Mitigation of Emergent Bacterial Pathogens Using Pseudomonas syringae pv. actinidiae as a Case Study—From Orchard to Gene and Everything in Between

Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into several agroecological systems. These include pathogenic bacteria with devastating consequences for numerous crops of agronomical importance for...

Full description

Saved in:
Bibliographic Details
Published inCrops Vol. 2; no. 4; pp. 351 - 377
Main Authors Nunes da Silva, Marta, Santos, Miguel G., Vasconcelos, Marta W., Carvalho, Susana M. P.
Format Journal Article
LanguageEnglish
Published 30.09.2022
Online AccessGet full text

Cover

Loading…
Abstract Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into several agroecological systems. These include pathogenic bacteria with devastating consequences for numerous crops of agronomical importance for food production worldwide. In the last decade, research efforts have focused on these noxious organisms, aiming to understand their evolutionary processes, degree of pathogenicity, and mitigation strategies, which have allowed stakeholders and policymakers to develop evidence-based regulatory norms to improve management practices and minimize production losses. One of these cases is the bacterium Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the kiwifruit bacterial canker, which has been causing drastic production losses and added costs related to orchard management in the kiwifruit industry. Although Psa is presently considered a pandemic pathogen and far from being eradicated, the implementation of strict regulatory norms and the efforts employed by the scientific community allowed the mitigation, to some extent, of its negative impacts through an integrated pest management approach. This included implementing directive guidelines, modifying cultural practices, and searching for sources of plant resistance. However, bacterial pathogens often have high spatial and temporal variability, with new strains constantly arising through mutation, recombination, and gene flow, posing constant pressure to agroecosystems. This review aims to critically appraise the efforts developed to mitigate bacterial pathogens of agronomical impact, from orchard management to genome analysis, using Psa as a case study, which could allow a prompter response against emerging pathogens in agroecosystems worldwide.
AbstractList Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into several agroecological systems. These include pathogenic bacteria with devastating consequences for numerous crops of agronomical importance for food production worldwide. In the last decade, research efforts have focused on these noxious organisms, aiming to understand their evolutionary processes, degree of pathogenicity, and mitigation strategies, which have allowed stakeholders and policymakers to develop evidence-based regulatory norms to improve management practices and minimize production losses. One of these cases is the bacterium Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the kiwifruit bacterial canker, which has been causing drastic production losses and added costs related to orchard management in the kiwifruit industry. Although Psa is presently considered a pandemic pathogen and far from being eradicated, the implementation of strict regulatory norms and the efforts employed by the scientific community allowed the mitigation, to some extent, of its negative impacts through an integrated pest management approach. This included implementing directive guidelines, modifying cultural practices, and searching for sources of plant resistance. However, bacterial pathogens often have high spatial and temporal variability, with new strains constantly arising through mutation, recombination, and gene flow, posing constant pressure to agroecosystems. This review aims to critically appraise the efforts developed to mitigate bacterial pathogens of agronomical impact, from orchard management to genome analysis, using Psa as a case study, which could allow a prompter response against emerging pathogens in agroecosystems worldwide.
Author Carvalho, Susana M. P.
Nunes da Silva, Marta
Santos, Miguel G.
Vasconcelos, Marta W.
Author_xml – sequence: 1
  givenname: Marta
  orcidid: 0000-0001-8228-0576
  surname: Nunes da Silva
  fullname: Nunes da Silva, Marta
– sequence: 2
  givenname: Miguel G.
  orcidid: 0000-0002-1203-6102
  surname: Santos
  fullname: Santos, Miguel G.
– sequence: 3
  givenname: Marta W.
  surname: Vasconcelos
  fullname: Vasconcelos, Marta W.
– sequence: 4
  givenname: Susana M. P.
  orcidid: 0000-0001-7157-1079
  surname: Carvalho
  fullname: Carvalho, Susana M. P.
BookMark eNptkMFOAjEURRuDiYjs_IB-gIPtlJnOLIUAmmAgUdaTzvQN1DAtaQtmdn6E_qBfYlEXxLh67913712cS9TRRgNC15QMGMvJbWXNzsVkSEicnKFunHIW8TRJOif7Beo790KCJeOMEdpFH4_Kq7XwymhsajxpwK5BezwSlQerxBYvhd-YoDm8ckqv8dLBXprGaOGwa22QBODdYYBDQmklVTjDS-CxcICf_F62n2_vU2savLDVRliJvcEz0MGmJZ4cwLZ-c2xWGo_AvwLoK3Rei62D_u_sodV08jy-j-aL2cP4bh5VLM18lCUpxJRmmQBC64yXueQ0TRjQmpYCynSYcc6IzHKWlMASHpeskmVc5rxMa0lYD9389AZ4zlmoi51VjbBtQUlxpFqcUg32-I-9Uv6bnbdCbf8PfQE3b4E8
CitedBy_id crossref_primary_10_1111_jph_13219
crossref_primary_10_3390_crops3020013
crossref_primary_10_3390_horticulturae10090944
crossref_primary_10_3390_plants12030590
crossref_primary_10_1016_j_pmpp_2024_102506
crossref_primary_10_3389_fpls_2023_1306420
Cites_doi 10.1007/s00248-019-01459-8
10.3389/fpls.2018.00114
10.1007/s13258-017-0645-1
10.3389/fmicb.2018.00656
10.1094/MPMI-02-21-0043-R
10.1094/MPMI-09-20-0248-R
10.1038/nrmicro.2018.17
10.3390/ijms19123900
10.1094/PDIS-06-12-0590-RE
10.3390/ijms23010508
10.3389/fpls.2018.01563
10.1007/978-3-540-71160-5
10.20956/ijab.v2i2.5260
10.1007/s42161-018-0189-5
10.1371/journal.pone.0211913
10.1080/01140671.2010.512624
10.17660/ActaHortic.2019.1243.12
10.1038/ncomms13099
10.1007/s10658-017-1267-9
10.1007/s10327-020-00916-4
10.17660/ActaHortic.2022.1332.15
10.1007/s10658-020-02119-1
10.1007/s13593-018-0503-9
10.1104/pp.111.172254
10.3390/plants9101350
10.1007/1-4020-4538-7
10.1007/s10327-018-0804-5
10.1146/annurev-phyto-021621-121935
10.17660/ActaHortic.2015.1095.15
10.1128/AEM.01688-15
10.1111/aab.12150
10.1099/jmm.0.001115
10.1007/s10658-016-0863-4
10.5423/RPD.2002.8.4.250
10.3390/ijms222312710
10.17660/ActaHortic.2015.1095.5
10.1111/ppa.12070
10.1186/s12864-018-4967-4
10.3233/JBR-160128
10.1146/annurev-phyto-080516-035530
10.1038/s41598-017-05377-y
10.3186/jjphytopath.59.460
10.1111/ppa.12297
10.1111/ppa.13184
10.1111/mpp.12989
10.3186/jjphytopath.60.237
10.17660/eJHS.2019/84.4.2
10.1111/ppa.12066
10.1016/S1016-8478(23)15038-2
10.1094/PDIS-07-12-0700-RE
10.3186/jjphytopath.59.452
10.3389/fmicb.2021.650099
10.1007/s10681-014-1107-3
10.3390/plants10091939
10.3390/ijms22094375
10.3390/engproc2021009033
10.1007/978-1-4939-7604-1_2
10.1038/srep21399
10.1007/s13313-014-0306-7
10.1007/978-3-030-46111-9
10.1101/2021.11.15.468702
10.1080/03235408.2019.1647014
10.1146/annurev.py.28.090190.001103
10.1016/j.plaphy.2021.02.045
10.1371/journal.pone.0135310
10.1094/PDIS-07-20-1527-PDN
10.1007/s10327-021-01024-7
10.1002/pld3.297
10.3389/fpls.2017.01366
10.3233/JBR-140073
10.1094/PDIS-06-13-0667-PDN
10.1038/s41598-020-75990-x
10.1128/AEM.69.5.2936-2941.2003
10.1371/journal.pone.0192153
10.1146/annurev-cellbio-092910-154055
10.3389/fpls.2013.00024
10.3389/fagro.2021.831172
10.3390/ijms19020373
10.1111/ppa.13040
10.3186/jjphytopath.59.694
10.1094/PDIS-08-20-1703-RE
10.1111/ppa.12082
10.1094/PHYTO-02-12-0019-R
10.1016/j.jprot.2014.01.030
10.1038/s41438-019-0184-9
10.1094/PD-91-0004
10.1016/j.jprot.2012.10.014
10.17660/ActaHortic.2018.1218.40
10.1007/s42161-020-00719-8
10.1080/14786419.2019.1574784
10.3389/fpls.2021.756330
10.1111/j.1439-0434.2009.01550.x
10.3186/jjphytopath.80.171
10.1016/j.scienta.2021.110806
10.1007/s00248-019-01416-5
10.1007/s10327-021-01030-9
10.3233/JBR-160115
10.1007/s00239-005-0271-4
10.1038/srep16961
10.1128/MRA.00759-20
10.1094/PHYTO-03-12-0064-R
10.1093/gbe/evx055
10.1016/j.micres.2022.127048
10.1128/aem.63.1.282-288.1997
10.3186/jjphytopath.59.469
10.1111/j.1365-3059.2010.02259.x
10.3389/fpls.2020.01022
10.1111/ppa.12236
10.1016/j.cell.2006.06.054
10.3186/jjphytopath.55.427
10.1111/ppa.12551
10.5423/RPD.2020.26.1.44
10.17660/ActaHortic.2014.1048.2
10.3390/cli10020014
10.3390/ijms222212185
10.1111/pce.14224
10.3186/jjphytopath.82.101
10.1016/j.tplants.2009.03.006
10.3389/fpls.2020.551201
10.1186/s12864-018-5197-5
10.1016/j.ijbiomac.2021.02.189
10.3389/fmicb.2021.627785
10.1007/s10886-014-0474-5
10.14393/BJ-v36n6a2020-47896
10.1111/j.1364-3703.2012.00788.x
10.17660/ActaHortic.2015.1095.14
10.1016/j.pmpp.2021.101636
10.1094/PBIOMES-09-20-0070-R
10.3389/fpls.2017.02157
10.1111/ppa.12817
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/crops2040025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2673-7655
EndPage 377
ExternalDocumentID 10_3390_crops2040025
GroupedDBID AAYXX
ABDBF
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
OK1
ID FETCH-LOGICAL-c368t-856e21188ae01f87b9d71653e1f1baeb6487730d8935be3572b3cdb2b97b6fd03
ISSN 2673-7655
IngestDate Thu Apr 24 22:59:36 EDT 2025
Tue Jul 01 01:09:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-856e21188ae01f87b9d71653e1f1baeb6487730d8935be3572b3cdb2b97b6fd03
ORCID 0000-0002-1203-6102
0000-0001-8228-0576
0000-0001-7157-1079
OpenAccessLink https://www.mdpi.com/2673-7655/2/4/25/pdf?version=1664536886
PageCount 27
ParticipantIDs crossref_primary_10_3390_crops2040025
crossref_citationtrail_10_3390_crops2040025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Crops
PublicationYear 2022
References Scortichini (ref_67) 2016; 98
ref_137
Jayaraman (ref_94) 2020; 21
ref_136
Black (ref_120) 2015; 1105
ref_138
Gallelli (ref_24) 2011; 93
Renzi (ref_78) 2013; 56
ref_14
Miao (ref_166) 2009; 35
ref_99
ref_130
ref_10
ref_133
Vanneste (ref_23) 2010; 59
ref_132
ref_96
Ton (ref_158) 2009; 14
Serizawa (ref_46) 1993; 59
Kisaki (ref_73) 2018; 84
ref_18
Cesco (ref_126) 2020; 10
Tyson (ref_52) 2016; 69
Vanneste (ref_123) 2012; 65
Sawada (ref_30) 2019; 68
Meena (ref_125) 2017; Volume 2
(ref_15) 2019; 101
Ferrante (ref_40) 2012; 94
Miao (ref_146) 2005; 32
Vasconcelos (ref_151) 2021; 162
Stroud (ref_155) 2022; 295
Wang (ref_76) 2020; 69
ref_122
ref_121
Scortichini (ref_8) 2012; 13
Gallelli (ref_25) 2014; 63
Serizawa (ref_6) 1989; 55
Balestra (ref_26) 2013; 97
Nardozza (ref_72) 2015; 1095
ref_27
Serizawa (ref_47) 1993; 59
Genka (ref_87) 2006; 63
Michelotti (ref_145) 2022; 1332
Lamichhane (ref_64) 2018; 38
Cellini (ref_103) 2022; 260
Andersen (ref_32) 2018; 67
Kennelly (ref_55) 2007; 91
ref_71
ref_70
Cellini (ref_104) 2020; 79
Sawada (ref_84) 2014; 80
(ref_110) 2018; 1734
Wurms (ref_141) 2017; 70
Chapman (ref_80) 2012; 102
Li (ref_127) 2020; 4
ref_77
Ferrante (ref_117) 2014; 63
Nepali (ref_16) 2018; 2
Luti (ref_102) 2021; 179
Lonjon (ref_92) 2022; 60
Ruinelli (ref_35) 2017; 66
ref_160
Hossain (ref_159) 2011; 156
Liu (ref_37) 2016; 145
Abelleira (ref_11) 2015; 1095
Melotto (ref_157) 2006; 126
Rodicio (ref_17) 2003; 69
Fujikawa (ref_86) 2020; 9
Liu (ref_153) 2016; 7
Sciubba (ref_65) 2019; 34
Jarallah (ref_13) 2019; 19
ref_89
Ares (ref_106) 2021; 5
ref_142
ref_88
Groen (ref_128) 2014; 40
Nascimento (ref_150) 2018; 9
Prencipe (ref_19) 2018; 150
Mazzaglia (ref_29) 2021; 114
McCann (ref_85) 2017; 9
Spinelli (ref_39) 2010; 913
Andersen (ref_33) 2021; 105
Brunetti (ref_20) 2020; 158
Firrao (ref_98) 2018; 9
Koh (ref_56) 2010; 38
Ko (ref_111) 2002; 8
Chiabrando (ref_119) 2018; 1
Antoniacci (ref_115) 2019; 1243
ref_57
Ferrante (ref_107) 2015; 64
Vanneste (ref_44) 2014; 98
Jayaraman (ref_34) 2021; 34
Suzaki (ref_36) 2022; 88
Li (ref_38) 2021; 105
Wurms (ref_135) 2017; 8
ref_53
Wang (ref_163) 2017; 7
Fujikawa (ref_82) 2016; 6
ref_59
Pan (ref_31) 2020; 36
Sun (ref_156) 2020; 11
Cellini (ref_134) 2014; 165
Cunty (ref_28) 2015; 81
Vasconcelos (ref_75) 2020; 11
Li (ref_114) 2001; 12
Beatson (ref_45) 2014; 1048
ref_61
ref_60
Vanneste (ref_109) 2013; 97
ref_162
Mauri (ref_50) 2016; 6
ref_165
Pieterse (ref_149) 2012; 28
Lee (ref_63) 2020; 26
Cornish (ref_58) 2015; 68
Ashrafzadeh (ref_66) 2019; 52
Monchiero (ref_68) 2015; 44
Cunty (ref_81) 2015; 64
Andolfi (ref_100) 2014; 96
Koh (ref_22) 2002; 13
Fernandes (ref_129) 2022; 1332
Wang (ref_143) 2021; 12
Serizawa (ref_41) 1993; 59
ref_118
Koh (ref_54) 1996; 12
Tahir (ref_139) 2019; 6
Petriccione (ref_148) 2015; 5
Saei (ref_74) 2018; 1218
Purahong (ref_105) 2018; 9
Sawada (ref_83) 2016; 82
Pattemore (ref_124) 2014; 43
Sawada (ref_21) 1997; 63
Jing (ref_144) 2018; 40
Gupta (ref_131) 2015; 9
Li (ref_95) 2021; 12
Cheng (ref_167) 2014; 198
Vanneste (ref_113) 2015; 1095
Hirano (ref_112) 1990; 28
Vanneste (ref_9) 2017; 55
Ares (ref_51) 2015; 1095
Petriccione (ref_42) 2014; 101
Petriccione (ref_147) 2013; 78
Carvalho (ref_140) 2022; 45
Ferrante (ref_7) 2009; 157
Donati (ref_90) 2014; 4
Reglinski (ref_152) 2013; 4
Reglinski (ref_154) 2022; 3
Xin (ref_3) 2018; 16
Ishiga (ref_93) 2020; 86
ref_101
ref_1
Collina (ref_161) 2016; 6
ref_2
Renzi (ref_43) 2012; 102
Serizawa (ref_48) 1994; 60
Cameron (ref_62) 2014; 63
Machado (ref_108) 2019; 84
Donati (ref_12) 2020; 80
Kim (ref_69) 2020; 69
Serizawa (ref_49) 1993; 59
Kaji (ref_164) 2021; 87
ref_5
ref_4
Choi (ref_116) 2017; 8
Vandelle (ref_91) 2021; 34
Wang (ref_79) 2021; 103
Wang (ref_97) 2021; 12
References_xml – volume: 80
  start-page: 81
  year: 2020
  ident: ref_12
  article-title: Pseudomonas syringae pv. actinidiae: Ecology, infection dynamics and disease epidemiology
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-019-01459-8
– volume: 9
  start-page: 114
  year: 2018
  ident: ref_150
  article-title: Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00114
– volume: 9
  start-page: 40
  year: 2015
  ident: ref_131
  article-title: Response of iodine on antioxidant levels of Glycine max L. grown under Cd stress
  publication-title: Adv. Biol. Res.
– volume: 40
  start-page: 429
  year: 2018
  ident: ref_144
  article-title: Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses
  publication-title: Genes Genom.
  doi: 10.1007/s13258-017-0645-1
– volume: 9
  start-page: 656
  year: 2018
  ident: ref_98
  article-title: Genomic structural variations affecting virulence during clonal expansion of Pseudomonas syringae pv. actinidiae biovar 3 in Europe
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00656
– volume: 34
  start-page: 880
  year: 2021
  ident: ref_34
  article-title: Rapid methodologies for assessing Pseudomonas syringae pv. actinidiae colonization and effector-mediated hypersensitive response in kiwifruit
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-02-21-0043-R
– volume: 34
  start-page: 376
  year: 2021
  ident: ref_91
  article-title: Transcriptional profiling of three Pseudomonas syringae pv. actinidiae biovars reveals different responses to apoplast-like conditions related to strain virulence on the host
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-09-20-0248-R
– volume: 16
  start-page: 316
  year: 2018
  ident: ref_3
  article-title: Pseudomonas syringae: What it takes to be a pathogen
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2018.17
– volume: 1
  start-page: 1
  year: 2018
  ident: ref_119
  article-title: Kiwifruit under plastic covering: Impact on fruit quality and on orchard microclimate
  publication-title: J. Food Nutr. Agric.
– ident: ref_162
  doi: 10.3390/ijms19123900
– volume: 97
  start-page: 472
  year: 2013
  ident: ref_26
  article-title: A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-06-12-0590-RE
– ident: ref_99
  doi: 10.3390/ijms23010508
– volume: 9
  start-page: 1563
  year: 2018
  ident: ref_105
  article-title: Plant microbiome and its link to plant health: Host species, organs and Pseudomonas syringae pv. actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01563
– ident: ref_14
  doi: 10.1007/978-3-540-71160-5
– volume: 2
  start-page: 27
  year: 2018
  ident: ref_16
  article-title: Identification of Pseudomonas fluorescens using different biochemical tests
  publication-title: Int. J. Appl. Biol.
  doi: 10.20956/ijab.v2i2.5260
– ident: ref_4
– volume: 101
  start-page: 251
  year: 2019
  ident: ref_15
  article-title: Characterization and phylogeny of the novel taxon of Pseudomonas spp., closely related to Pseudomonas avellanae as causal agent of a bacterial leaf blight of cornelian cherry (Cornus mas L.) and Pseudomonas syringae pv. syringae as a new bacterial pathogen of red dogwood (Cornus sanguinea L.)
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-018-0189-5
– ident: ref_142
  doi: 10.1371/journal.pone.0211913
– volume: 38
  start-page: 275
  year: 2010
  ident: ref_56
  article-title: Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea
  publication-title: N. Z. J. Crop Hortic. Sci.
  doi: 10.1080/01140671.2010.512624
– volume: 1243
  start-page: 71
  year: 2019
  ident: ref_115
  article-title: Validation of New Zealand Psa forecasting model in Emilia Romagna Region, Italy
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2019.1243.12
– volume: 7
  start-page: 13099
  year: 2016
  ident: ref_153
  article-title: Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13099
– ident: ref_10
– volume: 150
  start-page: 191
  year: 2018
  ident: ref_19
  article-title: Pseudomonas syringae pv. actinidiae isolated from Actinidia chinensis var. deliciosa in Northern Italy: Genetic diversity and virulence
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-017-1267-9
– volume: 86
  start-page: 257
  year: 2020
  ident: ref_93
  article-title: Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit
  publication-title: J. Gen. Plant Pathol.
  doi: 10.1007/s10327-020-00916-4
– volume: 1332
  start-page: 111
  year: 2022
  ident: ref_145
  article-title: Preliminary results on the development of a genome editing protocol in Actinidia chinensis var. chinensis as Psa resistance approach
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2022.1332.15
– volume: Volume 2
  start-page: 217
  year: 2017
  ident: ref_125
  article-title: Role of nutrients in controlling the plant diseases in sustainable agriculture
  publication-title: Agriculturally Important Microbes for Sustainable Agriculture: Applications in Crop Production and Protection
– volume: 158
  start-page: 829
  year: 2020
  ident: ref_20
  article-title: In vitro and in planta screening of compounds for the control of Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-020-02119-1
– volume: 38
  start-page: 28
  year: 2018
  ident: ref_64
  article-title: Thirteen decades of antimicrobial copper compounds applied in agriculture. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-018-0503-9
– volume: 156
  start-page: 430
  year: 2011
  ident: ref_159
  article-title: Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.172254
– ident: ref_138
  doi: 10.3390/plants9101350
– ident: ref_88
  doi: 10.1007/1-4020-4538-7
– volume: 84
  start-page: 399
  year: 2018
  ident: ref_73
  article-title: Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3
  publication-title: J. Gen. Plant Pathol.
  doi: 10.1007/s10327-018-0804-5
– volume: 60
  start-page: 211
  year: 2022
  ident: ref_92
  article-title: Diversity, evolution, and function of Pseudomonas syringae effectoromes
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-021621-121935
– ident: ref_59
– volume: 1095
  start-page: 123
  year: 2015
  ident: ref_72
  article-title: Kiwifruit xylem sap: Composition and in vitro growth of a virulent strain of Pseudomonas syringae pv. actinidiae
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1095.15
– volume: 81
  start-page: 6773
  year: 2015
  ident: ref_28
  article-title: Origin of the outbreak in France of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, revealed by a multilocus variable-number tandem-repeat analysis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01688-15
– volume: 165
  start-page: 441
  year: 2014
  ident: ref_134
  article-title: Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidae
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12150
– ident: ref_53
– volume: 69
  start-page: 132
  year: 2020
  ident: ref_69
  article-title: Genomic analyses of Pseudomonas syringae pv. actinidiae isolated in Korea suggest the transfer of the bacterial pathogen via kiwifruit pollen
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.001115
– volume: 145
  start-page: 743
  year: 2016
  ident: ref_37
  article-title: Pseudomonas syringae pv. actinidiae isolated from non-kiwifruit plant species in China
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-016-0863-4
– volume: 8
  start-page: 250
  year: 2002
  ident: ref_111
  article-title: An improved method for testing pathogenicity of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit
  publication-title: Res. Plant Dis.
  doi: 10.5423/RPD.2002.8.4.250
– volume: 19
  start-page: 203
  year: 2019
  ident: ref_13
  article-title: Isolation and characterization of Pseudomonas aeruginosa from Babylon Province
  publication-title: Biochem. Cell. Arch.
– ident: ref_133
  doi: 10.3390/ijms222312710
– volume: 1095
  start-page: 49
  year: 2015
  ident: ref_11
  article-title: Distribution, detection protocols and characterization of Pseudomonas syringae pv. actinidiae from kiwifruit in Galicia (northwest Spain)
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1095.5
– volume: 63
  start-page: 12
  year: 2014
  ident: ref_117
  article-title: Frost promotes the pathogenicity of Pseudomonas syringae pv. actinidiae in Actinidia chinensis and A. deliciosa plants
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12070
– ident: ref_136
  doi: 10.1186/s12864-018-4967-4
– ident: ref_121
– volume: 6
  start-page: 407
  year: 2016
  ident: ref_161
  article-title: Greenhouse assays on the control of the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)
  publication-title: J. Berry Res.
  doi: 10.3233/JBR-160128
– volume: 55
  start-page: 377
  year: 2017
  ident: ref_9
  article-title: The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080516-035530
– volume: 7
  start-page: 4910
  year: 2017
  ident: ref_163
  article-title: Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05377-y
– volume: 44
  start-page: 13
  year: 2015
  ident: ref_68
  article-title: Efficacy of different chemical and biological products in the control of Pseudomonas syringae pv. actinidiae on kiwifruit. Australas
  publication-title: Plant Pathol.
– volume: 59
  start-page: 460
  year: 1993
  ident: ref_47
  article-title: Epidemiology of bacterial canker of kiwifruit. 2. The most suitable times and environments for infection on new canes
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.59.460
– volume: 69
  start-page: 11
  year: 2016
  ident: ref_52
  article-title: Preliminary investigations of the risk of plant debris as a Pseudomonas syringae pv actinidiae inoculum source
  publication-title: N. Z. Plant Prot.
– volume: 64
  start-page: 582
  year: 2015
  ident: ref_81
  article-title: Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov.
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12297
– volume: 69
  start-page: 979
  year: 2020
  ident: ref_76
  article-title: Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13184
– volume: 21
  start-page: 1467
  year: 2020
  ident: ref_94
  article-title: AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12989
– volume: 60
  start-page: 237
  year: 1994
  ident: ref_48
  article-title: Epidemiology of bacterial canker of kiwifruit. 5. Effect of infection in fall to early winter on the disease development in branches and trunk after winter
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.60.237
– volume: 84
  start-page: 206
  year: 2019
  ident: ref_108
  article-title: Exploring the expression of defence-related genes in Actinidia spp. after infection with Pseudomonas syringae pv. actinidiae and pv. actinidifoliorum: First steps
  publication-title: Eur. J. Hortic. Sci.
  doi: 10.17660/eJHS.2019/84.4.2
– volume: 1332
  start-page: 103
  year: 2022
  ident: ref_129
  article-title: Influence of the nitrogen source on the tolerance of Actinidia chinensis to Pseudomonas syringae pv. actinidiae
  publication-title: Acta Hortic.
– volume: 63
  start-page: 1
  year: 2014
  ident: ref_62
  article-title: Pseudomonas syringae pv. actinidiae: Chemical control, resistance mechanisms and possible alternatives
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12066
– volume: 13
  start-page: 309
  year: 2002
  ident: ref_22
  article-title: DNA markers for identification of Pseudomonas syringae pv. actinidiae
  publication-title: Mol. Cells
  doi: 10.1016/S1016-8478(23)15038-2
– volume: 97
  start-page: 708
  year: 2013
  ident: ref_109
  article-title: Identification, virulence, and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-07-12-0700-RE
– volume: 94
  start-page: 455
  year: 2012
  ident: ref_40
  article-title: The importance of the main colonization and penetration sites of Pseudomonas syringae pv. actinidiae and prevailing weather conditions in the development of epidemics in yellow kiwifruit, recently observed in Central Italy
  publication-title: J. Plant Pathol.
– volume: 70
  start-page: 272
  year: 2017
  ident: ref_141
  article-title: Elicitor induction of defence genes and reduction of bacterial canker in kiwifruit
  publication-title: N. Z. Plant Prot.
– volume: 59
  start-page: 452
  year: 1993
  ident: ref_41
  article-title: Epidemiology of bacterial canker of kiwifruit 1. Infection and bacterial movement in tissue of new canes
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.59.452
– volume: 12
  start-page: 650099
  year: 2021
  ident: ref_95
  article-title: Genetic causes of non-pathogenic Pseudomonas syringae pv. actinidiae isolates in kiwifruit orchards
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.650099
– volume: 198
  start-page: 305
  year: 2014
  ident: ref_167
  article-title: Inheritance of resistance to Pseudomonas syringae pv. actinidiae and genetic correlations with fruit characters in a diploid Actinidia chinensis (kiwifruit) population
  publication-title: Euphytica
  doi: 10.1007/s10681-014-1107-3
– ident: ref_165
  doi: 10.3390/plants10091939
– ident: ref_89
  doi: 10.3390/ijms22094375
– ident: ref_77
  doi: 10.3390/engproc2021009033
– volume: 1734
  start-page: 13
  year: 2018
  ident: ref_110
  article-title: Bacterial genotyping methods: From the basics to modern
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7604-1_2
– volume: 6
  start-page: 21399
  year: 2016
  ident: ref_82
  article-title: Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5
  publication-title: Sci. Rep.
  doi: 10.1038/srep21399
– volume: 12
  start-page: 355
  year: 2001
  ident: ref_114
  article-title: Prevalent forecast of kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae
  publication-title: Ying Yong Sheng Tai Xue Bao
– ident: ref_160
– volume: 913
  start-page: 461
  year: 2010
  ident: ref_39
  article-title: Real time monitoring of the interactions between Pseudomonas syringae pv. actinidiae and Actinidia species
  publication-title: Acta Hortic.
– volume: 43
  start-page: 571
  year: 2014
  ident: ref_124
  article-title: Evidence of the role of honey bees (Apis mellifera) as vectors of the bacterial plant pathogen Pseudomonas syringae
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-014-0306-7
– ident: ref_1
  doi: 10.1007/978-3-030-46111-9
– ident: ref_96
  doi: 10.1101/2021.11.15.468702
– volume: 52
  start-page: 501
  year: 2019
  ident: ref_66
  article-title: In vitro breeding-shortcut to Pseudomonas syringae pv. actinidiae (Psa) tolerant kiwifruit
  publication-title: Arch. Phytopathol. Plant Prot.
  doi: 10.1080/03235408.2019.1647014
– volume: 28
  start-page: 155
  year: 1990
  ident: ref_112
  article-title: Population biology and epidemiology of Pseudomonas syringae
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.py.28.090190.001103
– volume: 162
  start-page: 258
  year: 2021
  ident: ref_151
  article-title: Role of methyl jasmonate and salicylic acid in kiwifruit plants further subjected to Psa infection: Biochemical and genetic responses
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.02.045
– ident: ref_27
  doi: 10.1371/journal.pone.0135310
– volume: 105
  start-page: 696
  year: 2021
  ident: ref_38
  article-title: First report of bacterial leaf spot disease of Broussonetia papyrifera caused by Pseudomonas syringae pv. actinidiae in China
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-07-20-1527-PDN
– volume: 87
  start-page: 361
  year: 2021
  ident: ref_164
  article-title: Expression analysis of defense-related genes in wild kiwifruit (Actinidia rufa) tolerant to bacterial canker
  publication-title: J. Gen. Plant Pathol.
  doi: 10.1007/s10327-021-01024-7
– ident: ref_5
– volume: 93
  start-page: 425
  year: 2011
  ident: ref_24
  article-title: Gene sequence analysis for the molecular detection of Pseudomonas syringae pv. actinidiae: Developing diagnostic protocols
  publication-title: J. Plant Pathol.
– volume: 12
  start-page: 324
  year: 1996
  ident: ref_54
  article-title: Characteristics of bacterial canker of kiwifruit occurring in Korea and its control by trunk injection
  publication-title: Plant Pathol. J.
– volume: 4
  start-page: e00297
  year: 2020
  ident: ref_127
  article-title: Metabolic profiling reveals local and systemic responses of kiwifruit to Pseudomonas syringae pv. actinidiae
  publication-title: Plant Direct
  doi: 10.1002/pld3.297
– volume: 8
  start-page: 1366
  year: 2017
  ident: ref_135
  article-title: Phytohormone and putative defense gene expression differentiates the response of ‘Hayward’ kiwifruit to Psa and Pfm infections
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01366
– volume: 4
  start-page: 53
  year: 2014
  ident: ref_90
  article-title: New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)
  publication-title: J. Berry Res.
  doi: 10.3233/JBR-140073
– volume: 98
  start-page: 418
  year: 2014
  ident: ref_44
  article-title: First report of Pseudomonas syringae pv. actinidiae the causal agent of bacterial canker of kiwifruit on Actinidia arguta vines in New Zealand
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-06-13-0667-PDN
– volume: 10
  start-page: 18759
  year: 2020
  ident: ref_126
  article-title: Plasmopara viticola infection affects mineral elements allocation and distribution in Vitis vinifera leaves
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75990-x
– volume: 69
  start-page: 2936
  year: 2003
  ident: ref_17
  article-title: Identification of an emergent and atypical Pseudomonas viridiflava lineage causing bacteriosis in plants of agronomic importance in a Spanish region
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.5.2936-2941.2003
– ident: ref_61
– volume: 1095
  start-page: 111
  year: 2015
  ident: ref_51
  article-title: Survival of Pseudomonas syringae pv. actinidiae in leaf-litter of Actinidia deliciosa in Galicia (northwest Spain)
  publication-title: Acta Hortic.
– ident: ref_71
  doi: 10.1371/journal.pone.0192153
– volume: 28
  start-page: 489
  year: 2012
  ident: ref_149
  article-title: Hormonal modulation of plant immunity
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154055
– volume: 4
  start-page: 24
  year: 2013
  ident: ref_152
  article-title: Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00024
– volume: 3
  start-page: 831172
  year: 2022
  ident: ref_154
  article-title: Transient changes in defence gene expression and phytohormone cInduced by acibenzolar-S-methyl in glasshouse and orchard grown kiwifruit
  publication-title: Front. Agron.
  doi: 10.3389/fagro.2021.831172
– volume: 1105
  start-page: 253
  year: 2015
  ident: ref_120
  article-title: Opportunities for environmental modification to control Pseudomonas syringae pv. actinidiae in kiwifruit
  publication-title: Acta Hortic.
– ident: ref_137
  doi: 10.3390/ijms19020373
– volume: 68
  start-page: 1235
  year: 2019
  ident: ref_30
  article-title: Genetic diversity of Pseudomonas syringae pv. actinidiae, pathogen of kiwifruit bacterial canker
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13040
– volume: 68
  start-page: 332
  year: 2015
  ident: ref_58
  article-title: In vitro inhibition of Pseudomonas syringae pv. actinidiae by wound protectants
  publication-title: N. Z. Plant Prot.
– volume: 59
  start-page: 694
  year: 1993
  ident: ref_49
  article-title: Epidemiology of bacterial canker of kiwifruit. 4. Optimum temperature for disease development on new canes
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.59.694
– ident: ref_118
– volume: 105
  start-page: 1748
  year: 2021
  ident: ref_33
  article-title: Real-time PCR and droplet digital PCR are accurate and reliable methods to quantify Pseudomonas syringae pv. actinidiae biovar 3 in kiwifruit infected plantlets
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-08-20-1703-RE
– volume: 63
  start-page: 264
  year: 2014
  ident: ref_25
  article-title: Real-time and qualitative PCR for detecting Pseudomonas syringae pv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12082
– volume: 102
  start-page: 827
  year: 2012
  ident: ref_43
  article-title: Bacterial canker on kiwifruit in Italy: Anatomical changes in the wood and in the primary infection sites
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-02-12-0019-R
– volume: 101
  start-page: 43
  year: 2014
  ident: ref_42
  article-title: Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2014.01.030
– volume: 6
  start-page: 101
  year: 2019
  ident: ref_139
  article-title: Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis)
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-019-0184-9
– volume: 91
  start-page: 4
  year: 2007
  ident: ref_55
  article-title: Pseudomonas syringae diseases of fruit trees: Progress toward understanding and control
  publication-title: Plant Dis.
  doi: 10.1094/PD-91-0004
– volume: 78
  start-page: 461
  year: 2013
  ident: ref_147
  article-title: Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2012.10.014
– volume: 1218
  start-page: 293
  year: 2018
  ident: ref_74
  article-title: The status of Pseudomonas syringae pv. actinidiae (Psa) in the New Zealand kiwifruit breeding programme in relation to ploidy level
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2018.1218.40
– volume: 103
  start-page: 51
  year: 2021
  ident: ref_79
  article-title: Preliminary report on the improved resistance towards Pseudomonas syringae pv. actinidiae of cultivated kiwifruit (Actinidia chinensis) when grafted onto wild Actinidia guilinensis rootstock in vitro
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-020-00719-8
– volume: 34
  start-page: 2043
  year: 2019
  ident: ref_65
  article-title: NMR-based metabolic study of leaves of three species of Actinidia with different degrees of susceptibility to Pseudomonas syringae pv. actinidiae
  publication-title: Nat. Prod. Res.
  doi: 10.1080/14786419.2019.1574784
– volume: 12
  start-page: 756330
  year: 2021
  ident: ref_143
  article-title: Transcriptomic and proteomic profiling reveal the key role of AcMYB16 in the response of Pseudomonas syringae pv. actinidiae in kiwifruit
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.756330
– volume: 157
  start-page: 768
  year: 2009
  ident: ref_7
  article-title: Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in Central Italy
  publication-title: J. Phytopathol.
  doi: 10.1111/j.1439-0434.2009.01550.x
– volume: 80
  start-page: 171
  year: 2014
  ident: ref_84
  article-title: Novel MLSA group (Psa5) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia chinensis) in Japan
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.80.171
– volume: 295
  start-page: 110806
  year: 2022
  ident: ref_155
  article-title: Actigard™ induces a defence response to limit Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis ‘Hort16A’ tissue culture plants
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2021.110806
– volume: 79
  start-page: 383
  year: 2020
  ident: ref_104
  article-title: N-Acyl homoserine lactones and Lux solos regulate social behaviour and virulence of Pseudomonas syringae pv. actinidiae
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-019-01416-5
– volume: 88
  start-page: 2
  year: 2022
  ident: ref_36
  article-title: Loop-mediated isothermal amplification of bacterial effector genes to detect Pseudomonas syringae pv. actinidiae biovars 1 and 3
  publication-title: J. Gen. Plant Pathol.
  doi: 10.1007/s10327-021-01030-9
– volume: 6
  start-page: 355
  year: 2016
  ident: ref_50
  article-title: Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit
  publication-title: J. Berry Res.
  doi: 10.3233/JBR-160115
– volume: 63
  start-page: 401
  year: 2006
  ident: ref_87
  article-title: Comparative analysis of argK-tox clusters and their flanking regions in phaseolotoxin-producing Pseudomonas syringae pathovars
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-005-0271-4
– volume: 5
  start-page: 16961
  year: 2015
  ident: ref_148
  article-title: Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. actinidiae
  publication-title: Sci. Rep.
  doi: 10.1038/srep16961
– volume: 9
  start-page: e00759-20
  year: 2020
  ident: ref_86
  article-title: Draft genome sequences of 10 strains of Pseudomonas syringae pv. actinidiae biovar 1, a major kiwifruit bacterial canker pathogen in Japan
  publication-title: Microbiol. Resour. Announc.
  doi: 10.1128/MRA.00759-20
– volume: 102
  start-page: 1034
  year: 2012
  ident: ref_80
  article-title: Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-03-12-0064-R
– volume: 32
  start-page: 37
  year: 2005
  ident: ref_146
  article-title: Resistance mechanism of kiwifruit cultivars to Pseudomonas syringae pv. actinidiae
  publication-title: Acta Phytopathol. Sin.
– volume: 35
  start-page: 37
  year: 2009
  ident: ref_166
  article-title: Relationships between the contents of phenolics, soluble proteins in plants of kiwifruit cultivars and their resistance to kiwifruit bacterial canker by Pseudomonas syringae pv. actinidiae
  publication-title: Plant Prot.
– volume: 9
  start-page: 932
  year: 2017
  ident: ref_85
  article-title: Origin and evolution of the kiwifruit canker pandemic
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evx055
– volume: 260
  start-page: 127048
  year: 2022
  ident: ref_103
  article-title: Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2022.127048
– volume: 63
  start-page: 282
  year: 1997
  ident: ref_21
  article-title: Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.1.282-288.1997
– volume: 59
  start-page: 469
  year: 1993
  ident: ref_46
  article-title: Epidemiology of bacterial canker of kiwifruit, 3: The seasonal changes of bacterial population in lesions and of its exudation from lesion
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.59.469
– volume: 59
  start-page: 453
  year: 2010
  ident: ref_23
  article-title: Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S–23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.2010.02259.x
– volume: 11
  start-page: 1022
  year: 2020
  ident: ref_75
  article-title: Early pathogen recognition and antioxidant system activation contributes to Actinidia arguta tolerance against Pseudomonas syringae pathovars actinidiae and actinidifoliorum
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.01022
– ident: ref_18
– volume: 64
  start-page: 51
  year: 2015
  ident: ref_107
  article-title: Redefining the global populations of Pseudomonas syringae pv. actinidiae based on pathogenic, molecular and phenotypic characteristics
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12236
– ident: ref_130
– volume: 126
  start-page: 969
  year: 2006
  ident: ref_157
  article-title: Plant stomata function in innate immunity against bacterial invasion
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.054
– volume: 55
  start-page: 427
  year: 1989
  ident: ref_6
  article-title: Occurrence of bacterial canker of kiwifruit in Japan description of symptoms, isolation of the pathogen and screening of bactericides
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.55.427
– volume: 66
  start-page: 140
  year: 2017
  ident: ref_35
  article-title: Comparative genomics-informed design of two LAMP assays for detection of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae and discrimination of isolates belonging to the pandemic biovar 3
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12551
– volume: 26
  start-page: 44
  year: 2020
  ident: ref_63
  article-title: Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae in Korea
  publication-title: Res. Plant Dis.
  doi: 10.5423/RPD.2020.26.1.44
– volume: 56
  start-page: 1
  year: 2013
  ident: ref_78
  article-title: Actinidia arguta ploidy level variation in relation to Pseudomonas syringae pv. actinidiae susceptibility
  publication-title: Lucr. Ştiinţifice
– volume: 1048
  start-page: 25
  year: 2014
  ident: ref_45
  article-title: Use of kiwifruit germplasm resources for genetic improvement
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2014.1048.2
– ident: ref_70
  doi: 10.3390/cli10020014
– volume: 96
  start-page: 169
  year: 2014
  ident: ref_100
  article-title: Production of phytotoxic metabolites by Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit
  publication-title: J. Plant Pathol.
– ident: ref_132
  doi: 10.3390/ijms222212185
– volume: 45
  start-page: 528
  year: 2022
  ident: ref_140
  article-title: Defence-related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14224
– volume: 82
  start-page: 101
  year: 2016
  ident: ref_83
  article-title: Novel biovar (biovar 6) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia deliciosa) in Japan
  publication-title: Jpn. J. Phytopathol.
  doi: 10.3186/jjphytopath.82.101
– volume: 14
  start-page: 310
  year: 2009
  ident: ref_158
  article-title: The multifaceted role of ABA in disease resistance
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.03.006
– volume: 65
  start-page: 1
  year: 2012
  ident: ref_123
  article-title: Survival of Pseudomonas syringae pv actinidiae on Cryptomeria japonica a nonhost plant used as shelter belts in kiwifruit orchards
  publication-title: N. Z. Plant Prot.
– ident: ref_122
– volume: 11
  start-page: 551201
  year: 2020
  ident: ref_156
  article-title: Molecular cloning and functional analysis of the NPR1 homolog in kiwifruit (Actinidia eriantha)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.551201
– ident: ref_2
– ident: ref_101
  doi: 10.1186/s12864-018-5197-5
– volume: 179
  start-page: 279
  year: 2021
  ident: ref_102
  article-title: Lscβ and lscγ, two novel levansucrases of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, show different enzymatic properties
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.02.189
– volume: 12
  start-page: 627785
  year: 2021
  ident: ref_97
  article-title: Role of the type VI secretion system in the pathogenicity of Pseudomonas syringae pv. actinidiae, the causative agent of kiwifruit bacterial canker
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.627785
– volume: 40
  start-page: 700
  year: 2014
  ident: ref_128
  article-title: The evolution of ethylene signaling in plant chemical ecology
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-014-0474-5
– volume: 36
  start-page: 2220
  year: 2020
  ident: ref_31
  article-title: Complete genome sequencing of Pseudomonas syringae pv. actinidiae Biovar 3, P155, kiwifruit pathogen originating from China
  publication-title: Biosci. J.
  doi: 10.14393/BJ-v36n6a2020-47896
– ident: ref_60
– volume: 98
  start-page: 651
  year: 2016
  ident: ref_67
  article-title: Field efficacy of a zinc-copper-hydracid of citric acid biocomplex compound to reduce oozing from winter cankers caused by Pseudomonas syringae pv. actinidiae to Actinidia spp.
  publication-title: J. Plant Pathol.
– volume: 13
  start-page: 631
  year: 2012
  ident: ref_8
  article-title: Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2012.00788.x
– ident: ref_57
– volume: 1095
  start-page: 117
  year: 2015
  ident: ref_113
  article-title: Multiplication and movement of Pseudomonas syringae pv. actinidiae in kiwifruit plants
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1095.14
– volume: 114
  start-page: 101636
  year: 2021
  ident: ref_29
  article-title: Improved MLVA typing reveals a highly articulated structure in Pseudomonas syringae pv. actinidiae populations
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2021.101636
– volume: 5
  start-page: 275
  year: 2021
  ident: ref_106
  article-title: The leaf bacterial microbiota of female and male kiwifruit plants in distinct seasons: Assessing the impact of Pseudomonas syringae pv. actinidiae
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-09-20-0070-R
– volume: 8
  start-page: 2157
  year: 2017
  ident: ref_116
  article-title: Pseudomonas syringae pv. actinidiae type III effectors localized at multiple cellular compartments activate or suppress innate immune responses in Nicotiana benthamiana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02157
– volume: 67
  start-page: 1220
  year: 2018
  ident: ref_32
  article-title: Highly specific assays to detect isolates of Pseudomonas syringae pv. actinidiae biovar 3 and Pseudomonas syringae pv. actinidifoliorum directly from plant material
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12817
SSID ssj0002873301
Score 2.2379906
SecondaryResourceType review_article
Snippet Globalization propelled human migration and commercial exchanges at the global level, but woefully led to the introduction of non-indigenous organisms into...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 351
Title Mitigation of Emergent Bacterial Pathogens Using Pseudomonas syringae pv. actinidiae as a Case Study—From Orchard to Gene and Everything in Between
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFgQBRHtUc4LSyabx-HpuQUCGlRGoLvUW79ppGsuKotiuFEz8CfhR_g1_CrHe9saocChcr2oeV7HyamW8zD0Le8kyg0k98h_thjgRF5E6cpbnDPLQNPOZCZ_HPz8LTS__TVXA1GPzuRS01tXDT73vzSv5HqjiGclVZsv8gWftSHMDPKF98ooTxeS8Zz1e6Qob2-aY6kxIJv67AjIe_QP-uxLGK6tCARSWbrMTvxytabdWVHpd0c-u2JTXWK8SKVI1nOJ2gcWtjDLddNIQ_U4kon9vSSpnyWFXB6vavhyme27a-NskxYx341Xd6JzflxrruZw0qV5pxer4qbrlJF6qtcThXTY31DfjqWyML-tHtpr7wKlVJloWZV9voVzs9UV2OiuvSxhpxOnfpwu3fayAlNkEYnfrzwog5UaiL-Lpyz5jR314Ppn5PFzNTyVabdaa7xdy1GIwlKsRStUurPKXQvGBnGbtogDsG04YxIoFS-5f93Q_IgYeMxRuSg5Pxh_HMXvghNWWsbcdtf4VOxFCveN9_Rc9F6vk6F4_JI0NS4EQj7gkZyPVT8muHNihz6NAGFm1g0QYt2qCHNujQBog22KENcIqDQhu0aPvz46fCGRicQV2CwhkgzmCHM1itweDsGbmcTS8mp45p6uGkLIxrJw5C6SGrjbk8HuVxJJIMKXvA5CgfCS5FiAwarU6GfnQgJAsiT7A0E55IIhHm2TF7Tobrci1fEEhHEslHEMnAD300TXHip4EvZIwcIw3i5JDQ7hyXqal4rxqvFMt9gjsk7-zqja70snfdy3uue0Ue7mD9mgzrm0a-QQe2FkcGGkftBdBf5QChdQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+Emergent+Bacterial+Pathogens+Using+Pseudomonas+syringae+pv.+actinidiae+as+a+Case+Study%E2%80%94From+Orchard+to+Gene+and+Everything+in+Between&rft.jtitle=Crops&rft.au=Nunes+da+Silva%2C+Marta&rft.au=Santos%2C+Miguel+G.&rft.au=Vasconcelos%2C+Marta+W.&rft.au=Carvalho%2C+Susana+M.+P.&rft.date=2022-09-30&rft.issn=2673-7655&rft.eissn=2673-7655&rft.volume=2&rft.issue=4&rft.spage=351&rft.epage=377&rft_id=info:doi/10.3390%2Fcrops2040025&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_crops2040025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7655&client=summon