Effects of Rare Earth Elements on the Characteristics of,Low Temperature Plasma Nitrocarburized Martensitic Stainless Steel

Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray d...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 28; no. 11; pp. 1046 - 1052
Main Authors Liu, R.L., Qiao, Y.J., Yan, M.F., Fu, Y.D.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2012
Subjects
Online AccessGet full text
ISSN1005-0302
1941-1162
DOI10.1016/S1005-0302(12)60171-6

Cover

Abstract Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray diffraction, Vickers microhardness tester, pin-on-disc tribometer and potentiodynamic polarization tests. The results show that the thickness of plasma RE nitrocarburized layer is much thicker than that formed by nitrocarburizing without RE addition. The incorporation of RE does not change the kind of the phases and the nitrocarburized layer consists mainly of nitrogen and carbon expanded martensite (aN), γ-Fe4N and a-Fe with a trace of CrN phases. The surface microhardness of plasma nitrocarburized layer can be increased by 100 HV after RE addition. Wear resistance of the specimen can be apparently improved by low temperature plasma nitrocarburizing with and without RE addition and without sacrificing its corrosion resistance. Wear reduction effect of low temperature plasma nitrocarburizing with RE addition is better than that of the conventional one.
AbstractList Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 °C with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray diffraction, Vickers microhardness tester, pin-on-disc tribometer and potentiodynamic polarization tests. The results show that the thickness of plasma RE nitrocarburized layer is much thicker than that formed by nitrocarburizing without RE addition. The incorporation of RE does not change the kind of the phases and the nitrocarburized layer consists mainly of nitrogen and carbon expanded martensite (α′N), γ′-Fe4N and α′-Fe with a trace of CrN phases. The surface microhardness of plasma nitrocarburized layer can be increased by 100 HV after RE addition. Wear resistance of the specimen can be apparently improved by low temperature plasma nitrocarburizing with and without RE addition and without sacrificing its corrosion resistance. Wear reduction effect of low temperature plasma nitrocarburizing with RE addition is better than that of the conventional one.
Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 degree C with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray diffraction, Vickers microhardness tester, pin-on-disc tribometer and potentiodynamic polarization tests. The results show that the thickness of plasma RE nitrocarburized layer is much thicker than that formed by nitrocarburizing without RE addition. The incorporation of RE does not change the kind of the phases and the nitrocarburized layer consists mainly of nitrogen and carbon expanded martensite ( alpha (N)'), gamma '-Fe(4)N and alpha '-Fe with a trace of CrN phases. The surface microhardness of plasma nitrocarburized layer can be increased by 100 HV after RE addition. Wear resistance of the specimen can be apparently improved by low temperature plasma nitrocarburizing with and without RE addition and without sacrificing its corrosion resistance. Wear reduction effect of low temperature plasma nitrocarburizing with RE addition is better than that of the conventional one.
Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray diffraction, Vickers microhardness tester, pin-on-disc tribometer and potentiodynamic polarization tests. The results show that the thickness of plasma RE nitrocarburized layer is much thicker than that formed by nitrocarburizing without RE addition. The incorporation of RE does not change the kind of the phases and the nitrocarburized layer consists mainly of nitrogen and carbon expanded martensite (aN), γ-Fe4N and a-Fe with a trace of CrN phases. The surface microhardness of plasma nitrocarburized layer can be increased by 100 HV after RE addition. Wear resistance of the specimen can be apparently improved by low temperature plasma nitrocarburizing with and without RE addition and without sacrificing its corrosion resistance. Wear reduction effect of low temperature plasma nitrocarburizing with RE addition is better than that of the conventional one.
Author R.L.Lju Y.J. Qiao M.F. Yan Y.D. Fu
AuthorAffiliation College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Author_xml – sequence: 1
  givenname: R.L.
  surname: Liu
  fullname: Liu, R.L.
  email: liuruiliang@hrbeu.edu.cn
  organization: College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 2
  givenname: Y.J.
  surname: Qiao
  fullname: Qiao, Y.J.
  organization: College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 3
  givenname: M.F.
  surname: Yan
  fullname: Yan, M.F.
  email: yanmufu@hit.edu.cn
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: Y.D.
  surname: Fu
  fullname: Fu, Y.D.
  organization: College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
BookMark eNqFkU1v1DAQhi1UJNrCT0AytyIR8NgbJysOCK22gLR8iJaz5UzGXaPE3tpeUOHPk3QLBy49zWj0fkjPnLCjEAMx9hTESxCgX12AEHUllJBnIJ9rAQ1U-gE7huUCKgAtj6b9r-QRO8n5uxCqqdv2mP1eO0dYMo-Of7WJ-NqmsuXrgUYK8znwsiW-2tpksVDyuXic1S828Se_pHFHyZb9ZPwy2Dxa_smXFNGmbp_8L-r5xymPQvaTjV8U68NAOU8b0fCYPXR2yPTkbp6yb-fry9X7avP53YfV202FSrelahta9m2PKCTAsum11Vq2iN2iduRE22jhEBGol4StrR30BF2tOuo6UKDVKTs75O5SvN5TLmb0GWkYbKC4zwaUVBJaAXKSvj5IMcWcEzmDvtjiYyjJ-sGAMDNyc4vczDwNSHOL3MxF9X_uXfKjTTf3-t4cfDRR-OEpmYyeAlLv0_Qc00d_b8Kzu-ZtDFfXPlz9q14s5FIJ3ag_Pv6oYg
CitedBy_id crossref_primary_10_1016_j_apsusc_2019_04_005
crossref_primary_10_1016_j_jmst_2023_05_051
crossref_primary_10_1016_j_triboint_2022_107961
crossref_primary_10_1016_j_apsusc_2023_157249
crossref_primary_10_1016_j_jmst_2013_06_006
crossref_primary_10_1016_j_jmst_2014_01_003
crossref_primary_10_1016_j_surfcoat_2017_11_033
crossref_primary_10_1088_2053_1591_ada0ab
crossref_primary_10_3390_ma15155441
crossref_primary_10_1007_s40735_019_0233_9
crossref_primary_10_20964_2017_11_65
crossref_primary_10_1007_s11665_022_07754_9
crossref_primary_10_1016_j_surfcoat_2019_06_002
crossref_primary_10_1016_j_vacuum_2022_111389
crossref_primary_10_1007_s40735_024_00849_x
crossref_primary_10_1088_2053_1591_abcb79
crossref_primary_10_1016_j_physb_2024_416115
crossref_primary_10_1590_1980_5373_mr_2024_0322
crossref_primary_10_1016_j_molstruc_2024_137499
crossref_primary_10_1080_02670836_2019_1673027
crossref_primary_10_1016_j_actamat_2020_06_020
crossref_primary_10_1016_j_surfcoat_2020_126392
crossref_primary_10_1016_j_vacuum_2016_07_007
Cites_doi 10.1016/S1005-0302(10)60042-4
10.1023/A:1004548112547
10.1016/j.matchar.2009.09.017
10.1179/sur.1985.1.2.131
10.1016/S1005-0302(12)60024-3
10.1016/j.surfcoat.2004.03.004
10.1179/174328407X161204
10.1007/s11249-006-9041-8
10.1016/j.jmatprotec.2010.01.009
10.1023/A:1016555719845
10.1016/j.matdes.2009.10.005
10.1016/S0043-1648(03)00018-8
10.1016/S1002-0721(08)60388-9
10.1016/j.scriptamat.2003.09.042
10.1016/j.surfcoat.2004.08.139
10.1179/174328409X425281
10.1016/j.apsusc.2010.03.121
10.1016/j.matlet.2006.06.071
10.1016/j.cap.2009.01.030
10.1016/S0169-4332(00)00889-8
10.1016/j.vacuum.2009.12.001
10.1016/S0257-8972(02)00842-3
ContentType Journal Article
Copyright 2012 The Chinese Society for Metals
Copyright_xml – notice: 2012 The Chinese Society for Metals
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SE
7SR
8BQ
8FD
JG9
DOI 10.1016/S1005-0302(12)60171-6
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Corrosion Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Corrosion Abstracts
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Effects of Rare Earth Elements on the Characteristics of,Low Temperature Plasma Nitrocarburized Martensitic Stainless Steel
EISSN 1941-1162
EndPage 1052
ExternalDocumentID 10_1016_S1005_0302_12_60171_6
S1005030212601716
44293067
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
1B1
1~.
2B.
2C0
2RA
4.4
457
5GY
5VR
5VS
5XA
5XC
5XL
8P~
92H
92I
92L
92M
92R
93N
9D9
9DB
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CQIGP
CW9
DU5
EBS
EFJIC
EFLBG
EJD
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q--
Q38
R-B
RIG
ROL
RT2
S..
SDF
SES
SPC
SPCBC
SSM
SSZ
T5K
T8R
TCJ
TGT
U1F
U1G
U5B
U5L
W92
~G-
~WA
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SE
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c368t-87e9d8dcc021197d6a6628ccb45fef08760fccc1ed2ec8a5f1de1b53bebb13163
IEDL.DBID AIKHN
ISSN 1005-0302
IngestDate Fri Sep 05 13:46:05 EDT 2025
Tue Jul 01 02:19:50 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Fri Feb 23 02:26:27 EST 2024
Wed Feb 14 10:44:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Plasma nitrocarburizing
Wear and friction
Stainless steel
Rare earth (RE)
Low temperature
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-87e9d8dcc021197d6a6628ccb45fef08760fccc1ed2ec8a5f1de1b53bebb13163
Notes R.L. Liu, Y.J. Qiao, M.F. Yanand Y.D. Fu 1) College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Stainless steel; Low temperature; Plasma nitrocarburizing; Rare earth (RE);Wear and friction
21-1315/TG
Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray diffraction, Vickers microhardness tester, pin-on-disc tribometer and potentiodynamic polarization tests. The results show that the thickness of plasma RE nitrocarburized layer is much thicker than that formed by nitrocarburizing without RE addition. The incorporation of RE does not change the kind of the phases and the nitrocarburized layer consists mainly of nitrogen and carbon expanded martensite (aN), γ-Fe4N and a-Fe with a trace of CrN phases. The surface microhardness of plasma nitrocarburized layer can be increased by 100 HV after RE addition. Wear resistance of the specimen can be apparently improved by low temperature plasma nitrocarburizing with and without RE addition and without sacrificing its corrosion resistance. Wear reduction effect of low temperature plasma nitrocarburizing with RE addition is better than that of the conventional one.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1323218012
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1323218012
crossref_citationtrail_10_1016_S1005_0302_12_60171_6
crossref_primary_10_1016_S1005_0302_12_60171_6
elsevier_sciencedirect_doi_10_1016_S1005_0302_12_60171_6
chongqing_primary_44293067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials science & technology
PublicationTitleAlternate Journal of Materials Science & Technology
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Bell (bib2) 1985; 1
Cheng, Shangguan (bib13) 2006; 23
Liu, Yan, Wu, Zhao (bib21) 2010; 61
Wu, Liu, Wang, Xu (bib16) 2010; 84
Christiansen, Somers (bib3) 2004; 50
Moulder, Stickle, Sobol, Bomben (bib24) 1992
Wang, Huang, Zhang (bib7) 2012; 28
Liu, Yan, Wu (bib17) 2009; 27
Ulutan, Celik, Gasan, Er (bib4) 2010; 26
Yan, Liu, Wu (bib19) 2010; 31
Liu, Yan, Wu (bib18) 2010; 210
Chen, Chang (bib23) 2003; 173
Yan, Liu (bib20) 2010; 256
Cheng, Xie (bib14) 2003; 254
Yan, Pan, Bell, Liu (bib15) 2001; 173
Yang, Yang, Zhang (bib25) 2007; 61
Bell, Sun, Liu, Yan (bib12) 2000; 27
Lei, Zhu (bib5) 2005; 193
Wan, Ren, Zhang, Yang (bib6) 2011; 27
Yan, Sun, Bell, Liu, Xia (bib22) 2002; 20
Li, Manory (bib1) 1999; 34
Li, Bell (bib10) 2007; 23
Zhao, Li, Dong, Bell (bib11) 2005; 191
Sun, Bell (bib8) 2002; 13
Lee (bib9) 2009; 9
Zhang (10.1016/S1005-0302(12)60171-6_bib2) 1985; 1
Wan (10.1016/S1005-0302(12)60171-6_bib6) 2011; 27
Chen (10.1016/S1005-0302(12)60171-6_bib23) 2003; 173
Cheng (10.1016/S1005-0302(12)60171-6_bib14) 2003; 254
Wu (10.1016/S1005-0302(12)60171-6_bib16) 2010; 84
Li (10.1016/S1005-0302(12)60171-6_bib1) 1999; 34
Ulutan (10.1016/S1005-0302(12)60171-6_bib4) 2010; 26
Wang (10.1016/S1005-0302(12)60171-6_bib7) 2012; 28
Cheng (10.1016/S1005-0302(12)60171-6_bib13) 2006; 23
Yang (10.1016/S1005-0302(12)60171-6_bib25) 2007; 61
Yan (10.1016/S1005-0302(12)60171-6_bib15) 2001; 173
Liu (10.1016/S1005-0302(12)60171-6_bib18) 2010; 210
Liu (10.1016/S1005-0302(12)60171-6_bib17) 2009; 27
Zhao (10.1016/S1005-0302(12)60171-6_bib11) 2005; 191
Yan (10.1016/S1005-0302(12)60171-6_bib19) 2010; 31
Yan (10.1016/S1005-0302(12)60171-6_bib20) 2010; 256
Lee (10.1016/S1005-0302(12)60171-6_bib9) 2009; 9
Liu (10.1016/S1005-0302(12)60171-6_bib21) 2010; 61
Moulder (10.1016/S1005-0302(12)60171-6_bib24) 1992
Li (10.1016/S1005-0302(12)60171-6_bib10) 2007; 23
Christiansen (10.1016/S1005-0302(12)60171-6_bib3) 2004; 50
Yan (10.1016/S1005-0302(12)60171-6_bib22) 2002; 20
Lei (10.1016/S1005-0302(12)60171-6_bib5) 2005; 193
Sun (10.1016/S1005-0302(12)60171-6_bib8) 2002; 13
Bell (10.1016/S1005-0302(12)60171-6_bib12) 2000; 27
References_xml – volume: 27
  start-page: 1139
  year: 2011
  ident: bib6
  publication-title: J. Mater. Sci. Technol.
– volume: 256
  start-page: 6065
  year: 2010
  ident: bib20
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 1
  year: 2000
  ident: bib12
  publication-title: Heat Treat. Met.
– volume: 84
  start-page: 870
  year: 2010
  ident: bib16
  publication-title: Vacuum
– volume: 31
  start-page: 2270
  year: 2010
  ident: bib19
  publication-title: Mater. Des.
– volume: 9
  start-page: S257
  year: 2009
  ident: bib9
  publication-title: Current Appl. Phys.
– volume: 254
  start-page: 415
  year: 2003
  ident: bib14
  publication-title: Wear
– volume: 20
  start-page: 329
  year: 2002
  ident: bib22
  publication-title: J. Rare Earths
– volume: 193
  start-page: 22
  year: 2005
  ident: bib5
  publication-title: Surf. Coat. Technol.
– volume: 13
  start-page: 29
  year: 2002
  ident: bib8
  publication-title: Tribol. Lett.
– volume: 191
  start-page: 195
  year: 2005
  ident: bib11
  publication-title: Surf. Coat. Technol.
– volume: 34
  start-page: 1045
  year: 1999
  ident: bib1
  publication-title: J. Mater. Sci.
– volume: 210
  start-page: 784
  year: 2010
  ident: bib18
  publication-title: J. Mater. Process. Technol.
– volume: 50
  start-page: 35
  year: 2004
  ident: bib3
  publication-title: Scripta Mater.
– volume: 61
  start-page: 1154
  year: 2007
  ident: bib25
  publication-title: Mater. Lett.
– volume: 23
  start-page: 29
  year: 2006
  ident: bib13
  publication-title: Tribol. Lett.
– volume: 61
  start-page: 19
  year: 2010
  ident: bib21
  publication-title: Mater. Character.
– volume: 173
  start-page: 9
  year: 2003
  ident: bib23
  publication-title: Surf. Coat. Technol.
– volume: 23
  start-page: 355
  year: 2007
  ident: bib10
  publication-title: Mater. Sci. Technol.
– volume: 173
  start-page: 91
  year: 2001
  ident: bib15
  publication-title: Appl. Surf. Sci.
– year: 1992
  ident: bib24
  publication-title: Handbook of X-ray Photoelectron Spectroscopy
– volume: 26
  start-page: 251
  year: 2010
  ident: bib4
  publication-title: J. Mater. Sci. Technol.
– volume: 1
  start-page: 131
  year: 1985
  ident: bib2
  publication-title: Surf. Eng.
– volume: 28
  start-page: 60
  year: 2012
  ident: bib7
  publication-title: J. Mater. Sci. Technol.
– volume: 27
  start-page: 1056
  year: 2009
  ident: bib17
  publication-title: J. Rare Earths
– volume: 20
  start-page: 329
  year: 2002
  ident: 10.1016/S1005-0302(12)60171-6_bib22
  publication-title: J. Rare Earths
– volume: 26
  start-page: 251
  year: 2010
  ident: 10.1016/S1005-0302(12)60171-6_bib4
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(10)60042-4
– volume: 34
  start-page: 1045
  year: 1999
  ident: 10.1016/S1005-0302(12)60171-6_bib1
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004548112547
– volume: 61
  start-page: 19
  year: 2010
  ident: 10.1016/S1005-0302(12)60171-6_bib21
  publication-title: Mater. Character.
  doi: 10.1016/j.matchar.2009.09.017
– volume: 1
  start-page: 131
  issue: 2
  year: 1985
  ident: 10.1016/S1005-0302(12)60171-6_bib2
  publication-title: Surf. Eng.
  doi: 10.1179/sur.1985.1.2.131
– volume: 28
  start-page: 60
  year: 2012
  ident: 10.1016/S1005-0302(12)60171-6_bib7
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60024-3
– volume: 191
  start-page: 195
  year: 2005
  ident: 10.1016/S1005-0302(12)60171-6_bib11
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.03.004
– volume: 23
  start-page: 355
  issue: 3
  year: 2007
  ident: 10.1016/S1005-0302(12)60171-6_bib10
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/174328407X161204
– volume: 23
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/S1005-0302(12)60171-6_bib13
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-006-9041-8
– volume: 210
  start-page: 784
  year: 2010
  ident: 10.1016/S1005-0302(12)60171-6_bib18
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2010.01.009
– volume: 13
  start-page: 29
  issue: 1
  year: 2002
  ident: 10.1016/S1005-0302(12)60171-6_bib8
  publication-title: Tribol. Lett.
  doi: 10.1023/A:1016555719845
– volume: 31
  start-page: 2270
  year: 2010
  ident: 10.1016/S1005-0302(12)60171-6_bib19
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.10.005
– volume: 254
  start-page: 415
  year: 2003
  ident: 10.1016/S1005-0302(12)60171-6_bib14
  publication-title: Wear
  doi: 10.1016/S0043-1648(03)00018-8
– volume: 27
  start-page: 1056
  year: 2009
  ident: 10.1016/S1005-0302(12)60171-6_bib17
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(08)60388-9
– year: 1992
  ident: 10.1016/S1005-0302(12)60171-6_bib24
– volume: 50
  start-page: 35
  year: 2004
  ident: 10.1016/S1005-0302(12)60171-6_bib3
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2003.09.042
– volume: 193
  start-page: 22
  year: 2005
  ident: 10.1016/S1005-0302(12)60171-6_bib5
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.08.139
– volume: 27
  start-page: 1139
  year: 2011
  ident: 10.1016/S1005-0302(12)60171-6_bib6
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1179/174328409X425281
– volume: 256
  start-page: 6065
  year: 2010
  ident: 10.1016/S1005-0302(12)60171-6_bib20
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.03.121
– volume: 61
  start-page: 1154
  year: 2007
  ident: 10.1016/S1005-0302(12)60171-6_bib25
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.06.071
– volume: 27
  start-page: 1
  year: 2000
  ident: 10.1016/S1005-0302(12)60171-6_bib12
  publication-title: Heat Treat. Met.
– volume: 9
  start-page: S257
  issue: 3
  year: 2009
  ident: 10.1016/S1005-0302(12)60171-6_bib9
  publication-title: Current Appl. Phys.
  doi: 10.1016/j.cap.2009.01.030
– volume: 173
  start-page: 91
  year: 2001
  ident: 10.1016/S1005-0302(12)60171-6_bib15
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(00)00889-8
– volume: 84
  start-page: 870
  year: 2010
  ident: 10.1016/S1005-0302(12)60171-6_bib16
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2009.12.001
– volume: 173
  start-page: 9
  year: 2003
  ident: 10.1016/S1005-0302(12)60171-6_bib23
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00842-3
SSID ssj0037588
Score 2.0562303
Snippet Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The...
Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 °C with and without rare earth (RE) addition. The...
Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 degree C with and without rare earth (RE) addition. The...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1046
SubjectTerms Carbonitriding
Corrosion resistance
Low temperature
Martensitic stainless steels
Microhardness
Nitrocarburizing
Phases
Plasma nitrocarburizing
Precipitation hardening steels
Rare earth (RE)
Rare earth metals
Stainless steel
Stainless steels
Wear and friction
Wear resistance
低温等离子体
摩擦磨损试验机
显微硬度计
氮碳共渗层
碳氮共渗
离子氮碳共渗
稀土元素
马氏体不锈钢
Title Effects of Rare Earth Elements on the Characteristics of,Low Temperature Plasma Nitrocarburized Martensitic Stainless Steel
URI http://lib.cqvip.com/qk/84252X/201211/44293067.html
https://dx.doi.org/10.1016/S1005-0302(12)60171-6
https://www.proquest.com/docview/1323218012
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaU9lKQPumkSVOihPTi7smzFewzLhu2DpTQJ5Cb0GDcLWztNNhRa6G_PjGWbplACvRnhEZZGnu-TPfMJ4I0OwSmrVeKzQiXZZOwSW1qVSLRlsJn045ggu9Dz8-zDRX6xAdOuFobTKtvYH2N6E63bllE7m6Or5XJ0KhstE5Yo143oyyZspWqi8wFsHb__OF90AVkRJY4VcZynpjihZ78vFO4b38r0XdNP0sgsXNbV1-8EHv-Cq78Cd4NGJ9vwpKWR4jg-6Q5sYPUUHv8hLvgMfkVh4htRl-KLvUYxo3FdilnMF6fmShD5E9P7is1896f6hzhD4tNRb1l8Job9zYrFck1oZ9kNy58YBCsQcPo7mYlT_sKwoqhJV4ir53B-MjubzpP2qIXEK12sKSbiJBTB-zErvh0FbbVOC-9dlpdYsmzduPTeSwwp-sLmpQwoXa4cOicVcboXMKjqCl-CQKJMtKejbaYjhCzzIkyUPVKakVD5IhvCbj-75ipKapiMYJE3L0PIuuk2vhUp57MyVqbPRmOPGfaYkalpPGb0EA57s67LBwyKzpfm3nIzhCQPmb7ufG_oVeT_K7bC-vbG0MZeEWOige7-f_ev4BFxsjSWO-7BYH19i_vEe9buADYPf8uDdnXfAQ0J_CI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N8QA8IH6KDgZG4gEestax47qPqOpUoFSIddLeLP8Kq1SSsXVCAom_nbs4iRgSmsRbdIqt2OfcfZd8_gzwSoXghFUi81KLTE5GLrOlFRmPtgxWcj9KBNmlmh_L9yfFyQ5Mu70wRKtsY3-K6U20bi3DdjaHZ-v18Ig3WiYkUa4a0ZcbcFMWYky8voNfPc8DDTrthyOWmiA6z36_Tbg3vub5m6aXrBFZOK2rL98wdfwrWf0VtptcdHgP7rYgkr1Nz3kfdmL1AO78IS34EH4mWeILVpfssz2PbIajOmWzxBZHc8UQ-rHpVb1muntRf2eriGg6qS2zT4ivv1q2XG8x11lywvpHDIz0B4j8js3YEX1f2GDMxKsYN4_g-HC2ms6z9qCFzAultxgR4yTo4P2I9N7GQVmlcu29k0UZSxKtG5Xeex5DHr22RclD5K4QLjrHBSK6x7Bb1VV8AiwiYMKKDotMh_mxLHSYCDsWivKg8FoOYK-fXXOWBDWMxKRIpcsAZDfdxrcS5XRSxsb0XDTymCGPGZ6bxmNGDeCgb9Z1eU0D3fnSXFlsBvPIdU1fdr43-CLS3xVbxfrywmBZLxAv4UD3_r_7F3Brvvq4MIt3yw9P4TaiszxtfHwGu9vzy7iPCGjrnjcr_DcllPzt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Rare+Earth+Elements+on+the+Characteristics+of+Low+Temperature+Plasma+Nitrocarburized+Martensitic+Stainless+Steel&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Liu%2C+R+L&rft.au=Qiao%2C+Y+J&rft.au=Yan%2C+M+F&rft.au=Fu%2C+Y+D&rft.date=2012-11-01&rft.issn=1005-0302&rft.volume=28&rft.issue=11&rft.spage=1046&rft.epage=1052&rft_id=info:doi/10.1016%2FS1005-0302%2812%2960171-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84252X%2F84252X.jpg