-title: KDD
– year: 2004
  ident: bib37
  article-title: Convex Optimization
– start-page: 1569
  year: 2009
  end-page: 1572
  ident: bib20
  article-title: Multi-task classification with infinite local experts
  publication-title: ICASSP
– start-page: 120
  year: 2006
  end-page: 128
  ident: bib23
  article-title: Domain adaptation with structural correspondence learning
  publication-title: EMNLP
– start-page: 677
  year: 2008
  end-page: 682
  ident: bib25
  article-title: Transfer learning via dimensionality reduction
  publication-title: AAAI
– start-page: 849
  year: 2001
  end-page: 856
  ident: bib7
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: NIPS
– start-page: 1
  year: 2008
  end-page: 12
  ident: bib6
  article-title: Semi-supervised clustering via matrix factorization
  publication-title: SDM
– start-page: 359
  year: 2009
  end-page: 368
  ident: bib13
  article-title: Co-clustering on manifolds
  publication-title: KDD
– start-page: 269
  year: 2001
  end-page: 274
  ident: bib10
  article-title: Co-clustering documents and words using bipartite spectral graph partitioning
  publication-title: KDD
– start-page: 137
  year: 2009
  end-page: 144
  ident: bib17
  article-title: A convex formulation for learning shared structures from multiple tasks
  publication-title: ICML
– start-page: 556
  year: 2000
  end-page: 562
  ident: bib39
  article-title: Algorithms for non-negative matrix factorization
  publication-title: NIPS
– start-page: 129
  year: 2008
  end-page: 136
  ident: bib30
  article-title: Learning bounds for domain adaptation
  publication-title: NIPS
– start-page: 1601
  year: 2004
  end-page: 1608
  ident: bib8
  article-title: Self-tuning spectral clustering
  publication-title: NIPS
– volume: 20
  start-page: 1395
  year: 2009
  end-page: 1422
  ident: bib29
  article-title: Multivariate kernel partition process mixtures
  publication-title: Statistica Sinica
– year: 2002
  ident: bib36
  article-title: Learning with Kernels
– year: 1988
  ident: bib2
  article-title: Algorithms for Clustering Data
– volume: 96
  start-page: 249
  year: 2009
  end-page: 262
  ident: bib28
  article-title: Nonparametric Bayes local partition models for random effects
  publication-title: Biometrika
– start-page: 179
  year: 2009
  end-page: 188
  ident: bib27
  article-title: Extracting discriminative concepts for domain adaptation in text mining
  publication-title: KDD
– start-page: 577
  year: 2007
  end-page: 582
  ident: bib5
  article-title: Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
  publication-title: ICDM
– start-page: 25
  year: 2008
  end-page: 32
  ident: bib16
  article-title: A spectral regularization framework for multi-task structure learning
  publication-title: NIPS
– volume: 56
  start-page: 3918
  year: 2008
  end-page: 3931
  ident: bib19
  article-title: Multi-task learning for analyzing and sorting large databases of sequential data
  publication-title: IEEE Transactions on Signal Processing
– start-page: 224
  year: 2007
  end-page: 235
  ident: bib26
  article-title: Domain adaptation of conditional probability models via feature subsetting
  publication-title: PKDD
– volume: 22
  start-page: 888
  year: 2002
  end-page: 905
  ident: bib9
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 90
  start-page: 227
  year: 2000
  end-page: 244
  ident: bib33
  article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function
  publication-title: Journal of Statistical Planning and Inference
– start-page: 126
  year: 2006
  end-page: 135
  ident: bib12
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
  publication-title: KDD
– start-page: 903
  year: 2004
  end-page: 910
  ident: bib34
  article-title: Learning and evaluating classifiers under sample selection bias
  publication-title: ICML
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: bib14
  article-title: Multitask learning
  publication-title: Machine Learning
– volume: 8
  start-page: 35
  year: 2007
  end-page: 63
  ident: bib18
  article-title: Multi-task learning for classification with Dirichlet process priors
  publication-title: The Journal of Machine Learning Research
– volume: 74
  start-page: 1
  year: 2009
  end-page: 22
  ident: bib4
  article-title: Semi-supervised graph clustering: a kernel approach
  publication-title: Machine learning
– start-page: 89
  year: 2003
  end-page: 98
  ident: bib11
  article-title: Information-theoretic co-clustering
  publication-title: KDD
– volume: 6
  start-page: 1817
  year: 2005
  end-page: 1853
  ident: bib15
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: The Journal of Machine Learning Research
– volume: 6
  start-page: 429
  year: 2002
  end-page: 449
  ident: bib32
  article-title: The class imbalance problem: a systematic study
  publication-title: Intelligent Data Analysis
– start-page: 513
  year: 2006
  end-page: 520
  ident: bib35
  article-title: A kernel method for the two-sample-problem
  publication-title: NIPS
– start-page: 63
  year: 2008
  end-page: 72
  ident: bib40
  article-title: Non-negative matrix factorization on manifold
  publication-title: ICDM
– start-page: 655
  year: 2010
  end-page: 660
  ident: bib21
  article-title: Multitask Bregman clustering
  publication-title: AAAI
– start-page: 159
  year: 2009
  end-page: 168
  ident: bib22
  article-title: Learning the shared subspace for multi-task clustering and transductive transfer classification
  publication-title: ICDM
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib1
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
– volume: 74
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib4
  article-title: Semi-supervised graph clustering: a kernel approach
  publication-title: Machine learning
  doi: 10.1007/s10994-008-5084-4
– volume: 20
  start-page: 1395
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib29
  article-title: Multivariate kernel partition process mixtures
  publication-title: Statistica Sinica
– year: 1988
  ident: 10.1016/j.patcog.2011.05.011_bib2
– start-page: 513
  year: 2006
  ident: 10.1016/j.patcog.2011.05.011_bib35
  article-title: A kernel method for the two-sample-problem
– volume: 99
  start-page: 45
  issue: 1
  year: 2010
  ident: 10.1016/j.patcog.2011.05.011_bib38
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.277
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2011.05.011_bib1
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 577
  year: 2007
  ident: 10.1016/j.patcog.2011.05.011_bib5
  article-title: Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
– start-page: 224
  year: 2007
  ident: 10.1016/j.patcog.2011.05.011_bib26
  article-title: Domain adaptation of conditional probability models via feature subsetting
– start-page: 63
  year: 2008
  ident: 10.1016/j.patcog.2011.05.011_bib40
  article-title: Non-negative matrix factorization on manifold
– start-page: 25
  year: 2008
  ident: 10.1016/j.patcog.2011.05.011_bib16
  article-title: A spectral regularization framework for multi-task structure learning
– start-page: 179
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib27
  article-title: Extracting discriminative concepts for domain adaptation in text mining
– start-page: 359
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib13
  article-title: Co-clustering on manifolds
– volume: 90
  start-page: 227
  issue: 2
  year: 2000
  ident: 10.1016/j.patcog.2011.05.011_bib33
  article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(00)00115-4
– start-page: 137
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib17
  article-title: A convex formulation for learning shared structures from multiple tasks
– start-page: 89
  year: 2003
  ident: 10.1016/j.patcog.2011.05.011_bib11
  article-title: Information-theoretic co-clustering
– start-page: 556
  year: 2000
  ident: 10.1016/j.patcog.2011.05.011_bib39
  article-title: Algorithms for non-negative matrix factorization
– start-page: 269
  year: 2001
  ident: 10.1016/j.patcog.2011.05.011_bib10
  article-title: Co-clustering documents and words using bipartite spectral graph partitioning
– year: 2002
  ident: 10.1016/j.patcog.2011.05.011_bib36
– start-page: 759
  year: 2007
  ident: 10.1016/j.patcog.2011.05.011_bib24
  article-title: Self-taught learning: transfer learning from unlabeled data
– start-page: 655
  year: 2010
  ident: 10.1016/j.patcog.2011.05.011_bib21
  article-title: Multitask Bregman clustering
– volume: 56
  start-page: 3918
  issue: 8
  year: 2008
  ident: 10.1016/j.patcog.2011.05.011_bib19
  article-title: Multi-task learning for analyzing and sorting large databases of sequential data
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2008.924798
– volume: 96
  start-page: 249
  issue: 2
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib28
  article-title: Nonparametric Bayes local partition models for random effects
  publication-title: Biometrika
  doi: 10.1093/biomet/asp021
– start-page: 126
  year: 2006
  ident: 10.1016/j.patcog.2011.05.011_bib12
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
– start-page: 59
  year: 2004
  ident: 10.1016/j.patcog.2011.05.011_bib3
  article-title: A probabilistic framework for semi-supervised clustering
– volume: 6
  start-page: 1817
  year: 2005
  ident: 10.1016/j.patcog.2011.05.011_bib15
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: The Journal of Machine Learning Research
– start-page: 677
  year: 2008
  ident: 10.1016/j.patcog.2011.05.011_bib25
  article-title: Transfer learning via dimensionality reduction
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: 10.1016/j.patcog.2011.05.011_bib32
  article-title: The class imbalance problem: a systematic study
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2002-6504
– start-page: 903
  year: 2004
  ident: 10.1016/j.patcog.2011.05.011_bib34
  article-title: Learning and evaluating classifiers under sample selection bias
– start-page: 1569
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib20
  article-title: Multi-task classification with infinite local experts
– volume: 22
  start-page: 888
  issue: 8
  year: 2002
  ident: 10.1016/j.patcog.2011.05.011_bib9
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 159
  year: 2009
  ident: 10.1016/j.patcog.2011.05.011_bib22
  article-title: Learning the shared subspace for multi-task clustering and transductive transfer classification
– start-page: 129
  year: 2008
  ident: 10.1016/j.patcog.2011.05.011_bib30
  article-title: Learning bounds for domain adaptation
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 10.1016/j.patcog.2011.05.011_bib14
  article-title: Multitask learning
  publication-title: Machine Learning
  doi: 10.1023/A:1007379606734
– start-page: 120
  year: 2006
  ident: 10.1016/j.patcog.2011.05.011_bib23
  article-title: Domain adaptation with structural correspondence learning
– start-page: 1601
  year: 2004
  ident: 10.1016/j.patcog.2011.05.011_bib8
  article-title: Self-tuning spectral clustering
– volume: 8
  start-page: 35
  year: 2007
  ident: 10.1016/j.patcog.2011.05.011_bib18
  article-title: Multi-task learning for classification with Dirichlet process priors
  publication-title: The Journal of Machine Learning Research
– year: 2004
  ident: 10.1016/j.patcog.2011.05.011_bib37
– start-page: 1
  year: 2008
  ident: 10.1016/j.patcog.2011.05.011_bib6
  article-title: Semi-supervised clustering via matrix factorization
– volume: 26
  start-page: 101
  issue: 1
  year: 2006
  ident: 10.1016/j.patcog.2011.05.011_bib31
  article-title: Domain adaptation for statistical classifiers
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1872
– start-page: 849
  year: 2001
  ident: 10.1016/j.patcog.2011.05.011_bib7
  article-title: On spectral clustering: analysis and an algorithm
SSID ssj0017142
Score 2.1866138
Snippet Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 465
SubjectTerms Adaptation
Applied sciences
Clustering
Convergence
Domain adaptation
Exact sciences and technology
Information, signal and communications theory
Multi-task clustering
Multi-task learning
Optimization
Pattern recognition
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Subspaces
Tasks
Telecommunications and information theory
Title Multi-task clustering via domain adaptation
URI https://dx.doi.org/10.1016/j.patcog.2011.05.011
https://www.proquest.com/docview/926284438
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXgTxW5wfowdvEtePJM2OYyhTYScHu4XXNpXqbIvrPPq3-9K0gyEy8NKSkpDy8vI-kvd-j5AbgZvId2NOXUiBMhCagkixGUvOIs55FNUBslMxmbGnOZ93yLjNhTFhlY3stzK9ltbNl0FDzUGZZSbH18AO4sOgiAahSfhlLDRcfve9DvMw9b0tYnjgUdO7TZ-rY7xKFHfFawPkafA7vb_U014JSyRaaqtd_BLctTZ6OCT7jRnpjOyfHpGOzo_JQVuiwWl27Am5rRNsaQXLdyderAwqAuoq5ysDJyk-IMsdSKC01_GnZPZw_zKe0KY-Ao0DISsqI0-4vvY48DAyrgOgsxe7MRoVHggZSYHKGNBiYzoV6KjIxPVjnTI-RNcx8XRwRrp5ketz4nBfwFAnQidaMvATOYzQcglTL0xdluqkR4KWLCpuwMNNDYuFaqPE3pQlpjLEVC5X-OoRuh5VWvCMLf3DluJqgwkUyvctI_sbC7Sezmch52g09ojTrpjCDWRuRSDXxWqpDGCiZCyQF_-e_ZLsYsu3JzNXpFt9rvQ12ipV1K-ZsU92Ro_Pk-kPYqLnbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HhTEt1ifOXiTpXnsbrZHEaW-elLobZkkG6nWNNjW3-9ssikUkYKXhDyGDbM7r-zMNwCXkoQo9FPBfMyRcZSGoczpMlWCJ0KIJKkSZPuy98ofBmKwAjdNLYxNq3S6v9bplbZ2dzqOm51yOLQ1vhZ2kA4WRTSK1SqsWXQq0YK16_vHXn--mRAHvAYNjwJmCZoKuirNqySNN35zWJ4WwjP4y0JtljghvuV1w4tfursySHc7sOU8Se-6_thdWDHFHmw3XRo8J7T7cFXV2LIpTj68dDSzwAhkrrzvIXrZ-BOHhYcZlvWO_AG83t2-3PSYa5HA0kiqKVNJIP3QBAJFnNjoASneS_2U_IoApUqUJHuM5LRxk0uKVVTmh6nJuehS9JgFJjqEVjEuzBF4IpTYNZk0mVEcw0x1E3Je4jyIc5_nJmtD1LBFpw4_3LaxGOkmUexd18zUlpnaF5pObWBzqrLGz1jyftxwXC-sA00qfgnl-cIEzYcLaU0I8hvb4DUzpkmG7MYIFmY8m2iLmag4j9Txv0e_gPXey_OTfrrvP57ABj0J6x81p9Cafs3MGbku0-TcLc0fWkjqHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+clustering+via+domain+adaptation&rft.jtitle=Pattern+recognition&rft.au=ZHIHAO+ZHANG&rft.au=JIE+ZHOU&rft.date=2012&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=45&rft.issue=1&rft.spage=465&rft.epage=473&rft_id=info:doi/10.1016%2Fj.patcog.2011.05.011&rft.externalDBID=n%2Fa&rft.externalDocID=24755324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon