Mitigation of Emergent Bacterial Pathogens Using Pseudomonas syringae pv. actinidiae as a Case Study—From Orchard to Gene and Everything in Between
Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into several agroecological systems. These include pathogenic bacteria with devastating consequences for numerous crops of agronomical importance for...
Saved in:
Published in | Crops Vol. 2; no. 4; pp. 351 - 377 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
30.09.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into several agroecological systems. These include pathogenic bacteria with devastating consequences for numerous crops of agronomical importance for food production worldwide. In the last decade, research efforts have focused on these noxious organisms, aiming to understand their evolutionary processes, degree of pathogenicity, and mitigation strategies, which have allowed stakeholders and policymakers to develop evidence-based regulatory norms to improve management practices and minimize production losses. One of these cases is the bacterium Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the kiwifruit bacterial canker, which has been causing drastic production losses and added costs related to orchard management in the kiwifruit industry. Although Psa is presently considered a pandemic pathogen and far from being eradicated, the implementation of strict regulatory norms and the efforts employed by the scientific community allowed the mitigation, to some extent, of its negative impacts through an integrated pest management approach. This included implementing directive guidelines, modifying cultural practices, and searching for sources of plant resistance. However, bacterial pathogens often have high spatial and temporal variability, with new strains constantly arising through mutation, recombination, and gene flow, posing constant pressure to agroecosystems. This review aims to critically appraise the efforts developed to mitigate bacterial pathogens of agronomical impact, from orchard management to genome analysis, using Psa as a case study, which could allow a prompter response against emerging pathogens in agroecosystems worldwide. |
---|---|
AbstractList | Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into several agroecological systems. These include pathogenic bacteria with devastating consequences for numerous crops of agronomical importance for food production worldwide. In the last decade, research efforts have focused on these noxious organisms, aiming to understand their evolutionary processes, degree of pathogenicity, and mitigation strategies, which have allowed stakeholders and policymakers to develop evidence-based regulatory norms to improve management practices and minimize production losses. One of these cases is the bacterium Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the kiwifruit bacterial canker, which has been causing drastic production losses and added costs related to orchard management in the kiwifruit industry. Although Psa is presently considered a pandemic pathogen and far from being eradicated, the implementation of strict regulatory norms and the efforts employed by the scientific community allowed the mitigation, to some extent, of its negative impacts through an integrated pest management approach. This included implementing directive guidelines, modifying cultural practices, and searching for sources of plant resistance. However, bacterial pathogens often have high spatial and temporal variability, with new strains constantly arising through mutation, recombination, and gene flow, posing constant pressure to agroecosystems. This review aims to critically appraise the efforts developed to mitigate bacterial pathogens of agronomical impact, from orchard management to genome analysis, using Psa as a case study, which could allow a prompter response against emerging pathogens in agroecosystems worldwide. |
Author | Carvalho, Susana M. P. Nunes da Silva, Marta Santos, Miguel G. Vasconcelos, Marta W. |
Author_xml | – sequence: 1 givenname: Marta orcidid: 0000-0001-8228-0576 surname: Nunes da Silva fullname: Nunes da Silva, Marta – sequence: 2 givenname: Miguel G. orcidid: 0000-0002-1203-6102 surname: Santos fullname: Santos, Miguel G. – sequence: 3 givenname: Marta W. surname: Vasconcelos fullname: Vasconcelos, Marta W. – sequence: 4 givenname: Susana M. P. orcidid: 0000-0001-7157-1079 surname: Carvalho fullname: Carvalho, Susana M. P. |
BookMark | eNptkMFOAjEURRuDiYjs_IB-gIPtlJnOLIUAmmAgUdaTzvQN1DAtaQtmdn6E_qBfYlEXxLh67913712cS9TRRgNC15QMGMvJbWXNzsVkSEicnKFunHIW8TRJOif7Beo790KCJeOMEdpFH4_Kq7XwymhsajxpwK5BezwSlQerxBYvhd-YoDm8ckqv8dLBXprGaOGwa22QBODdYYBDQmklVTjDS-CxcICf_F62n2_vU2savLDVRliJvcEz0MGmJZ4cwLZ-c2xWGo_AvwLoK3Rei62D_u_sodV08jy-j-aL2cP4bh5VLM18lCUpxJRmmQBC64yXueQ0TRjQmpYCynSYcc6IzHKWlMASHpeskmVc5rxMa0lYD9389AZ4zlmoi51VjbBtQUlxpFqcUg32-I-9Uv6bnbdCbf8PfQE3b4E8 |
CitedBy_id | crossref_primary_10_1111_jph_13219 crossref_primary_10_3390_crops3020013 crossref_primary_10_3390_horticulturae10090944 crossref_primary_10_3390_plants12030590 crossref_primary_10_1016_j_pmpp_2024_102506 crossref_primary_10_3389_fpls_2023_1306420 |
Cites_doi | 10.1007/s00248-019-01459-8 10.3389/fpls.2018.00114 10.1007/s13258-017-0645-1 10.3389/fmicb.2018.00656 10.1094/MPMI-02-21-0043-R 10.1094/MPMI-09-20-0248-R 10.1038/nrmicro.2018.17 10.3390/ijms19123900 10.1094/PDIS-06-12-0590-RE 10.3390/ijms23010508 10.3389/fpls.2018.01563 10.1007/978-3-540-71160-5 10.20956/ijab.v2i2.5260 10.1007/s42161-018-0189-5 10.1371/journal.pone.0211913 10.1080/01140671.2010.512624 10.17660/ActaHortic.2019.1243.12 10.1038/ncomms13099 10.1007/s10658-017-1267-9 10.1007/s10327-020-00916-4 10.17660/ActaHortic.2022.1332.15 10.1007/s10658-020-02119-1 10.1007/s13593-018-0503-9 10.1104/pp.111.172254 10.3390/plants9101350 10.1007/1-4020-4538-7 10.1007/s10327-018-0804-5 10.1146/annurev-phyto-021621-121935 10.17660/ActaHortic.2015.1095.15 10.1128/AEM.01688-15 10.1111/aab.12150 10.1099/jmm.0.001115 10.1007/s10658-016-0863-4 10.5423/RPD.2002.8.4.250 10.3390/ijms222312710 10.17660/ActaHortic.2015.1095.5 10.1111/ppa.12070 10.1186/s12864-018-4967-4 10.3233/JBR-160128 10.1146/annurev-phyto-080516-035530 10.1038/s41598-017-05377-y 10.3186/jjphytopath.59.460 10.1111/ppa.12297 10.1111/ppa.13184 10.1111/mpp.12989 10.3186/jjphytopath.60.237 10.17660/eJHS.2019/84.4.2 10.1111/ppa.12066 10.1016/S1016-8478(23)15038-2 10.1094/PDIS-07-12-0700-RE 10.3186/jjphytopath.59.452 10.3389/fmicb.2021.650099 10.1007/s10681-014-1107-3 10.3390/plants10091939 10.3390/ijms22094375 10.3390/engproc2021009033 10.1007/978-1-4939-7604-1_2 10.1038/srep21399 10.1007/s13313-014-0306-7 10.1007/978-3-030-46111-9 10.1101/2021.11.15.468702 10.1080/03235408.2019.1647014 10.1146/annurev.py.28.090190.001103 10.1016/j.plaphy.2021.02.045 10.1371/journal.pone.0135310 10.1094/PDIS-07-20-1527-PDN 10.1007/s10327-021-01024-7 10.1002/pld3.297 10.3389/fpls.2017.01366 10.3233/JBR-140073 10.1094/PDIS-06-13-0667-PDN 10.1038/s41598-020-75990-x 10.1128/AEM.69.5.2936-2941.2003 10.1371/journal.pone.0192153 10.1146/annurev-cellbio-092910-154055 10.3389/fpls.2013.00024 10.3389/fagro.2021.831172 10.3390/ijms19020373 10.1111/ppa.13040 10.3186/jjphytopath.59.694 10.1094/PDIS-08-20-1703-RE 10.1111/ppa.12082 10.1094/PHYTO-02-12-0019-R 10.1016/j.jprot.2014.01.030 10.1038/s41438-019-0184-9 10.1094/PD-91-0004 10.1016/j.jprot.2012.10.014 10.17660/ActaHortic.2018.1218.40 10.1007/s42161-020-00719-8 10.1080/14786419.2019.1574784 10.3389/fpls.2021.756330 10.1111/j.1439-0434.2009.01550.x 10.3186/jjphytopath.80.171 10.1016/j.scienta.2021.110806 10.1007/s00248-019-01416-5 10.1007/s10327-021-01030-9 10.3233/JBR-160115 10.1007/s00239-005-0271-4 10.1038/srep16961 10.1128/MRA.00759-20 10.1094/PHYTO-03-12-0064-R 10.1093/gbe/evx055 10.1016/j.micres.2022.127048 10.1128/aem.63.1.282-288.1997 10.3186/jjphytopath.59.469 10.1111/j.1365-3059.2010.02259.x 10.3389/fpls.2020.01022 10.1111/ppa.12236 10.1016/j.cell.2006.06.054 10.3186/jjphytopath.55.427 10.1111/ppa.12551 10.5423/RPD.2020.26.1.44 10.17660/ActaHortic.2014.1048.2 10.3390/cli10020014 10.3390/ijms222212185 10.1111/pce.14224 10.3186/jjphytopath.82.101 10.1016/j.tplants.2009.03.006 10.3389/fpls.2020.551201 10.1186/s12864-018-5197-5 10.1016/j.ijbiomac.2021.02.189 10.3389/fmicb.2021.627785 10.1007/s10886-014-0474-5 10.14393/BJ-v36n6a2020-47896 10.1111/j.1364-3703.2012.00788.x 10.17660/ActaHortic.2015.1095.14 10.1016/j.pmpp.2021.101636 10.1094/PBIOMES-09-20-0070-R 10.3389/fpls.2017.02157 10.1111/ppa.12817 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.3390/crops2040025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-7655 |
EndPage | 377 |
ExternalDocumentID | 10_3390_crops2040025 |
GroupedDBID | AAYXX ABDBF ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ MODMG M~E OK1 |
ID | FETCH-LOGICAL-c368t-856e21188ae01f87b9d71653e1f1baeb6487730d8935be3572b3cdb2b97b6fd03 |
ISSN | 2673-7655 |
IngestDate | Thu Apr 24 22:59:36 EDT 2025 Tue Jul 01 01:09:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-856e21188ae01f87b9d71653e1f1baeb6487730d8935be3572b3cdb2b97b6fd03 |
ORCID | 0000-0002-1203-6102 0000-0001-8228-0576 0000-0001-7157-1079 |
OpenAccessLink | https://www.mdpi.com/2673-7655/2/4/25/pdf?version=1664536886 |
PageCount | 27 |
ParticipantIDs | crossref_primary_10_3390_crops2040025 crossref_citationtrail_10_3390_crops2040025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-30 |
PublicationDateYYYYMMDD | 2022-09-30 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Crops |
PublicationYear | 2022 |
References | Scortichini (ref_67) 2016; 98 ref_137 Jayaraman (ref_94) 2020; 21 ref_136 Black (ref_120) 2015; 1105 ref_138 Gallelli (ref_24) 2011; 93 Renzi (ref_78) 2013; 56 ref_14 Miao (ref_166) 2009; 35 ref_99 ref_130 ref_10 ref_133 Vanneste (ref_23) 2010; 59 ref_132 ref_96 Ton (ref_158) 2009; 14 Serizawa (ref_46) 1993; 59 Kisaki (ref_73) 2018; 84 ref_18 Cesco (ref_126) 2020; 10 Tyson (ref_52) 2016; 69 Vanneste (ref_123) 2012; 65 Sawada (ref_30) 2019; 68 Meena (ref_125) 2017; Volume 2 (ref_15) 2019; 101 Ferrante (ref_40) 2012; 94 Miao (ref_146) 2005; 32 Vasconcelos (ref_151) 2021; 162 Stroud (ref_155) 2022; 295 Wang (ref_76) 2020; 69 ref_122 ref_121 Scortichini (ref_8) 2012; 13 Gallelli (ref_25) 2014; 63 Serizawa (ref_6) 1989; 55 Balestra (ref_26) 2013; 97 Nardozza (ref_72) 2015; 1095 ref_27 Serizawa (ref_47) 1993; 59 Genka (ref_87) 2006; 63 Michelotti (ref_145) 2022; 1332 Lamichhane (ref_64) 2018; 38 Cellini (ref_103) 2022; 260 Andersen (ref_32) 2018; 67 Kennelly (ref_55) 2007; 91 ref_71 ref_70 Cellini (ref_104) 2020; 79 Sawada (ref_84) 2014; 80 (ref_110) 2018; 1734 Wurms (ref_141) 2017; 70 Chapman (ref_80) 2012; 102 Li (ref_127) 2020; 4 ref_77 Ferrante (ref_117) 2014; 63 Nepali (ref_16) 2018; 2 Luti (ref_102) 2021; 179 Lonjon (ref_92) 2022; 60 Ruinelli (ref_35) 2017; 66 ref_160 Hossain (ref_159) 2011; 156 Liu (ref_37) 2016; 145 Abelleira (ref_11) 2015; 1095 Melotto (ref_157) 2006; 126 Rodicio (ref_17) 2003; 69 Fujikawa (ref_86) 2020; 9 Liu (ref_153) 2016; 7 Sciubba (ref_65) 2019; 34 Jarallah (ref_13) 2019; 19 ref_89 Ares (ref_106) 2021; 5 ref_142 ref_88 Groen (ref_128) 2014; 40 Nascimento (ref_150) 2018; 9 Prencipe (ref_19) 2018; 150 Mazzaglia (ref_29) 2021; 114 McCann (ref_85) 2017; 9 Spinelli (ref_39) 2010; 913 Andersen (ref_33) 2021; 105 Brunetti (ref_20) 2020; 158 Firrao (ref_98) 2018; 9 Koh (ref_56) 2010; 38 Ko (ref_111) 2002; 8 Chiabrando (ref_119) 2018; 1 Antoniacci (ref_115) 2019; 1243 ref_57 Ferrante (ref_107) 2015; 64 Vanneste (ref_44) 2014; 98 Jayaraman (ref_34) 2021; 34 Suzaki (ref_36) 2022; 88 Li (ref_38) 2021; 105 Wurms (ref_135) 2017; 8 ref_53 Wang (ref_163) 2017; 7 Fujikawa (ref_82) 2016; 6 ref_59 Pan (ref_31) 2020; 36 Sun (ref_156) 2020; 11 Cellini (ref_134) 2014; 165 Cunty (ref_28) 2015; 81 Vasconcelos (ref_75) 2020; 11 Li (ref_114) 2001; 12 Beatson (ref_45) 2014; 1048 ref_61 ref_60 Vanneste (ref_109) 2013; 97 ref_162 Mauri (ref_50) 2016; 6 ref_165 Pieterse (ref_149) 2012; 28 Lee (ref_63) 2020; 26 Cornish (ref_58) 2015; 68 Ashrafzadeh (ref_66) 2019; 52 Monchiero (ref_68) 2015; 44 Cunty (ref_81) 2015; 64 Andolfi (ref_100) 2014; 96 Koh (ref_22) 2002; 13 Fernandes (ref_129) 2022; 1332 Wang (ref_143) 2021; 12 Serizawa (ref_41) 1993; 59 ref_118 Koh (ref_54) 1996; 12 Tahir (ref_139) 2019; 6 Petriccione (ref_148) 2015; 5 Saei (ref_74) 2018; 1218 Purahong (ref_105) 2018; 9 Sawada (ref_83) 2016; 82 Pattemore (ref_124) 2014; 43 Sawada (ref_21) 1997; 63 Jing (ref_144) 2018; 40 Gupta (ref_131) 2015; 9 Li (ref_95) 2021; 12 Cheng (ref_167) 2014; 198 Vanneste (ref_113) 2015; 1095 Hirano (ref_112) 1990; 28 Vanneste (ref_9) 2017; 55 Ares (ref_51) 2015; 1095 Petriccione (ref_42) 2014; 101 Petriccione (ref_147) 2013; 78 Carvalho (ref_140) 2022; 45 Ferrante (ref_7) 2009; 157 Donati (ref_90) 2014; 4 Reglinski (ref_152) 2013; 4 Reglinski (ref_154) 2022; 3 Xin (ref_3) 2018; 16 Ishiga (ref_93) 2020; 86 ref_101 ref_1 Collina (ref_161) 2016; 6 ref_2 Renzi (ref_43) 2012; 102 Serizawa (ref_48) 1994; 60 Cameron (ref_62) 2014; 63 Machado (ref_108) 2019; 84 Donati (ref_12) 2020; 80 Kim (ref_69) 2020; 69 Serizawa (ref_49) 1993; 59 Kaji (ref_164) 2021; 87 ref_5 ref_4 Choi (ref_116) 2017; 8 Vandelle (ref_91) 2021; 34 Wang (ref_79) 2021; 103 Wang (ref_97) 2021; 12 |
References_xml | – volume: 80 start-page: 81 year: 2020 ident: ref_12 article-title: Pseudomonas syringae pv. actinidiae: Ecology, infection dynamics and disease epidemiology publication-title: Microb. Ecol. doi: 10.1007/s00248-019-01459-8 – volume: 9 start-page: 114 year: 2018 ident: ref_150 article-title: Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00114 – volume: 9 start-page: 40 year: 2015 ident: ref_131 article-title: Response of iodine on antioxidant levels of Glycine max L. grown under Cd stress publication-title: Adv. Biol. Res. – volume: 40 start-page: 429 year: 2018 ident: ref_144 article-title: Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses publication-title: Genes Genom. doi: 10.1007/s13258-017-0645-1 – volume: 9 start-page: 656 year: 2018 ident: ref_98 article-title: Genomic structural variations affecting virulence during clonal expansion of Pseudomonas syringae pv. actinidiae biovar 3 in Europe publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00656 – volume: 34 start-page: 880 year: 2021 ident: ref_34 article-title: Rapid methodologies for assessing Pseudomonas syringae pv. actinidiae colonization and effector-mediated hypersensitive response in kiwifruit publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-02-21-0043-R – volume: 34 start-page: 376 year: 2021 ident: ref_91 article-title: Transcriptional profiling of three Pseudomonas syringae pv. actinidiae biovars reveals different responses to apoplast-like conditions related to strain virulence on the host publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-09-20-0248-R – volume: 16 start-page: 316 year: 2018 ident: ref_3 article-title: Pseudomonas syringae: What it takes to be a pathogen publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2018.17 – volume: 1 start-page: 1 year: 2018 ident: ref_119 article-title: Kiwifruit under plastic covering: Impact on fruit quality and on orchard microclimate publication-title: J. Food Nutr. Agric. – ident: ref_162 doi: 10.3390/ijms19123900 – volume: 97 start-page: 472 year: 2013 ident: ref_26 article-title: A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin publication-title: Plant Dis. doi: 10.1094/PDIS-06-12-0590-RE – ident: ref_99 doi: 10.3390/ijms23010508 – volume: 9 start-page: 1563 year: 2018 ident: ref_105 article-title: Plant microbiome and its link to plant health: Host species, organs and Pseudomonas syringae pv. actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01563 – ident: ref_14 doi: 10.1007/978-3-540-71160-5 – volume: 2 start-page: 27 year: 2018 ident: ref_16 article-title: Identification of Pseudomonas fluorescens using different biochemical tests publication-title: Int. J. Appl. Biol. doi: 10.20956/ijab.v2i2.5260 – ident: ref_4 – volume: 101 start-page: 251 year: 2019 ident: ref_15 article-title: Characterization and phylogeny of the novel taxon of Pseudomonas spp., closely related to Pseudomonas avellanae as causal agent of a bacterial leaf blight of cornelian cherry (Cornus mas L.) and Pseudomonas syringae pv. syringae as a new bacterial pathogen of red dogwood (Cornus sanguinea L.) publication-title: J. Plant Pathol. doi: 10.1007/s42161-018-0189-5 – ident: ref_142 doi: 10.1371/journal.pone.0211913 – volume: 38 start-page: 275 year: 2010 ident: ref_56 article-title: Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea publication-title: N. Z. J. Crop Hortic. Sci. doi: 10.1080/01140671.2010.512624 – volume: 1243 start-page: 71 year: 2019 ident: ref_115 article-title: Validation of New Zealand Psa forecasting model in Emilia Romagna Region, Italy publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2019.1243.12 – volume: 7 start-page: 13099 year: 2016 ident: ref_153 article-title: Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity publication-title: Nat. Commun. doi: 10.1038/ncomms13099 – ident: ref_10 – volume: 150 start-page: 191 year: 2018 ident: ref_19 article-title: Pseudomonas syringae pv. actinidiae isolated from Actinidia chinensis var. deliciosa in Northern Italy: Genetic diversity and virulence publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-017-1267-9 – volume: 86 start-page: 257 year: 2020 ident: ref_93 article-title: Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit publication-title: J. Gen. Plant Pathol. doi: 10.1007/s10327-020-00916-4 – volume: 1332 start-page: 111 year: 2022 ident: ref_145 article-title: Preliminary results on the development of a genome editing protocol in Actinidia chinensis var. chinensis as Psa resistance approach publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2022.1332.15 – volume: Volume 2 start-page: 217 year: 2017 ident: ref_125 article-title: Role of nutrients in controlling the plant diseases in sustainable agriculture publication-title: Agriculturally Important Microbes for Sustainable Agriculture: Applications in Crop Production and Protection – volume: 158 start-page: 829 year: 2020 ident: ref_20 article-title: In vitro and in planta screening of compounds for the control of Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-020-02119-1 – volume: 38 start-page: 28 year: 2018 ident: ref_64 article-title: Thirteen decades of antimicrobial copper compounds applied in agriculture. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-018-0503-9 – volume: 156 start-page: 430 year: 2011 ident: ref_159 article-title: Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.111.172254 – ident: ref_138 doi: 10.3390/plants9101350 – ident: ref_88 doi: 10.1007/1-4020-4538-7 – volume: 84 start-page: 399 year: 2018 ident: ref_73 article-title: Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3 publication-title: J. Gen. Plant Pathol. doi: 10.1007/s10327-018-0804-5 – volume: 60 start-page: 211 year: 2022 ident: ref_92 article-title: Diversity, evolution, and function of Pseudomonas syringae effectoromes publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-021621-121935 – ident: ref_59 – volume: 1095 start-page: 123 year: 2015 ident: ref_72 article-title: Kiwifruit xylem sap: Composition and in vitro growth of a virulent strain of Pseudomonas syringae pv. actinidiae publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2015.1095.15 – volume: 81 start-page: 6773 year: 2015 ident: ref_28 article-title: Origin of the outbreak in France of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, revealed by a multilocus variable-number tandem-repeat analysis publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01688-15 – volume: 165 start-page: 441 year: 2014 ident: ref_134 article-title: Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidae publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12150 – ident: ref_53 – volume: 69 start-page: 132 year: 2020 ident: ref_69 article-title: Genomic analyses of Pseudomonas syringae pv. actinidiae isolated in Korea suggest the transfer of the bacterial pathogen via kiwifruit pollen publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.001115 – volume: 145 start-page: 743 year: 2016 ident: ref_37 article-title: Pseudomonas syringae pv. actinidiae isolated from non-kiwifruit plant species in China publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-016-0863-4 – volume: 8 start-page: 250 year: 2002 ident: ref_111 article-title: An improved method for testing pathogenicity of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit publication-title: Res. Plant Dis. doi: 10.5423/RPD.2002.8.4.250 – volume: 19 start-page: 203 year: 2019 ident: ref_13 article-title: Isolation and characterization of Pseudomonas aeruginosa from Babylon Province publication-title: Biochem. Cell. Arch. – ident: ref_133 doi: 10.3390/ijms222312710 – volume: 1095 start-page: 49 year: 2015 ident: ref_11 article-title: Distribution, detection protocols and characterization of Pseudomonas syringae pv. actinidiae from kiwifruit in Galicia (northwest Spain) publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2015.1095.5 – volume: 63 start-page: 12 year: 2014 ident: ref_117 article-title: Frost promotes the pathogenicity of Pseudomonas syringae pv. actinidiae in Actinidia chinensis and A. deliciosa plants publication-title: Plant Pathol. doi: 10.1111/ppa.12070 – ident: ref_136 doi: 10.1186/s12864-018-4967-4 – ident: ref_121 – volume: 6 start-page: 407 year: 2016 ident: ref_161 article-title: Greenhouse assays on the control of the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae) publication-title: J. Berry Res. doi: 10.3233/JBR-160128 – volume: 55 start-page: 377 year: 2017 ident: ref_9 article-title: The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae) publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080516-035530 – volume: 7 start-page: 4910 year: 2017 ident: ref_163 article-title: Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes publication-title: Sci. Rep. doi: 10.1038/s41598-017-05377-y – volume: 44 start-page: 13 year: 2015 ident: ref_68 article-title: Efficacy of different chemical and biological products in the control of Pseudomonas syringae pv. actinidiae on kiwifruit. Australas publication-title: Plant Pathol. – volume: 59 start-page: 460 year: 1993 ident: ref_47 article-title: Epidemiology of bacterial canker of kiwifruit. 2. The most suitable times and environments for infection on new canes publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.59.460 – volume: 69 start-page: 11 year: 2016 ident: ref_52 article-title: Preliminary investigations of the risk of plant debris as a Pseudomonas syringae pv actinidiae inoculum source publication-title: N. Z. Plant Prot. – volume: 64 start-page: 582 year: 2015 ident: ref_81 article-title: Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov. publication-title: Plant Pathol. doi: 10.1111/ppa.12297 – volume: 69 start-page: 979 year: 2020 ident: ref_76 article-title: Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae publication-title: Plant Pathol. doi: 10.1111/ppa.13184 – volume: 21 start-page: 1467 year: 2020 ident: ref_94 article-title: AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12989 – volume: 60 start-page: 237 year: 1994 ident: ref_48 article-title: Epidemiology of bacterial canker of kiwifruit. 5. Effect of infection in fall to early winter on the disease development in branches and trunk after winter publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.60.237 – volume: 84 start-page: 206 year: 2019 ident: ref_108 article-title: Exploring the expression of defence-related genes in Actinidia spp. after infection with Pseudomonas syringae pv. actinidiae and pv. actinidifoliorum: First steps publication-title: Eur. J. Hortic. Sci. doi: 10.17660/eJHS.2019/84.4.2 – volume: 1332 start-page: 103 year: 2022 ident: ref_129 article-title: Influence of the nitrogen source on the tolerance of Actinidia chinensis to Pseudomonas syringae pv. actinidiae publication-title: Acta Hortic. – volume: 63 start-page: 1 year: 2014 ident: ref_62 article-title: Pseudomonas syringae pv. actinidiae: Chemical control, resistance mechanisms and possible alternatives publication-title: Plant Pathol. doi: 10.1111/ppa.12066 – volume: 13 start-page: 309 year: 2002 ident: ref_22 article-title: DNA markers for identification of Pseudomonas syringae pv. actinidiae publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)15038-2 – volume: 97 start-page: 708 year: 2013 ident: ref_109 article-title: Identification, virulence, and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand publication-title: Plant Dis. doi: 10.1094/PDIS-07-12-0700-RE – volume: 94 start-page: 455 year: 2012 ident: ref_40 article-title: The importance of the main colonization and penetration sites of Pseudomonas syringae pv. actinidiae and prevailing weather conditions in the development of epidemics in yellow kiwifruit, recently observed in Central Italy publication-title: J. Plant Pathol. – volume: 70 start-page: 272 year: 2017 ident: ref_141 article-title: Elicitor induction of defence genes and reduction of bacterial canker in kiwifruit publication-title: N. Z. Plant Prot. – volume: 59 start-page: 452 year: 1993 ident: ref_41 article-title: Epidemiology of bacterial canker of kiwifruit 1. Infection and bacterial movement in tissue of new canes publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.59.452 – volume: 12 start-page: 650099 year: 2021 ident: ref_95 article-title: Genetic causes of non-pathogenic Pseudomonas syringae pv. actinidiae isolates in kiwifruit orchards publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.650099 – volume: 198 start-page: 305 year: 2014 ident: ref_167 article-title: Inheritance of resistance to Pseudomonas syringae pv. actinidiae and genetic correlations with fruit characters in a diploid Actinidia chinensis (kiwifruit) population publication-title: Euphytica doi: 10.1007/s10681-014-1107-3 – ident: ref_165 doi: 10.3390/plants10091939 – ident: ref_89 doi: 10.3390/ijms22094375 – ident: ref_77 doi: 10.3390/engproc2021009033 – volume: 1734 start-page: 13 year: 2018 ident: ref_110 article-title: Bacterial genotyping methods: From the basics to modern publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7604-1_2 – volume: 6 start-page: 21399 year: 2016 ident: ref_82 article-title: Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5 publication-title: Sci. Rep. doi: 10.1038/srep21399 – volume: 12 start-page: 355 year: 2001 ident: ref_114 article-title: Prevalent forecast of kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae publication-title: Ying Yong Sheng Tai Xue Bao – ident: ref_160 – volume: 913 start-page: 461 year: 2010 ident: ref_39 article-title: Real time monitoring of the interactions between Pseudomonas syringae pv. actinidiae and Actinidia species publication-title: Acta Hortic. – volume: 43 start-page: 571 year: 2014 ident: ref_124 article-title: Evidence of the role of honey bees (Apis mellifera) as vectors of the bacterial plant pathogen Pseudomonas syringae publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-014-0306-7 – ident: ref_1 doi: 10.1007/978-3-030-46111-9 – ident: ref_96 doi: 10.1101/2021.11.15.468702 – volume: 52 start-page: 501 year: 2019 ident: ref_66 article-title: In vitro breeding-shortcut to Pseudomonas syringae pv. actinidiae (Psa) tolerant kiwifruit publication-title: Arch. Phytopathol. Plant Prot. doi: 10.1080/03235408.2019.1647014 – volume: 28 start-page: 155 year: 1990 ident: ref_112 article-title: Population biology and epidemiology of Pseudomonas syringae publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.py.28.090190.001103 – volume: 162 start-page: 258 year: 2021 ident: ref_151 article-title: Role of methyl jasmonate and salicylic acid in kiwifruit plants further subjected to Psa infection: Biochemical and genetic responses publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.02.045 – ident: ref_27 doi: 10.1371/journal.pone.0135310 – volume: 105 start-page: 696 year: 2021 ident: ref_38 article-title: First report of bacterial leaf spot disease of Broussonetia papyrifera caused by Pseudomonas syringae pv. actinidiae in China publication-title: Plant Dis. doi: 10.1094/PDIS-07-20-1527-PDN – volume: 87 start-page: 361 year: 2021 ident: ref_164 article-title: Expression analysis of defense-related genes in wild kiwifruit (Actinidia rufa) tolerant to bacterial canker publication-title: J. Gen. Plant Pathol. doi: 10.1007/s10327-021-01024-7 – ident: ref_5 – volume: 93 start-page: 425 year: 2011 ident: ref_24 article-title: Gene sequence analysis for the molecular detection of Pseudomonas syringae pv. actinidiae: Developing diagnostic protocols publication-title: J. Plant Pathol. – volume: 12 start-page: 324 year: 1996 ident: ref_54 article-title: Characteristics of bacterial canker of kiwifruit occurring in Korea and its control by trunk injection publication-title: Plant Pathol. J. – volume: 4 start-page: e00297 year: 2020 ident: ref_127 article-title: Metabolic profiling reveals local and systemic responses of kiwifruit to Pseudomonas syringae pv. actinidiae publication-title: Plant Direct doi: 10.1002/pld3.297 – volume: 8 start-page: 1366 year: 2017 ident: ref_135 article-title: Phytohormone and putative defense gene expression differentiates the response of ‘Hayward’ kiwifruit to Psa and Pfm infections publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01366 – volume: 4 start-page: 53 year: 2014 ident: ref_90 article-title: New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae) publication-title: J. Berry Res. doi: 10.3233/JBR-140073 – volume: 98 start-page: 418 year: 2014 ident: ref_44 article-title: First report of Pseudomonas syringae pv. actinidiae the causal agent of bacterial canker of kiwifruit on Actinidia arguta vines in New Zealand publication-title: Plant Dis. doi: 10.1094/PDIS-06-13-0667-PDN – volume: 10 start-page: 18759 year: 2020 ident: ref_126 article-title: Plasmopara viticola infection affects mineral elements allocation and distribution in Vitis vinifera leaves publication-title: Sci. Rep. doi: 10.1038/s41598-020-75990-x – volume: 69 start-page: 2936 year: 2003 ident: ref_17 article-title: Identification of an emergent and atypical Pseudomonas viridiflava lineage causing bacteriosis in plants of agronomic importance in a Spanish region publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.5.2936-2941.2003 – ident: ref_61 – volume: 1095 start-page: 111 year: 2015 ident: ref_51 article-title: Survival of Pseudomonas syringae pv. actinidiae in leaf-litter of Actinidia deliciosa in Galicia (northwest Spain) publication-title: Acta Hortic. – ident: ref_71 doi: 10.1371/journal.pone.0192153 – volume: 28 start-page: 489 year: 2012 ident: ref_149 article-title: Hormonal modulation of plant immunity publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154055 – volume: 4 start-page: 24 year: 2013 ident: ref_152 article-title: Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00024 – volume: 3 start-page: 831172 year: 2022 ident: ref_154 article-title: Transient changes in defence gene expression and phytohormone cInduced by acibenzolar-S-methyl in glasshouse and orchard grown kiwifruit publication-title: Front. Agron. doi: 10.3389/fagro.2021.831172 – volume: 1105 start-page: 253 year: 2015 ident: ref_120 article-title: Opportunities for environmental modification to control Pseudomonas syringae pv. actinidiae in kiwifruit publication-title: Acta Hortic. – ident: ref_137 doi: 10.3390/ijms19020373 – volume: 68 start-page: 1235 year: 2019 ident: ref_30 article-title: Genetic diversity of Pseudomonas syringae pv. actinidiae, pathogen of kiwifruit bacterial canker publication-title: Plant Pathol. doi: 10.1111/ppa.13040 – volume: 68 start-page: 332 year: 2015 ident: ref_58 article-title: In vitro inhibition of Pseudomonas syringae pv. actinidiae by wound protectants publication-title: N. Z. Plant Prot. – volume: 59 start-page: 694 year: 1993 ident: ref_49 article-title: Epidemiology of bacterial canker of kiwifruit. 4. Optimum temperature for disease development on new canes publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.59.694 – ident: ref_118 – volume: 105 start-page: 1748 year: 2021 ident: ref_33 article-title: Real-time PCR and droplet digital PCR are accurate and reliable methods to quantify Pseudomonas syringae pv. actinidiae biovar 3 in kiwifruit infected plantlets publication-title: Plant Dis. doi: 10.1094/PDIS-08-20-1703-RE – volume: 63 start-page: 264 year: 2014 ident: ref_25 article-title: Real-time and qualitative PCR for detecting Pseudomonas syringae pv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker publication-title: Plant Pathol. doi: 10.1111/ppa.12082 – volume: 102 start-page: 827 year: 2012 ident: ref_43 article-title: Bacterial canker on kiwifruit in Italy: Anatomical changes in the wood and in the primary infection sites publication-title: Phytopathology doi: 10.1094/PHYTO-02-12-0019-R – volume: 101 start-page: 43 year: 2014 ident: ref_42 article-title: Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae publication-title: J. Proteom. doi: 10.1016/j.jprot.2014.01.030 – volume: 6 start-page: 101 year: 2019 ident: ref_139 article-title: Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis) publication-title: Hortic. Res. doi: 10.1038/s41438-019-0184-9 – volume: 91 start-page: 4 year: 2007 ident: ref_55 article-title: Pseudomonas syringae diseases of fruit trees: Progress toward understanding and control publication-title: Plant Dis. doi: 10.1094/PD-91-0004 – volume: 78 start-page: 461 year: 2013 ident: ref_147 article-title: Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain publication-title: J. Proteom. doi: 10.1016/j.jprot.2012.10.014 – volume: 1218 start-page: 293 year: 2018 ident: ref_74 article-title: The status of Pseudomonas syringae pv. actinidiae (Psa) in the New Zealand kiwifruit breeding programme in relation to ploidy level publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2018.1218.40 – volume: 103 start-page: 51 year: 2021 ident: ref_79 article-title: Preliminary report on the improved resistance towards Pseudomonas syringae pv. actinidiae of cultivated kiwifruit (Actinidia chinensis) when grafted onto wild Actinidia guilinensis rootstock in vitro publication-title: J. Plant Pathol. doi: 10.1007/s42161-020-00719-8 – volume: 34 start-page: 2043 year: 2019 ident: ref_65 article-title: NMR-based metabolic study of leaves of three species of Actinidia with different degrees of susceptibility to Pseudomonas syringae pv. actinidiae publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2019.1574784 – volume: 12 start-page: 756330 year: 2021 ident: ref_143 article-title: Transcriptomic and proteomic profiling reveal the key role of AcMYB16 in the response of Pseudomonas syringae pv. actinidiae in kiwifruit publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.756330 – volume: 157 start-page: 768 year: 2009 ident: ref_7 article-title: Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in Central Italy publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2009.01550.x – volume: 80 start-page: 171 year: 2014 ident: ref_84 article-title: Novel MLSA group (Psa5) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia chinensis) in Japan publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.80.171 – volume: 295 start-page: 110806 year: 2022 ident: ref_155 article-title: Actigard™ induces a defence response to limit Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis ‘Hort16A’ tissue culture plants publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2021.110806 – volume: 79 start-page: 383 year: 2020 ident: ref_104 article-title: N-Acyl homoserine lactones and Lux solos regulate social behaviour and virulence of Pseudomonas syringae pv. actinidiae publication-title: Microb. Ecol. doi: 10.1007/s00248-019-01416-5 – volume: 88 start-page: 2 year: 2022 ident: ref_36 article-title: Loop-mediated isothermal amplification of bacterial effector genes to detect Pseudomonas syringae pv. actinidiae biovars 1 and 3 publication-title: J. Gen. Plant Pathol. doi: 10.1007/s10327-021-01030-9 – volume: 6 start-page: 355 year: 2016 ident: ref_50 article-title: Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit publication-title: J. Berry Res. doi: 10.3233/JBR-160115 – volume: 63 start-page: 401 year: 2006 ident: ref_87 article-title: Comparative analysis of argK-tox clusters and their flanking regions in phaseolotoxin-producing Pseudomonas syringae pathovars publication-title: J. Mol. Evol. doi: 10.1007/s00239-005-0271-4 – volume: 5 start-page: 16961 year: 2015 ident: ref_148 article-title: Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. actinidiae publication-title: Sci. Rep. doi: 10.1038/srep16961 – volume: 9 start-page: e00759-20 year: 2020 ident: ref_86 article-title: Draft genome sequences of 10 strains of Pseudomonas syringae pv. actinidiae biovar 1, a major kiwifruit bacterial canker pathogen in Japan publication-title: Microbiol. Resour. Announc. doi: 10.1128/MRA.00759-20 – volume: 102 start-page: 1034 year: 2012 ident: ref_80 article-title: Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae publication-title: Phytopathology doi: 10.1094/PHYTO-03-12-0064-R – volume: 32 start-page: 37 year: 2005 ident: ref_146 article-title: Resistance mechanism of kiwifruit cultivars to Pseudomonas syringae pv. actinidiae publication-title: Acta Phytopathol. Sin. – volume: 35 start-page: 37 year: 2009 ident: ref_166 article-title: Relationships between the contents of phenolics, soluble proteins in plants of kiwifruit cultivars and their resistance to kiwifruit bacterial canker by Pseudomonas syringae pv. actinidiae publication-title: Plant Prot. – volume: 9 start-page: 932 year: 2017 ident: ref_85 article-title: Origin and evolution of the kiwifruit canker pandemic publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evx055 – volume: 260 start-page: 127048 year: 2022 ident: ref_103 article-title: Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits publication-title: Microbiol. Res. doi: 10.1016/j.micres.2022.127048 – volume: 63 start-page: 282 year: 1997 ident: ref_21 article-title: Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.1.282-288.1997 – volume: 59 start-page: 469 year: 1993 ident: ref_46 article-title: Epidemiology of bacterial canker of kiwifruit, 3: The seasonal changes of bacterial population in lesions and of its exudation from lesion publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.59.469 – volume: 59 start-page: 453 year: 2010 ident: ref_23 article-title: Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S–23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2010.02259.x – volume: 11 start-page: 1022 year: 2020 ident: ref_75 article-title: Early pathogen recognition and antioxidant system activation contributes to Actinidia arguta tolerance against Pseudomonas syringae pathovars actinidiae and actinidifoliorum publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01022 – ident: ref_18 – volume: 64 start-page: 51 year: 2015 ident: ref_107 article-title: Redefining the global populations of Pseudomonas syringae pv. actinidiae based on pathogenic, molecular and phenotypic characteristics publication-title: Plant Pathol. doi: 10.1111/ppa.12236 – ident: ref_130 – volume: 126 start-page: 969 year: 2006 ident: ref_157 article-title: Plant stomata function in innate immunity against bacterial invasion publication-title: Cell doi: 10.1016/j.cell.2006.06.054 – volume: 55 start-page: 427 year: 1989 ident: ref_6 article-title: Occurrence of bacterial canker of kiwifruit in Japan description of symptoms, isolation of the pathogen and screening of bactericides publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.55.427 – volume: 66 start-page: 140 year: 2017 ident: ref_35 article-title: Comparative genomics-informed design of two LAMP assays for detection of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae and discrimination of isolates belonging to the pandemic biovar 3 publication-title: Plant Pathol. doi: 10.1111/ppa.12551 – volume: 26 start-page: 44 year: 2020 ident: ref_63 article-title: Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae in Korea publication-title: Res. Plant Dis. doi: 10.5423/RPD.2020.26.1.44 – volume: 56 start-page: 1 year: 2013 ident: ref_78 article-title: Actinidia arguta ploidy level variation in relation to Pseudomonas syringae pv. actinidiae susceptibility publication-title: Lucr. Ştiinţifice – volume: 1048 start-page: 25 year: 2014 ident: ref_45 article-title: Use of kiwifruit germplasm resources for genetic improvement publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2014.1048.2 – ident: ref_70 doi: 10.3390/cli10020014 – volume: 96 start-page: 169 year: 2014 ident: ref_100 article-title: Production of phytotoxic metabolites by Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit publication-title: J. Plant Pathol. – ident: ref_132 doi: 10.3390/ijms222212185 – volume: 45 start-page: 528 year: 2022 ident: ref_140 article-title: Defence-related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae publication-title: Plant Cell Environ. doi: 10.1111/pce.14224 – volume: 82 start-page: 101 year: 2016 ident: ref_83 article-title: Novel biovar (biovar 6) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia deliciosa) in Japan publication-title: Jpn. J. Phytopathol. doi: 10.3186/jjphytopath.82.101 – volume: 14 start-page: 310 year: 2009 ident: ref_158 article-title: The multifaceted role of ABA in disease resistance publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.03.006 – volume: 65 start-page: 1 year: 2012 ident: ref_123 article-title: Survival of Pseudomonas syringae pv actinidiae on Cryptomeria japonica a nonhost plant used as shelter belts in kiwifruit orchards publication-title: N. Z. Plant Prot. – ident: ref_122 – volume: 11 start-page: 551201 year: 2020 ident: ref_156 article-title: Molecular cloning and functional analysis of the NPR1 homolog in kiwifruit (Actinidia eriantha) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.551201 – ident: ref_2 – ident: ref_101 doi: 10.1186/s12864-018-5197-5 – volume: 179 start-page: 279 year: 2021 ident: ref_102 article-title: Lscβ and lscγ, two novel levansucrases of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, show different enzymatic properties publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.189 – volume: 12 start-page: 627785 year: 2021 ident: ref_97 article-title: Role of the type VI secretion system in the pathogenicity of Pseudomonas syringae pv. actinidiae, the causative agent of kiwifruit bacterial canker publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.627785 – volume: 40 start-page: 700 year: 2014 ident: ref_128 article-title: The evolution of ethylene signaling in plant chemical ecology publication-title: J. Chem. Ecol. doi: 10.1007/s10886-014-0474-5 – volume: 36 start-page: 2220 year: 2020 ident: ref_31 article-title: Complete genome sequencing of Pseudomonas syringae pv. actinidiae Biovar 3, P155, kiwifruit pathogen originating from China publication-title: Biosci. J. doi: 10.14393/BJ-v36n6a2020-47896 – ident: ref_60 – volume: 98 start-page: 651 year: 2016 ident: ref_67 article-title: Field efficacy of a zinc-copper-hydracid of citric acid biocomplex compound to reduce oozing from winter cankers caused by Pseudomonas syringae pv. actinidiae to Actinidia spp. publication-title: J. Plant Pathol. – volume: 13 start-page: 631 year: 2012 ident: ref_8 article-title: Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2012.00788.x – ident: ref_57 – volume: 1095 start-page: 117 year: 2015 ident: ref_113 article-title: Multiplication and movement of Pseudomonas syringae pv. actinidiae in kiwifruit plants publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2015.1095.14 – volume: 114 start-page: 101636 year: 2021 ident: ref_29 article-title: Improved MLVA typing reveals a highly articulated structure in Pseudomonas syringae pv. actinidiae populations publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2021.101636 – volume: 5 start-page: 275 year: 2021 ident: ref_106 article-title: The leaf bacterial microbiota of female and male kiwifruit plants in distinct seasons: Assessing the impact of Pseudomonas syringae pv. actinidiae publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-09-20-0070-R – volume: 8 start-page: 2157 year: 2017 ident: ref_116 article-title: Pseudomonas syringae pv. actinidiae type III effectors localized at multiple cellular compartments activate or suppress innate immune responses in Nicotiana benthamiana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02157 – volume: 67 start-page: 1220 year: 2018 ident: ref_32 article-title: Highly specific assays to detect isolates of Pseudomonas syringae pv. actinidiae biovar 3 and Pseudomonas syringae pv. actinidifoliorum directly from plant material publication-title: Plant Pathol. doi: 10.1111/ppa.12817 |
SSID | ssj0002873301 |
Score | 2.2379906 |
SecondaryResourceType | review_article |
Snippet | Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 351 |
Title | Mitigation of Emergent Bacterial Pathogens Using Pseudomonas syringae pv. actinidiae as a Case Study—From Orchard to Gene and Everything in Between |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFgQBRHtUc4LSyabx-HpuQUCGlRGoLvUW79ppGsuKotiuFEz8CfhR_g1_CrHe9saocChcr2oeV7HyamW8zD0Le8kyg0k98h_thjgRF5E6cpbnDPLQNPOZCZ_HPz8LTS__TVXA1GPzuRS01tXDT73vzSv5HqjiGclVZsv8gWftSHMDPKF98ooTxeS8Zz1e6Qob2-aY6kxIJv67AjIe_QP-uxLGK6tCARSWbrMTvxytabdWVHpd0c-u2JTXWK8SKVI1nOJ2gcWtjDLddNIQ_U4kon9vSSpnyWFXB6vavhyme27a-NskxYx341Xd6JzflxrruZw0qV5pxer4qbrlJF6qtcThXTY31DfjqWyML-tHtpr7wKlVJloWZV9voVzs9UV2OiuvSxhpxOnfpwu3fayAlNkEYnfrzwog5UaiL-Lpyz5jR314Ppn5PFzNTyVabdaa7xdy1GIwlKsRStUurPKXQvGBnGbtogDsG04YxIoFS-5f93Q_IgYeMxRuSg5Pxh_HMXvghNWWsbcdtf4VOxFCveN9_Rc9F6vk6F4_JI0NS4EQj7gkZyPVT8muHNihz6NAGFm1g0QYt2qCHNujQBog22KENcIqDQhu0aPvz46fCGRicQV2CwhkgzmCHM1itweDsGbmcTS8mp45p6uGkLIxrJw5C6SGrjbk8HuVxJJIMKXvA5CgfCS5FiAwarU6GfnQgJAsiT7A0E55IIhHm2TF7Tobrci1fEEhHEslHEMnAD300TXHip4EvZIwcIw3i5JDQ7hyXqal4rxqvFMt9gjsk7-zqja70snfdy3uue0Ue7mD9mgzrm0a-QQe2FkcGGkftBdBf5QChdQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+Emergent+Bacterial+Pathogens+Using+Pseudomonas+syringae+pv.+actinidiae+as+a+Case+Study%E2%80%94From+Orchard+to+Gene+and+Everything+in+Between&rft.jtitle=Crops&rft.au=Nunes+da+Silva%2C+Marta&rft.au=Santos%2C+Miguel+G.&rft.au=Vasconcelos%2C+Marta+W.&rft.au=Carvalho%2C+Susana+M.+P.&rft.date=2022-09-30&rft.issn=2673-7655&rft.eissn=2673-7655&rft.volume=2&rft.issue=4&rft.spage=351&rft.epage=377&rft_id=info:doi/10.3390%2Fcrops2040025&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_crops2040025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7655&client=summon |