Mechanical, thermal, viscoelastic and hydrophobicity behavior of complex grape stalk lignin and bamboo fiber reinforced polyester composite
This work aims to investigate the degradation stability of bamboo fiber-reinforced polyester composite toughened with complex lignin biopolymer derived from the waste grape stalks. The properties like mechanical, wear, thermal, DMA, and hydrophobic were studied after the addition of lignin and analy...
Saved in:
Published in | International journal of biological macromolecules Vol. 223; no. Pt A; pp. 851 - 859 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
31.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work aims to investigate the degradation stability of bamboo fiber-reinforced polyester composite toughened with complex lignin biopolymer derived from the waste grape stalks. The properties like mechanical, wear, thermal, DMA, and hydrophobic were studied after the addition of lignin and analyzed how the lignin addition influenced these properties. Prior to composite making the fiber and lignin was treated with silane. According to the results obtained incorporating 40 vol% of bamboo fiber into the polyester resin, the mechanical and wear properties enhanced. Further, the composite containing 2.0 vol% of lignin has maximum tensile strength, tensile modulus, flexural strength, flexural modulus, and ILSS. Similarly, the composite designation having 4 vol% lignin revealed the improved wear loss stability of 0.007 mm3/Nm (sp. wear rate). The highest degradation temperature reported for composite designation UBL4 it was 520 °C, with a relatively lesser weight loss of 19 %. Likewise, the highest storage modulus was about 4.5 GPa, and the lowest loss factor was up to 0.3 for the composite designation UBL4. The contact angle investigation revealed that all composite designations are not fall below 70°, indicating their hydrophobic stability. These composites with enhanced stability against load, heat and water could be utilized in the industrial, automotive and defense sectors where high performance outcomes are required. |
---|---|
AbstractList | This work aims to investigate the degradation stability of bamboo fiber-reinforced polyester composite toughened with complex lignin biopolymer derived from the waste grape stalks. The properties like mechanical, wear, thermal, DMA, and hydrophobic were studied after the addition of lignin and analyzed how the lignin addition influenced these properties. Prior to composite making the fiber and lignin was treated with silane. According to the results obtained incorporating 40 vol% of bamboo fiber into the polyester resin, the mechanical and wear properties enhanced. Further, the composite containing 2.0 vol% of lignin has maximum tensile strength, tensile modulus, flexural strength, flexural modulus, and ILSS. Similarly, the composite designation having 4 vol% lignin revealed the improved wear loss stability of 0.007 mm3/Nm (sp. wear rate). The highest degradation temperature reported for composite designation UBL4 it was 520 °C, with a relatively lesser weight loss of 19 %. Likewise, the highest storage modulus was about 4.5 GPa, and the lowest loss factor was up to 0.3 for the composite designation UBL4. The contact angle investigation revealed that all composite designations are not fall below 70°, indicating their hydrophobic stability. These composites with enhanced stability against load, heat and water could be utilized in the industrial, automotive and defense sectors where high performance outcomes are required. This work aims to investigate the degradation stability of bamboo fiber-reinforced polyester composite toughened with complex lignin biopolymer derived from the waste grape stalks. The properties like mechanical, wear, thermal, DMA, and hydrophobic were studied after the addition of lignin and analyzed how the lignin addition influenced these properties. Prior to composite making the fiber and lignin was treated with silane. According to the results obtained incorporating 40 vol% of bamboo fiber into the polyester resin, the mechanical and wear properties enhanced. Further, the composite containing 2.0 vol% of lignin has maximum tensile strength, tensile modulus, flexural strength, flexural modulus, and ILSS. Similarly, the composite designation having 4 vol% lignin revealed the improved wear loss stability of 0.007 mm3/Nm (sp. wear rate). The highest degradation temperature reported for composite designation UBL4 it was 520 °C, with a relatively lesser weight loss of 19 %. Likewise, the highest storage modulus was about 4.5 GPa, and the lowest loss factor was up to 0.3 for the composite designation UBL4. The contact angle investigation revealed that all composite designations are not fall below 70°, indicating their hydrophobic stability. These composites with enhanced stability against load, heat and water could be utilized in the industrial, automotive and defense sectors where high performance outcomes are required.This work aims to investigate the degradation stability of bamboo fiber-reinforced polyester composite toughened with complex lignin biopolymer derived from the waste grape stalks. The properties like mechanical, wear, thermal, DMA, and hydrophobic were studied after the addition of lignin and analyzed how the lignin addition influenced these properties. Prior to composite making the fiber and lignin was treated with silane. According to the results obtained incorporating 40 vol% of bamboo fiber into the polyester resin, the mechanical and wear properties enhanced. Further, the composite containing 2.0 vol% of lignin has maximum tensile strength, tensile modulus, flexural strength, flexural modulus, and ILSS. Similarly, the composite designation having 4 vol% lignin revealed the improved wear loss stability of 0.007 mm3/Nm (sp. wear rate). The highest degradation temperature reported for composite designation UBL4 it was 520 °C, with a relatively lesser weight loss of 19 %. Likewise, the highest storage modulus was about 4.5 GPa, and the lowest loss factor was up to 0.3 for the composite designation UBL4. The contact angle investigation revealed that all composite designations are not fall below 70°, indicating their hydrophobic stability. These composites with enhanced stability against load, heat and water could be utilized in the industrial, automotive and defense sectors where high performance outcomes are required. This work aims to investigate the degradation stability of bamboo fiber-reinforced polyester composite toughened with complex lignin biopolymer derived from the waste grape stalks. The properties like mechanical, wear, thermal, DMA, and hydrophobic were studied after the addition of lignin and analyzed how the lignin addition influenced these properties. Prior to composite making the fiber and lignin was treated with silane. According to the results obtained incorporating 40 vol% of bamboo fiber into the polyester resin, the mechanical and wear properties enhanced. Further, the composite containing 2.0 vol% of lignin has maximum tensile strength, tensile modulus, flexural strength, flexural modulus, and ILSS. Similarly, the composite designation having 4 vol% lignin revealed the improved wear loss stability of 0.007 mm /Nm (sp. wear rate). The highest degradation temperature reported for composite designation UBL4 it was 520 °C, with a relatively lesser weight loss of 19 %. Likewise, the highest storage modulus was about 4.5 GPa, and the lowest loss factor was up to 0.3 for the composite designation UBL4. The contact angle investigation revealed that all composite designations are not fall below 70°, indicating their hydrophobic stability. These composites with enhanced stability against load, heat and water could be utilized in the industrial, automotive and defense sectors where high performance outcomes are required. |
Author | Alshahrani, Hassan Arun Prakash, V.R. |
Author_xml | – sequence: 1 givenname: Hassan surname: Alshahrani fullname: Alshahrani, Hassan organization: Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia – sequence: 2 givenname: V.R. surname: Arun Prakash fullname: Arun Prakash, V.R. email: vinprakash101@gmail.com organization: Department of Mechanical Engineering, J.N.N Institute of Engineering, Chennai, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36343836$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9vFCEcxYmpsdvqv9Bw9OCs_Jhh2MSDprHVpMaLngkD3-myMjACu3H_Bv9pGbf14KUnyMv7vMB7F-gsxAAIXVGypoSKt7u12w0uTtqsGWGsimvWs2doRWW_aQgh_AytCG1pIykn5-gi511VRUflC3TOBW-55GKFfn8Bs9XBGe3f4LKFNC2Xg8smgte5OIN1sHh7tCnO2zg448oRD7DVBxcTjiM2cZo9_ML3Sc-Ac9H-B_buPrjwlxz0NMSIRzdAwglcGGMyYPEc_RFyqeISELMr8BI9H7XP8OrhvETfbz5-u_7U3H29_Xz94a4xXMjSSE3EpmvlSKxgrBWUGms7ybi1graMSyMtAwGm67thY1vKoddCDqZjLSO25Zfo9Sl3TvHnvj5CTfW_4L0OEPdZsZ5LKiXtabVePVj3wwRWzclNOh3VY4HVIE4Gk2LOCcZ_FkrUspTaqcel1LLUotelKvjuP7A2q4uLoSTt_NP4-xMOtaiDg6SycRBqsy6BKcpG91TEH2WGtdI |
CitedBy_id | crossref_primary_10_1007_s13399_023_04864_9 crossref_primary_10_1007_s13399_022_03600_z crossref_primary_10_1007_s13399_022_03602_x crossref_primary_10_3390_environments12030095 crossref_primary_10_1007_s13399_023_04841_2 crossref_primary_10_1007_s13399_023_04158_0 crossref_primary_10_1515_ipp_2022_4321 crossref_primary_10_1007_s12633_022_02245_x crossref_primary_10_1007_s13399_023_04338_y crossref_primary_10_1007_s13399_023_04491_4 crossref_primary_10_1007_s13399_023_04495_0 crossref_primary_10_1063_5_0215621 crossref_primary_10_1002_pc_27334 crossref_primary_10_1002_pi_6608 crossref_primary_10_1111_ppl_14166 crossref_primary_10_1007_s13399_022_03679_4 crossref_primary_10_1002_pc_27215 crossref_primary_10_1016_j_ijbiomac_2025_141353 crossref_primary_10_1002_pc_27216 crossref_primary_10_1007_s13399_024_06306_6 crossref_primary_10_1016_j_ijbiomac_2023_127068 crossref_primary_10_1007_s12633_022_02281_7 crossref_primary_10_1007_s13399_023_04918_y crossref_primary_10_1007_s13399_023_05196_4 crossref_primary_10_1007_s00289_024_05418_3 crossref_primary_10_1002_pi_6686 crossref_primary_10_1007_s13399_023_04644_5 crossref_primary_10_1016_j_jksus_2024_103148 crossref_primary_10_1016_j_ijbiomac_2023_125649 crossref_primary_10_1007_s13399_023_04181_1 crossref_primary_10_1007_s13399_023_04049_4 crossref_primary_10_1007_s10904_025_03609_7 crossref_primary_10_1007_s13399_023_04656_1 crossref_primary_10_1016_j_indcrop_2024_119404 crossref_primary_10_1016_j_chemosphere_2024_142638 crossref_primary_10_1177_14644207241228377 crossref_primary_10_1016_j_cscee_2023_100362 crossref_primary_10_1007_s12633_024_03054_0 crossref_primary_10_1007_s13399_024_05349_z crossref_primary_10_1016_j_indcrop_2025_120638 crossref_primary_10_1002_pc_27274 crossref_primary_10_1007_s13399_024_06084_1 crossref_primary_10_1007_s00289_025_05640_7 crossref_primary_10_1142_S0218625X25501215 crossref_primary_10_1007_s13399_023_04055_6 crossref_primary_10_1007_s13399_023_05199_1 crossref_primary_10_1007_s13399_024_06182_0 crossref_primary_10_1016_j_ijbiomac_2024_133787 crossref_primary_10_1007_s00289_024_05526_0 crossref_primary_10_1007_s12633_022_02262_w crossref_primary_10_1007_s13399_024_05281_2 crossref_primary_10_1016_j_rineng_2025_104164 crossref_primary_10_1021_acsapm_3c02981 crossref_primary_10_1007_s13399_023_04736_2 crossref_primary_10_1016_j_ijbiomac_2025_141589 crossref_primary_10_1007_s12633_023_02715_w crossref_primary_10_1016_j_jmrt_2024_06_089 crossref_primary_10_1088_2053_1591_acabb1 crossref_primary_10_1002_pc_28114 crossref_primary_10_1007_s12633_024_03152_z crossref_primary_10_1007_s13399_024_06129_5 crossref_primary_10_1007_s12633_023_02370_1 crossref_primary_10_3390_polym14225041 crossref_primary_10_1016_j_indcrop_2024_119501 |
Cites_doi | 10.1007/s10924-019-01369-3 10.1007/s12633-018-9762-y 10.1680/jgrma.20.00044 10.1016/j.compositesa.2019.01.008 10.1016/j.compositesb.2016.02.051 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W 10.1016/j.jmrt.2019.11.013 10.1002/pc.23799 10.1177/1528083720958036 10.1021/acsapm.9b01007 10.1177/0021998313508595 10.1016/j.apsusc.2016.04.185 10.1007/s00339-016-0411-2 10.1007/s00289-017-2262-1 10.1177/15280837221137382 10.1007/s12588-019-09251-6 10.1007/s12633-020-00569-0 10.1007/s12633-019-00347-7 10.1007/s10924-016-0791-6 10.1016/j.jclepro.2022.133931 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ijbiomac.2022.10.272 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
EndPage | 859 |
ExternalDocumentID | 36343836 10_1016_j_ijbiomac_2022_10_272 S0141813022025272 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K UNMZH ~02 ~G- 29J AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ R2- RIG SBG SEW SSH UHS WUQ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c368t-8a069548f0d6224611cdd5823dd614238c8d2e6ec575b9d413e7a68bc52420d43 |
IEDL.DBID | .~1 |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Jul 11 07:31:20 EDT 2025 Wed Feb 19 02:25:52 EST 2025 Tue Jul 01 03:35:47 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Fri Feb 23 02:40:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Lignin Bio-composites TGA and DMA Wear and mechanical properties |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-8a069548f0d6224611cdd5823dd614238c8d2e6ec575b9d413e7a68bc52420d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36343836 |
PQID | 2738188171 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2738188171 pubmed_primary_36343836 crossref_primary_10_1016_j_ijbiomac_2022_10_272 crossref_citationtrail_10_1016_j_ijbiomac_2022_10_272 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2022_10_272 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Aruchamy (bb0035) 2020; 9 Ana (bb0085) 2022 Dávila (bb0090) 2019; 121726 Jawerth (bb0070) 2020; 2 Alshahrani, Arun Prakash (bb0150) 2022; 172 Meenakshi (bb0105) 2018; 5 Arun (bb0130) 2019; 23 Mohareb (bb0055) 2017; 25 Hassanin (bb0060) 2016; 92 Arun (bb0160) 2019 Jour (bb0030) 2022; 1916877 Chandramohan (bb0140) 2019; 5 Hamed (bb0075) 2020; 181 Hamouda (bb0045) 2017; 38 Avci, Candan, Gonultas (bb0010) 2014; 48 Hamouda (bb0040) 2019; 27 Avci (bb0065) 2018; 13 Alshahrani (bb0170) 2022; 52 Prakash, Viswanthan (bb0080) 2019; 118 Prakash (bb0095) 2018; 10 Alshahrani, Prakash (bb0125) 2022 Arun (bb0100) 2018; 75 ArunPrakash (bb0110) 2016; 122 Merzoug (bb0015) 2022; 51 Alshahrani, Arun Prakash (bb0165) 2022; 374 Terzi (bb0050) 2018; 13 Yildirim (bb0020) 2020; 9 Rajadurai (bb0115) 2016; 384 Lokesh (bb0120) 2020; 22 Inbakumar (bb0135) 2018 Arun Prakash (bb0145) 2020; 12 Samuel (bb0155) 2021; 13 Mohanty, Misra, Hinrichsen (bb0005) 2000; 276 Hamouda (bb0025) 2019; 27 Alshahrani (10.1016/j.ijbiomac.2022.10.272_bb0150) 2022; 172 Arun Prakash (10.1016/j.ijbiomac.2022.10.272_bb0145) 2020; 12 Avci (10.1016/j.ijbiomac.2022.10.272_bb0065) 2018; 13 Dávila (10.1016/j.ijbiomac.2022.10.272_bb0090) 2019; 121726 Samuel (10.1016/j.ijbiomac.2022.10.272_bb0155) 2021; 13 Arun (10.1016/j.ijbiomac.2022.10.272_bb0130) 2019; 23 Jour (10.1016/j.ijbiomac.2022.10.272_bb0030) 2022; 1916877 Alshahrani (10.1016/j.ijbiomac.2022.10.272_bb0170) 2022; 52 Lokesh (10.1016/j.ijbiomac.2022.10.272_bb0120) 2020; 22 Terzi (10.1016/j.ijbiomac.2022.10.272_bb0050) 2018; 13 Rajadurai (10.1016/j.ijbiomac.2022.10.272_bb0115) 2016; 384 Prakash (10.1016/j.ijbiomac.2022.10.272_bb0080) 2019; 118 Yildirim (10.1016/j.ijbiomac.2022.10.272_bb0020) 2020; 9 Meenakshi (10.1016/j.ijbiomac.2022.10.272_bb0105) 2018; 5 Hamouda (10.1016/j.ijbiomac.2022.10.272_bb0025) 2019; 27 Jawerth (10.1016/j.ijbiomac.2022.10.272_bb0070) 2020; 2 Arun (10.1016/j.ijbiomac.2022.10.272_bb0160) 2019 Hamed (10.1016/j.ijbiomac.2022.10.272_bb0075) 2020; 181 Prakash (10.1016/j.ijbiomac.2022.10.272_bb0095) 2018; 10 Chandramohan (10.1016/j.ijbiomac.2022.10.272_bb0140) 2019; 5 Alshahrani (10.1016/j.ijbiomac.2022.10.272_bb0165) 2022; 374 Hassanin (10.1016/j.ijbiomac.2022.10.272_bb0060) 2016; 92 Arun (10.1016/j.ijbiomac.2022.10.272_bb0100) 2018; 75 Aruchamy (10.1016/j.ijbiomac.2022.10.272_bb0035) 2020; 9 Hamouda (10.1016/j.ijbiomac.2022.10.272_bb0040) 2019; 27 Mohareb (10.1016/j.ijbiomac.2022.10.272_bb0055) 2017; 25 ArunPrakash (10.1016/j.ijbiomac.2022.10.272_bb0110) 2016; 122 Ana (10.1016/j.ijbiomac.2022.10.272_bb0085) 2022 Mohanty (10.1016/j.ijbiomac.2022.10.272_bb0005) 2000; 276 Merzoug (10.1016/j.ijbiomac.2022.10.272_bb0015) 2022; 51 Alshahrani (10.1016/j.ijbiomac.2022.10.272_bb0125) 2022 Hamouda (10.1016/j.ijbiomac.2022.10.272_bb0045) 2017; 38 Inbakumar (10.1016/j.ijbiomac.2022.10.272_bb0135) 2018 Avci (10.1016/j.ijbiomac.2022.10.272_bb0010) 2014; 48 |
References_xml | – volume: 1916877 start-page: 1687 year: 2022 end-page: 9422 ident: bb0030 publication-title: Int. J. Polym. Sci. – year: 2019 ident: bb0160 publication-title: SILICON – volume: 92 start-page: 384 year: 2016 end-page: 394 ident: bb0060 article-title: Developing high-performance hybrid green composites publication-title: Compos. Part B – volume: 13 start-page: 662 year: 2018 end-page: 677 ident: bb0050 article-title: Biological performance of novel hybrid green composites produced from glass fibers and jute fabric skin by the VARTM process publication-title: Bioresources – volume: 5 start-page: 66 year: 2019 ident: bb0140 publication-title: J. Bio TriboCorros. – volume: 9 start-page: 718 year: 2020 end-page: 726 ident: bb0035 publication-title: J. Mater. Res. Technol. – year: 2022 ident: bb0085 publication-title: Int. J. Biol. Macromol. – volume: 51 start-page: 7599S year: 2022 end-page: 7621S ident: bb0015 article-title: Quasi-static and dynamic mechanical thermal performance of date palm/glass fiber hybrid composites publication-title: J. Ind. Text. – volume: 22 start-page: 897 year: 2020 end-page: 903 ident: bb0120 publication-title: Mater. Today: Proc. – volume: 27 start-page: 489 year: 2019 end-page: 497 ident: bb0040 article-title: Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes publication-title: J. Polym. Environ. – volume: 25 start-page: 126 year: 2017 end-page: 135 ident: bb0055 article-title: Developing biocomposites panels from food packaging and textiles wastes: physical and biological performance publication-title: J. Polym. Environ. – year: 2018 ident: bb0135 publication-title: Trans. Can. Soc.Mech. Eng. – volume: 27 start-page: 489 year: 2019 end-page: 497 ident: bb0025 article-title: Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes publication-title: J. Polym. Environ. – volume: 48 start-page: 3237 year: 2014 end-page: 3242 ident: bb0010 article-title: Performance properties of biocomposites from renewable natural resource publication-title: J. Compos. Mater. – volume: 121726 year: 2019 ident: bb0090 publication-title: Bioresour. Technol. – volume: 384 start-page: 99 year: 2016 end-page: 106 ident: bb0115 article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite publication-title: Appl. Surf. Sci. – volume: 276 start-page: 1 year: 2000 end-page: 24 ident: bb0005 article-title: Biofibres, biodegradable polymers and biocomposites: an overview publication-title: Macromol. Mater. Eng. – volume: 38 start-page: 2212 year: 2017 end-page: 2220 ident: bb0045 article-title: Hybrid composites from coir fibers reinforced with woven glass fabrics: physical and mechanical evaluation publication-title: Polym. Compos. – volume: 118 start-page: 317 year: 2019 end-page: 326 ident: bb0080 article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid bio composite publication-title: Compos. A: Appl. Sci. Manuf. – volume: 374 year: 2022 ident: bb0165 article-title: Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production publication-title: J. Clean. Prod. – volume: 122 start-page: 875 year: 2016 ident: bb0110 publication-title: Appl. Phys. A Mater. Sci. Process. – volume: 13 year: 2018 ident: bb0065 article-title: Manufacturing biocomposites using black pine bark and oak bark publication-title: Bioresources – volume: 2 start-page: 668 year: 2020 end-page: 676 ident: bb0070 publication-title: ACS Appl. Polym. Mater. – volume: 10 start-page: 2279 year: 2018 end-page: 2286 ident: bb0095 publication-title: SILICON – start-page: 1 year: 2022 end-page: 9 ident: bb0125 article-title: Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites publication-title: Biomass Convers.Biorefin. – volume: 172 year: 2022 ident: bb0150 article-title: Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application publication-title: Prog. Org. Coat. – volume: 75 start-page: 4207 year: 2018 end-page: 4225 ident: bb0100 publication-title: Polym. Bull. – volume: 12 start-page: 2533 year: 2020 end-page: 2544 ident: bb0145 publication-title: Silicon – volume: 13 start-page: 1703 year: 2021 end-page: 1712 ident: bb0155 publication-title: SILICON – volume: 5 start-page: 26934 year: 2018 end-page: 26940 ident: bb0105 publication-title: Mater. TodayProc. – volume: 23 start-page: 207 year: 2019 end-page: 217 ident: bb0130 publication-title: Int. J. Plast.Technol. – volume: 181 year: 2020 ident: bb0075 publication-title: Compos. Part B Eng. – volume: 52 year: 2022 ident: bb0170 article-title: Effect of palmyra sprout fiber and biosilica on mechanical, wear, thermal and hydrophobic behavior of epoxy resin composite publication-title: J. Ind. Text. – volume: 9 start-page: 182 year: 2020 end-page: 191 ident: bb0020 article-title: Development and characterization of hybrid composites from sustainable green materials publication-title: Green Mater. – volume: 172 year: 2022 ident: 10.1016/j.ijbiomac.2022.10.272_bb0150 article-title: Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application publication-title: Prog. Org. Coat. – volume: 27 start-page: 489 issue: 3 year: 2019 ident: 10.1016/j.ijbiomac.2022.10.272_bb0040 article-title: Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes publication-title: J. Polym. Environ. doi: 10.1007/s10924-019-01369-3 – volume: 181 issn: 1359-8368 year: 2020 ident: 10.1016/j.ijbiomac.2022.10.272_bb0075 publication-title: Compos. Part B Eng. – volume: 5 start-page: 66 year: 2019 ident: 10.1016/j.ijbiomac.2022.10.272_bb0140 publication-title: J. Bio TriboCorros. – volume: 10 start-page: 2279 year: 2018 ident: 10.1016/j.ijbiomac.2022.10.272_bb0095 publication-title: SILICON doi: 10.1007/s12633-018-9762-y – volume: 9 start-page: 182 issue: 4 year: 2020 ident: 10.1016/j.ijbiomac.2022.10.272_bb0020 article-title: Development and characterization of hybrid composites from sustainable green materials publication-title: Green Mater. doi: 10.1680/jgrma.20.00044 – volume: 118 start-page: 317 year: 2019 ident: 10.1016/j.ijbiomac.2022.10.272_bb0080 article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid bio composite publication-title: Compos. A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.01.008 – year: 2018 ident: 10.1016/j.ijbiomac.2022.10.272_bb0135 publication-title: Trans. Can. Soc.Mech. Eng. – issn: 0141-8130 year: 2022 ident: 10.1016/j.ijbiomac.2022.10.272_bb0085 publication-title: Int. J. Biol. Macromol. – volume: 121726 year: 2019 ident: 10.1016/j.ijbiomac.2022.10.272_bb0090 publication-title: Bioresour. Technol. – volume: 22 start-page: 897 year: 2020 ident: 10.1016/j.ijbiomac.2022.10.272_bb0120 publication-title: Mater. Today: Proc. – volume: 27 start-page: 489 issue: 3 year: 2019 ident: 10.1016/j.ijbiomac.2022.10.272_bb0025 article-title: Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes publication-title: J. Polym. Environ. doi: 10.1007/s10924-019-01369-3 – volume: 92 start-page: 384 year: 2016 ident: 10.1016/j.ijbiomac.2022.10.272_bb0060 article-title: Developing high-performance hybrid green composites publication-title: Compos. Part B doi: 10.1016/j.compositesb.2016.02.051 – volume: 276 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.ijbiomac.2022.10.272_bb0005 article-title: Biofibres, biodegradable polymers and biocomposites: an overview publication-title: Macromol. Mater. Eng. doi: 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W – volume: 9 start-page: 718 issue: 1 year: 2020 ident: 10.1016/j.ijbiomac.2022.10.272_bb0035 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.11.013 – volume: 13 start-page: 662 issue: 1 year: 2018 ident: 10.1016/j.ijbiomac.2022.10.272_bb0050 article-title: Biological performance of novel hybrid green composites produced from glass fibers and jute fabric skin by the VARTM process publication-title: Bioresources – volume: 13 year: 2018 ident: 10.1016/j.ijbiomac.2022.10.272_bb0065 article-title: Manufacturing biocomposites using black pine bark and oak bark publication-title: Bioresources – volume: 38 start-page: 2212 issue: 10 year: 2017 ident: 10.1016/j.ijbiomac.2022.10.272_bb0045 article-title: Hybrid composites from coir fibers reinforced with woven glass fabrics: physical and mechanical evaluation publication-title: Polym. Compos. doi: 10.1002/pc.23799 – volume: 51 start-page: 7599S issue: 5_suppl year: 2022 ident: 10.1016/j.ijbiomac.2022.10.272_bb0015 article-title: Quasi-static and dynamic mechanical thermal performance of date palm/glass fiber hybrid composites publication-title: J. Ind. Text. doi: 10.1177/1528083720958036 – volume: 1916877 start-page: 1687 year: 2022 ident: 10.1016/j.ijbiomac.2022.10.272_bb0030 publication-title: Int. J. Polym. Sci. – volume: 5 start-page: 26934 issue: 13 year: 2018 ident: 10.1016/j.ijbiomac.2022.10.272_bb0105 publication-title: Mater. TodayProc. – volume: 2 start-page: 668 year: 2020 ident: 10.1016/j.ijbiomac.2022.10.272_bb0070 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b01007 – start-page: 1 year: 2022 ident: 10.1016/j.ijbiomac.2022.10.272_bb0125 article-title: Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites publication-title: Biomass Convers.Biorefin. – year: 2019 ident: 10.1016/j.ijbiomac.2022.10.272_bb0160 publication-title: SILICON – volume: 48 start-page: 3237 issue: 26 year: 2014 ident: 10.1016/j.ijbiomac.2022.10.272_bb0010 article-title: Performance properties of biocomposites from renewable natural resource publication-title: J. Compos. Mater. doi: 10.1177/0021998313508595 – volume: 384 start-page: 99 year: 2016 ident: 10.1016/j.ijbiomac.2022.10.272_bb0115 article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.185 – volume: 122 start-page: 875 year: 2016 ident: 10.1016/j.ijbiomac.2022.10.272_bb0110 publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-016-0411-2 – volume: 75 start-page: 4207 year: 2018 ident: 10.1016/j.ijbiomac.2022.10.272_bb0100 publication-title: Polym. Bull. doi: 10.1007/s00289-017-2262-1 – volume: 52 year: 2022 ident: 10.1016/j.ijbiomac.2022.10.272_bb0170 article-title: Effect of palmyra sprout fiber and biosilica on mechanical, wear, thermal and hydrophobic behavior of epoxy resin composite publication-title: J. Ind. Text. doi: 10.1177/15280837221137382 – volume: 23 start-page: 207 year: 2019 ident: 10.1016/j.ijbiomac.2022.10.272_bb0130 publication-title: Int. J. Plast.Technol. doi: 10.1007/s12588-019-09251-6 – volume: 13 start-page: 1703 year: 2021 ident: 10.1016/j.ijbiomac.2022.10.272_bb0155 publication-title: SILICON doi: 10.1007/s12633-020-00569-0 – volume: 12 start-page: 2533 issue: 11 year: 2020 ident: 10.1016/j.ijbiomac.2022.10.272_bb0145 publication-title: Silicon doi: 10.1007/s12633-019-00347-7 – volume: 25 start-page: 126 issue: 2 year: 2017 ident: 10.1016/j.ijbiomac.2022.10.272_bb0055 article-title: Developing biocomposites panels from food packaging and textiles wastes: physical and biological performance publication-title: J. Polym. Environ. doi: 10.1007/s10924-016-0791-6 – volume: 374 year: 2022 ident: 10.1016/j.ijbiomac.2022.10.272_bb0165 article-title: Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133931 |
SSID | ssj0006518 |
Score | 2.571626 |
Snippet | This work aims to investigate the degradation stability of bamboo fiber-reinforced polyester composite toughened with complex lignin biopolymer derived from... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 851 |
SubjectTerms | Bio-composites Composite Resins - chemistry Lignin Lignin - chemistry Materials Testing Pliability Polyesters - chemistry TGA and DMA Vitis Wear and mechanical properties |
Title | Mechanical, thermal, viscoelastic and hydrophobicity behavior of complex grape stalk lignin and bamboo fiber reinforced polyester composite |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2022.10.272 https://www.ncbi.nlm.nih.gov/pubmed/36343836 https://www.proquest.com/docview/2738188171 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswELUQLLgbxOMC5SUjsbxpEzt23CWqQAUEK5DYRYkfl5SSVKUg2PAD_DQzTsJjgViwSyJPYnlGc06SmWNCDgCEtTaGBcYZFcRC8yCLJAu0cWHfcc1jL-pzfiGHV_HptbieI4O2FwbLKpvcX-d0n62bK71mNXuTouhhWRLAE8dWUSZYgnk4jhOM8u7LR5mHFP4bHw4OcPSnLuFRtxhhk3uGUoaMdbEsOmHfAdR3BNQD0fEyWWoYJD2sJ7lC5my5ShYH7cZta-T13GI7L67-P4r87g4PHot7XVngymBGs9LQm2czrSY3VV5oYOK07denlaO-ztw-UVSzthT44_iWjov_ZVF6yzy7A25OHRab0Kn12quwkHRSjZ-98IK_AVaD2b_k6vjocjAMmj0XAs2lmgUqCyVqwLnQSK81F4EnhWLcGABywHetDLPSaqB5ed8ABNokkyrXArA-NDFfJ_NlVdpNQp3QLlcizHBDkwTfjBJho5xHNo6FU7pDRLvQqW4EyXFfjHHaVp6N0tZBKToIr4ODOqT3bjepJTl-tOi3fky_BFcKuPGj7X7r-BT8iL9TstJWD_cpNjVFSkVJ1CEbdUS8z4dLjhqwcusXT94mf_CsVpXcIfOz6YPdBQY0y_d8iO-RhcOTs-HFG68WB-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELXQcoBLRVtoty2tkTgSNrFjx3tEK9BS2D2BxM1K_FGyXZLVsqDyG_jTzDjJqj0gDr1FTiaxPNa8l2TmDSGHAMLGWMsi662KUmF4lCeSRcb6eOi54WkQ9ZlM5fg6_XkjbjbIqKuFwbTKNvY3MT1E63Zk0K7mYFGWA0xLAnjiWCrKBMsgDm-iOpXokc2T84vxdB2QpQif-fD6CA3-KhSeHZczrHPPUc2QsWPMjM7Yaxj1GgcNWHS2Q961JJKeNPN8TzZc9YFsjbrebR_J88RhRS864IgixbvDg8fy3tQO6DKY0byy9PbJLuvFbV2UBsg47Ur2ae1pSDV3fygKWjsKFHL-m87LX1VZBcsivwN6Tj3mm9ClC_KrsJZ0Uc-fgvZCuAEmhLldcn12ejUaR23bhchwqVaRymOJMnA-tjLIzSXgTKEYtxawHCDeKMucdAaYXjG0gIIuy6UqjAC4j23K90ivqiv3mVAvjC-UiHPsaZLhy1EmXFLwxKWp8Mr0iegWWptWkxxbY8x1l3w2052DNDoIx8FBfTJY2y0aVY43LYadH_U_-0sDdLxpe9A5XoMf8Y9KXrn64V5jXVOiVJIlffKp2RHr-XDJUQZWfvmPJ_8gW-OryaW-PJ9efCXbeKYRmfxGeqvlg9sHQrQqvrcb_gWsOwqR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical%2C+thermal%2C+viscoelastic+and+hydrophobicity+behavior+of+complex+grape+stalk+lignin+and+bamboo+fiber+reinforced+polyester+composite&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Alshahrani%2C+Hassan&rft.au=Arun+Prakash%2C+V.R.&rft.date=2022-12-31&rft.pub=Elsevier+B.V&rft.issn=0141-8130&rft.eissn=1879-0003&rft.volume=223&rft.spage=851&rft.epage=859&rft_id=info:doi/10.1016%2Fj.ijbiomac.2022.10.272&rft.externalDocID=S0141813022025272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |