Towards a unified drag coefficient formula for quantifying wave energy reduction by salt marshes

Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards. Vegetation exerts a drag force to the flow and dampens storm surges and wind waves. The prediction of wave attenuation by vegetation typically relies...

Full description

Saved in:
Bibliographic Details
Published inCoastal engineering (Amsterdam) Vol. 180; p. 104256
Main Authors Zhu, Ling, Chen, Qin, Ding, Yan, Jafari, Navid, Wang, Hongqing, Johnson, Bradley D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards. Vegetation exerts a drag force to the flow and dampens storm surges and wind waves. The prediction of wave attenuation by vegetation typically relies on a pre-determined drag coefficient CD. Existing CD formulas are subject to vegetation biomechanical properties, especially the flexibility. Accounting for vegetation flexibility through the effective plant height (EPH), we propose and validate a species-independent relationship between CD and the Reynolds number Re based on three independent datasets that cover a wide range of hydrodynamic conditions and vegetation traits. The proposed CD−Re relationship, used together with EPH, allows for predicting wave attenuation in salt marshes with high accuracy. Furthermore, a total of 308,000 numerical experiments with diverse wave conditions are conducted using the proposed CD−Re relationship and EPH to quantify the wave attenuation capacity of two typical salt mash species: Elymus athericus (highly flexible) and Spartina alterniflora (relatively rigid). It is found that wave attenuation is controlled by wave height to water depth ratio and EPH to water depth ratio. When swaying in large waves in shallow to intermediate water depth, a 50-m-long Elymus athericus field may lose up to 30% capacity for wave attenuation. As wave height increases, highly flexible vegetation causes reduced wave attenuation, whereas relatively rigid vegetation induces increased wave attenuation. The leaf contribution to wave attenuation is highly dependent on the leaf rigidity. It is recommended that leaf properties, especially its Young’s modulus be collected in future field experiments. •A drag coefficient (Cd) formula unifying four datasets is proposed for modeling wave decay in saltmarshes.•This Cd formula helps quantify the capacity of deformable vegetation for wave attenuation.•Wave decay is controlled by wave height, effective plant height, and water depth.•Leaf contribution to wave decay relies on its Young’s modulus and should be included when it is large.•Collecting both stem and leaf biophysical properties is highly recommended in future studies.
AbstractList Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards. Vegetation exerts a drag force to the flow and dampens storm surges and wind waves. The prediction of wave attenuation by vegetation typically relies on a pre-determined drag coefficient CD. Existing CD formulas are subject to vegetation biomechanical properties, especially the flexibility. Accounting for vegetation flexibility through the effective plant height (EPH), we propose and validate a species-independent relationship between CD and the Reynolds number Re based on three independent datasets that cover a wide range of hydrodynamic conditions and vegetation traits. The proposed CD−Re relationship, used together with EPH, allows for predicting wave attenuation in salt marshes with high accuracy. Furthermore, a total of 308,000 numerical experiments with diverse wave conditions are conducted using the proposed CD−Re relationship and EPH to quantify the wave attenuation capacity of two typical salt mash species: Elymus athericus (highly flexible) and Spartina alterniflora (relatively rigid). It is found that wave attenuation is controlled by wave height to water depth ratio and EPH to water depth ratio. When swaying in large waves in shallow to intermediate water depth, a 50-m-long Elymus athericus field may lose up to 30% capacity for wave attenuation. As wave height increases, highly flexible vegetation causes reduced wave attenuation, whereas relatively rigid vegetation induces increased wave attenuation. The leaf contribution to wave attenuation is highly dependent on the leaf rigidity. It is recommended that leaf properties, especially its Young’s modulus be collected in future field experiments. •A drag coefficient (Cd) formula unifying four datasets is proposed for modeling wave decay in saltmarshes.•This Cd formula helps quantify the capacity of deformable vegetation for wave attenuation.•Wave decay is controlled by wave height, effective plant height, and water depth.•Leaf contribution to wave decay relies on its Young’s modulus and should be included when it is large.•Collecting both stem and leaf biophysical properties is highly recommended in future studies.
ArticleNumber 104256
Author Ding, Yan
Wang, Hongqing
Johnson, Bradley D.
Jafari, Navid
Chen, Qin
Zhu, Ling
Author_xml – sequence: 1
  givenname: Ling
  surname: Zhu
  fullname: Zhu, Ling
  organization: Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
– sequence: 2
  givenname: Qin
  orcidid: 0000-0002-6540-8758
  surname: Chen
  fullname: Chen, Qin
  email: q.chen@northeastern.edu
  organization: Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
– sequence: 3
  givenname: Yan
  surname: Ding
  fullname: Ding, Yan
  organization: U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS 39180, USA
– sequence: 4
  givenname: Navid
  surname: Jafari
  fullname: Jafari, Navid
  organization: Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
– sequence: 5
  givenname: Hongqing
  surname: Wang
  fullname: Wang, Hongqing
  organization: U.S. Geological Survey, Wetland and Aquatic Research Center, Baton Rouge, LA 70803, USA
– sequence: 6
  givenname: Bradley D.
  surname: Johnson
  fullname: Johnson, Bradley D.
  organization: U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS 39180, USA
BookMark eNqNkF1LwzAUhoNMcJv-h_yBziZN0_ZG0OEXDLyZ1_E0PakZXapJtrF_b8sEwRs9NwcOvA_nfWZk4nqHhFCWLljK5PVmoXsIETp07YKnnA9nwXN5RqasLHhSZEU1IdM0K8okK7PqgsxC2KTDyDKfkrd1fwDfBAp056yx2NDGQ0t1j8ZYbdFFanq_3XUwbvq5AxetOVrX0gPskaJD3x6px2ano-0drY80QBfpFnx4x3BJzg10Aa--95y8Ptyvl0_J6uXxeXm7SnQmy5iUQhSsKhBZzmoNXEIGFWc8zwUiiDoVggtjZM1FnTWN1jLHQg49MS9yJmU2JzcnrvZ9CB6N0jbC-FH0YDvFUjX6Uhv140uNvtTJ1wAofwE-vB1KHP8TvTtFcSi4t-hVGM1pbKxHHVXT278hX5iyj4Q
CitedBy_id crossref_primary_10_1002_lom3_10616
crossref_primary_10_5194_essd_16_1047_2024
crossref_primary_10_1061_JWPED5_WWENG_2182
crossref_primary_10_1061_JWPED5_WWENG_2084
crossref_primary_10_3389_fmars_2023_1106070
crossref_primary_10_1016_j_ocemod_2024_102391
crossref_primary_10_1016_j_coastaleng_2024_104688
crossref_primary_10_1016_j_coastaleng_2024_104575
crossref_primary_10_1016_j_oceaneng_2023_116590
crossref_primary_10_1016_j_ocemod_2024_102422
crossref_primary_10_1016_j_wavemoti_2024_103389
crossref_primary_10_1016_j_aquaeng_2025_102528
crossref_primary_10_1016_j_coastaleng_2025_104747
crossref_primary_10_1073_pnas_2410883122
Cites_doi 10.1038/ngeo2251
10.1016/j.coastaleng.2013.04.009
10.1016/0378-3839(91)90001-W
10.1016/j.ecss.2017.09.028
10.1002/2017JC012731
10.1038/nclimate1970
10.1016/j.coastaleng.2015.09.011
10.1016/j.coastaleng.2013.02.013
10.1061/(ASCE)0733-950X(1984)110:1(67)
10.1016/j.jfluidstructs.2020.103192
10.1038/s41598-021-84701-z
10.1016/j.coastaleng.2019.03.005
10.1073/pnas.1915169117
10.1029/2018JC014865
10.1073/pnas.0914582107
10.1029/2019JC015517
10.1002/lno.11952
10.1038/ngeo2262
10.1029/2019JC015963
10.1029/JC090iC05p09159
10.1007/s10652-013-9308-1
10.1016/j.coastaleng.2021.103937
10.1073/pnas.1911617116
10.1038/s41893-020-0556-z
10.1002/lno.11149
10.1016/j.coastaleng.2008.09.004
10.1017/jfm.2011.373
10.1016/j.ecss.2008.09.004
10.1016/j.coastaleng.2013.10.004
10.6028/jres.060.043
10.1038/s41561-021-00713-4
10.1061/(ASCE)EM.1943-7889.0001087
10.1061/(ASCE)EM.1943-7889.0000318
10.1029/2018JC014867
10.1038/ngeo2233
10.1016/j.coastaleng.2015.09.010
10.1016/j.coastaleng.2020.103648
10.1016/j.coastaleng.2014.11.002
10.1016/j.coastaleng.2019.04.009
10.1061/(ASCE)WW.1943-5460.0000487
10.1016/j.coastaleng.2014.09.008
10.1142/3587
10.1371/journal.pone.0118687
10.1029/2010JC006797
10.1073/pnas.1820067116
10.1016/j.coastaleng.2003.11.003
10.1016/j.coastaleng.2019.01.008
10.1016/j.jfluidstructs.2015.11.007
10.1007/s12237-008-9089-9
10.1073/pnas.1510095112
10.1007/s12237-014-9840-3
10.1016/j.coastaleng.2014.02.009
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.coastaleng.2022.104256
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7379
ExternalDocumentID 10_1016_j_coastaleng_2022_104256
S0378383922001697
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6TJ
6TS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
J1W
JJJVA
KCYFY
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TN5
WUQ
XJT
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c368t-8447197ee151bca26a3a9212554eea4b04424ff6b24b3ddcc65e76256e5751663
IEDL.DBID .~1
ISSN 0378-3839
IngestDate Thu Apr 24 23:05:25 EDT 2025
Tue Jul 01 00:25:29 EDT 2025
Fri Feb 23 02:39:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Effective plant height
Wave attenuation
Unified drag coefficient
Flexible vegetation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-8447197ee151bca26a3a9212554eea4b04424ff6b24b3ddcc65e76256e5751663
ORCID 0000-0002-6540-8758
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378383922001697
ParticipantIDs crossref_citationtrail_10_1016_j_coastaleng_2022_104256
crossref_primary_10_1016_j_coastaleng_2022_104256
elsevier_sciencedirect_doi_10_1016_j_coastaleng_2022_104256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Coastal engineering (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Losada, Maza, Lara (b35) 2016; 107
Dalrymple, Kirby, Hwang (b9) 1984; 110
Paul, Amos (b49) 2011; 116
Zhang, Nepf (b62) 2021; 100
Zhu, Chen (b64) 2019; 149
Jongman (b27) 2018; 9
Luhar, Infantes, Nepf (b36) 2017; 122
Sheng, Rivera-Nieves, Zou, Paramygin (b51) 2021; 11
Zhu, Vuik, Visser, Soens, van Wesenbeeck, van de Koppel, Jonkman, Temmerman, Bouma (b66) 2020; 3
Narayan, Beck, W, Wilson, Thomas, Guerrero, Shepard, Reguero, Franco, Ingram, Trespalacios (b47) 2017; 7
Houser, Trimble, Morales (b20) 2015; 38
Vuik, Suh Heo, Zhu, Borsje, Jonkman (b58) 2018; 200
Wilson, Allison (b59) 2008; 80
van Rijn (b55) 1993
Zhu, Chen (b65) 2019; 124
MACE,, 2022.
Zhang, Lin, Nepf (b61) 2021; 66
Battjes, Stive (b3) 1985; 90
Zhu, Zou, Huguenard, Fredriksson (b67) 2020; 125
Duarte, Losada, Hendriks, Mazarrasa, Marba (b11) 2013; 3
Anderson, Smith (b1) 2014; 83
Jadhav (b25) 2012
Fagherazzi (b13) 2014; 7
Mei, Chan, Liu (b42) 2014; 14
Chen, Wang, Tawes (b7) 2008; 31
van Veelen, Karunarathna, Reeve (b57) 2021
Hu, Chen, Wang (b22) 2015; 95
Gon, MacMahan, Thornton, Denny (b17) 2020; 125
Liu, Chang, Mei, Lomonaco, Martin, Maza (b34) 2015; 96
Sun, Carson (b54) 2020; 117
Schoutens, Heuner, Minden, Ostermann, Silinski, Belliard, Temmerman (b50) 2019; 64
Wu, Ozeren, Wren, Chen, Zhang, Holland, Ding, Kuiry, Zhang, Jadhav, Chatagnier, Chen, Gordji (b60) 2011
Chakrabarti, Chen, Smith, Liu (b4) 2016; 142
van Veelen, Fairchild, Reeve, Karunarathna (b56) 2020; 157
Mendez, Losada (b44) 2004; 51
Ganju, Defne, Kirwan, Fagherazzi, D’Alpaos, Carniello (b14) 2017; 8
Editorial (b12) 2021; 14
(last Accessed on 30 April 2022).
Nardin, Edmonds (b48) 2014; 7
Hu, Mei, Chang, Liu (b23) 2021; 168
Hu, Suzuki, Tjerk, Wim, Stive (b24) 2014; 88
Mattis, Christopher, Maya, Aggelos, Clint (b39) 2019; 145
Stark, Jafari (b53) 2015; 7
del Valle, Eriksson, Ishizawa (b10) 2020; 117
Goda (b16) 2000; 33
Maza, Lara, Losada (b40) 2013; 80
Henderson (b18) 2019; 152
Zhu, Chen (b63) 2015; 141
Luhar, Nepf (b37) 2016; 61
Hochard, Hamilton, Barbier (b19) 2019; 116
Karnovsky, Lebed (b30) 2004
Chatagnier (b5) 2012
Jadhav, Chen, Smith (b26) 2013; 77
Mei, Chan, Liu, Huang, Zhang (b43) 2011; 687
Silinski, Heuner, Schoelynck, Puijalon, Schroder, Fuchs, Troch, Bouma, Meire, Temmerman (b52) 2015; 10
Chen, Zhao (b8) 2012; 138
Keulegan, Carpenter (b31) 1958; 60
Leonardi, Ganju, Fagherazzi (b33) 2016; 113
Augustin, Irish, Lynett (b2) 2009; 56
Howes, FitzGerald, Hughes, Georgiou, Kulp, Miner, Smith, Barras (b21) 2010; 107
Maza, Lara, Losada, Ondiviela, Trinogga, Bouma (b41) 2015; 106
Möller, Kudella, Rupprecht, Spencer, Paul, van Wesenbeeck, Wolters, Jensen, Bouma, Miranda-Lange, Schimmels (b45) 2014; 7
Mullarney, Henderson (b46) 2010; 115
Chaudhry (b6) 1993
Garzon, Maza, Ferreira, Lara, Losada (b15) 2019; 124
Karimpour, Chen (b29) 2017; 106
Lei, Nepf (b32) 2019; 147
Kamphuis (b28) 1991; 15
Nardin (10.1016/j.coastaleng.2022.104256_b48) 2014; 7
Mendez (10.1016/j.coastaleng.2022.104256_b44) 2004; 51
Dalrymple (10.1016/j.coastaleng.2022.104256_b9) 1984; 110
van Veelen (10.1016/j.coastaleng.2022.104256_b56) 2020; 157
Zhu (10.1016/j.coastaleng.2022.104256_b67) 2020; 125
Mei (10.1016/j.coastaleng.2022.104256_b43) 2011; 687
Chen (10.1016/j.coastaleng.2022.104256_b7) 2008; 31
Henderson (10.1016/j.coastaleng.2022.104256_b18) 2019; 152
Garzon (10.1016/j.coastaleng.2022.104256_b15) 2019; 124
Battjes (10.1016/j.coastaleng.2022.104256_b3) 1985; 90
Silinski (10.1016/j.coastaleng.2022.104256_b52) 2015; 10
Howes (10.1016/j.coastaleng.2022.104256_b21) 2010; 107
Sheng (10.1016/j.coastaleng.2022.104256_b51) 2021; 11
van Rijn (10.1016/j.coastaleng.2022.104256_b55) 1993
Karimpour (10.1016/j.coastaleng.2022.104256_b29) 2017; 106
Liu (10.1016/j.coastaleng.2022.104256_b34) 2015; 96
Gon (10.1016/j.coastaleng.2022.104256_b17) 2020; 125
van Veelen (10.1016/j.coastaleng.2022.104256_b57) 2021
Zhu (10.1016/j.coastaleng.2022.104256_b64) 2019; 149
Chakrabarti (10.1016/j.coastaleng.2022.104256_b4) 2016; 142
Chaudhry (10.1016/j.coastaleng.2022.104256_b6) 1993
Hochard (10.1016/j.coastaleng.2022.104256_b19) 2019; 116
Vuik (10.1016/j.coastaleng.2022.104256_b58) 2018; 200
Zhang (10.1016/j.coastaleng.2022.104256_b62) 2021; 100
Jadhav (10.1016/j.coastaleng.2022.104256_b25) 2012
Maza (10.1016/j.coastaleng.2022.104256_b41) 2015; 106
Wilson (10.1016/j.coastaleng.2022.104256_b59) 2008; 80
Mei (10.1016/j.coastaleng.2022.104256_b42) 2014; 14
Zhu (10.1016/j.coastaleng.2022.104256_b63) 2015; 141
Goda (10.1016/j.coastaleng.2022.104256_b16) 2000; 33
Hu (10.1016/j.coastaleng.2022.104256_b23) 2021; 168
Kamphuis (10.1016/j.coastaleng.2022.104256_b28) 1991; 15
del Valle (10.1016/j.coastaleng.2022.104256_b10) 2020; 117
Sun (10.1016/j.coastaleng.2022.104256_b54) 2020; 117
Stark (10.1016/j.coastaleng.2022.104256_b53) 2015; 7
Leonardi (10.1016/j.coastaleng.2022.104256_b33) 2016; 113
Möller (10.1016/j.coastaleng.2022.104256_b45) 2014; 7
Anderson (10.1016/j.coastaleng.2022.104256_b1) 2014; 83
Hu (10.1016/j.coastaleng.2022.104256_b24) 2014; 88
Augustin (10.1016/j.coastaleng.2022.104256_b2) 2009; 56
Karnovsky (10.1016/j.coastaleng.2022.104256_b30) 2004
10.1016/j.coastaleng.2022.104256_b38
Keulegan (10.1016/j.coastaleng.2022.104256_b31) 1958; 60
Chen (10.1016/j.coastaleng.2022.104256_b8) 2012; 138
Lei (10.1016/j.coastaleng.2022.104256_b32) 2019; 147
Losada (10.1016/j.coastaleng.2022.104256_b35) 2016; 107
Wu (10.1016/j.coastaleng.2022.104256_b60) 2011
Fagherazzi (10.1016/j.coastaleng.2022.104256_b13) 2014; 7
Schoutens (10.1016/j.coastaleng.2022.104256_b50) 2019; 64
Houser (10.1016/j.coastaleng.2022.104256_b20) 2015; 38
Ganju (10.1016/j.coastaleng.2022.104256_b14) 2017; 8
Jadhav (10.1016/j.coastaleng.2022.104256_b26) 2013; 77
Jongman (10.1016/j.coastaleng.2022.104256_b27) 2018; 9
Editorial (10.1016/j.coastaleng.2022.104256_b12) 2021; 14
Maza (10.1016/j.coastaleng.2022.104256_b40) 2013; 80
Mattis (10.1016/j.coastaleng.2022.104256_b39) 2019; 145
Luhar (10.1016/j.coastaleng.2022.104256_b36) 2017; 122
Luhar (10.1016/j.coastaleng.2022.104256_b37) 2016; 61
Paul (10.1016/j.coastaleng.2022.104256_b49) 2011; 116
Zhu (10.1016/j.coastaleng.2022.104256_b66) 2020; 3
Chatagnier (10.1016/j.coastaleng.2022.104256_b5) 2012
Mullarney (10.1016/j.coastaleng.2022.104256_b46) 2010; 115
Zhu (10.1016/j.coastaleng.2022.104256_b65) 2019; 124
Hu (10.1016/j.coastaleng.2022.104256_b22) 2015; 95
Zhang (10.1016/j.coastaleng.2022.104256_b61) 2021; 66
Narayan (10.1016/j.coastaleng.2022.104256_b47) 2017; 7
Duarte (10.1016/j.coastaleng.2022.104256_b11) 2013; 3
References_xml – volume: 116
  start-page: 12232
  year: 2019
  end-page: 12237
  ident: b19
  article-title: Mangroves shelter coastal economic activity from cyclones
  publication-title: Proc. Natl. Acad. Sci.
– year: 1993
  ident: b6
  article-title: Open-Channel Flow
– volume: 138
  start-page: 221
  year: 2012
  end-page: 229
  ident: b8
  article-title: Theoretical models for wave energy dissipation caused by vegetation
  publication-title: J. Eng. Mech.
– volume: 80
  start-page: 16
  year: 2013
  end-page: 34
  ident: b40
  article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations
  publication-title: Coast. Eng.
– volume: 95
  start-page: 66
  year: 2015
  end-page: 76
  ident: b22
  article-title: A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary
  publication-title: Coast. Eng.
– volume: 124
  start-page: 4368
  year: 2019
  end-page: 4388
  ident: b65
  article-title: Phase-averaged drag force of nonlinear waves over submerged and through emergent vegetation
  publication-title: J. Geophys. Res.: Oceans
– volume: 14
  start-page: 111
  year: 2021
  ident: b12
  article-title: Valuing wetlands
  publication-title: Nat. Geosci.
– volume: 152
  year: 2019
  ident: b18
  article-title: Motion of buoyant, flexible aquatic vegetation under waves: simple theoretical models and parameterization of wave dissipation
  publication-title: Coast. Eng.
– volume: 88
  start-page: 131
  year: 2014
  end-page: 142
  ident: b24
  article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow
  publication-title: Coast. Eng.
– volume: 31
  start-page: 1098
  year: 2008
  end-page: 1116
  ident: b7
  article-title: Hydrodynamic response of northeastern Gulf of Mexico to hurricanes
  publication-title: Estuar. Coasts
– volume: 168
  year: 2021
  ident: b23
  article-title: Effect of flexible coastal vegetation on waves in water of intermediate depth
  publication-title: Coast. Eng.
– reference: . (last Accessed on 30 April 2022).
– volume: 8
  year: 2017
  ident: b14
  article-title: Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes
  publication-title: Nature Commun.
– volume: 14
  start-page: 235
  year: 2014
  end-page: 261
  ident: b42
  article-title: Waves of intermediate length through an array of vertical cylinders
  publication-title: Environ. Fluid Mech.
– volume: 142
  year: 2016
  ident: b4
  article-title: Large Eddy simulation of unidirectional and wave flows through vegetation
  publication-title: J. Eng. Mech.
– volume: 61
  start-page: 20
  year: 2016
  end-page: 41
  ident: b37
  article-title: Wave-induced dynamics of flexible leafs
  publication-title: J. Fluids Struct.
– volume: 7
  start-page: 727
  year: 2014
  end-page: 731
  ident: b45
  article-title: Wave attenuation over coastal salt marshes under storm surge conditions
  publication-title: Nat. Geosci.
– volume: 80
  start-page: 483
  year: 2008
  end-page: 494
  ident: b59
  article-title: An equilibrium profile model for retreating marsh shorelines in southeast Louisiana
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 77
  start-page: 99
  year: 2013
  end-page: 107
  ident: b26
  article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation
  publication-title: Coast. Eng.
– volume: 3
  start-page: 853
  year: 2020
  end-page: 862
  ident: b66
  article-title: Historic storms and the hidden value of coastal wetlands for nature-based flood defence
  publication-title: Nat. Sustain.
– volume: 147
  start-page: 138
  year: 2019
  end-page: 148
  ident: b32
  article-title: Wave damping by flexible vegetation: Connecting individual leaf dynamics to the meadow scale
  publication-title: Coast. Eng.
– volume: 7
  year: 2015
  ident: b53
  article-title: Ruling on IHNC floodwall failures during Hurricane Katrina
  publication-title: J. Legal Aff. Dispute Resol. Eng. Constr.
– year: 1993
  ident: b55
  article-title: Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas
– volume: 106
  start-page: 73
  year: 2015
  end-page: 86
  ident: b41
  article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation, Part 2: Experimental analysis
  publication-title: Coast. Eng.
– volume: 64
  start-page: 1750
  year: 2019
  end-page: 1762
  ident: b50
  article-title: How effective are tidal marshes as nature based shoreline protection throughout seasons?
  publication-title: Limnol. Oceanogr.
– volume: 116
  start-page: C08019
  year: 2011
  ident: b49
  article-title: Spatial and seasonal variation in wave attenuation over
  publication-title: J. Geophys. Res.
– volume: 51
  start-page: 103
  year: 2004
  end-page: 118
  ident: b44
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
– volume: 9
  year: 2018
  ident: b27
  article-title: Effective adaptation to rising flood risk
  publication-title: Nature Commun.
– volume: 66
  start-page: 4182
  year: 2021
  end-page: 4196
  ident: b61
  article-title: A simple-wave damping model for flexible marsh plants
  publication-title: Limnol. Oceanogr.
– year: 2004
  ident: b30
  article-title: Free Vibrations of Beams and Frames: Eigenvalues and Eigenfunctions
– volume: 145
  year: 2019
  ident: b39
  article-title: Computational model for wave attenuation by flexible vegetation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 7
  year: 2017
  ident: b47
  article-title: The value of coastal wetlands for flood damage reduction in the northeastern USA
  publication-title: Sci. Rep.
– volume: 10
  year: 2015
  ident: b52
  article-title: Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of
  publication-title: PLoS One
– volume: 125
  year: 2020
  ident: b17
  article-title: Wave dissipation by bottom friction on the inner shelf of a rocky shore
  publication-title: J. Geophys. Res.: Oceans
– volume: 7
  start-page: 722
  year: 2014
  end-page: 726
  ident: b48
  article-title: Optimum vegetation height and density for inorganic sedimentation in deltaic marshes
  publication-title: Nature Geosci.
– volume: 3
  start-page: 961
  year: 2013
  end-page: 968
  ident: b11
  article-title: The role of coastal plant communities for climate change mitigation and adaptation
  publication-title: Nat. Clim. Change
– reference: MACE,, 2022.
– volume: 687
  start-page: 461
  year: 2011
  end-page: 491
  ident: b43
  article-title: Long waves through emergent coastal vegetation
  publication-title: J. Fluid Mech.
– volume: 149
  start-page: 1
  year: 2019
  end-page: 3
  ident: b64
  article-title: Discussion of field-based numerical model investigation of wave propagation across marshes in the chesapeake bay under storm conditions by Juan L, Garzon, Tyler Miesse and Celso M. Ferreira
  publication-title: Coastal Eng.
– volume: 90
  start-page: 9159
  year: 1985
  end-page: 9167
  ident: b3
  article-title: Calibration and verification of a dissipation model for random breaking waves
  publication-title: J. Geophys. Res.: Oceans
– volume: 124
  start-page: 5220
  year: 2019
  end-page: 5243
  ident: b15
  article-title: Wave attenuation by Spartina saltmarshes in the chesapeake bay under storm surge conditions
  publication-title: J. Geophys. Res.: Oceans
– volume: 117
  start-page: 265
  year: 2020
  end-page: 270
  ident: b10
  article-title: JJ Miranda, mangroves protect coastal economic activity from hurricanes
  publication-title: Proc. Natl. Acad. Sci.
– year: 2021
  ident: b57
  article-title: Modelling wave attenuation by quasi-flexible coastal vegetation
  publication-title: Coast. Eng.
– volume: 33
  year: 2000
  ident: b16
  article-title: Random seas and design of maritime structures
  publication-title: Adv. Ser. Ocean Eng.
– volume: 117
  start-page: 5719
  year: 2020
  end-page: 5725
  ident: b54
  article-title: Coastal wetlands reduce property damage during tropical cyclones
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 125
  year: 2020
  ident: b67
  article-title: Mechanisms for the asymmetric motion of submerged aquatic vegetation in waves: A consistent-mass cable model
  publication-title: J. Geophys. Res.: Oceans
– volume: 115
  year: 2010
  ident: b46
  article-title: Wave-forced motion of submerged single-stem vegetation
  publication-title: J. Geophys. Res.: Oceans
– volume: 100
  year: 2021
  ident: b62
  article-title: Wave-induced reconfiguration of and drag on marsh plants
  publication-title: J. Fluids Struct.
– volume: 107
  start-page: 14014
  year: 2010
  end-page: 14019
  ident: b21
  article-title: Hurricane-induced failure of low salinity wetlands
  publication-title: Proc. Natl. Acad. Sci.
– volume: 122
  start-page: 3736
  year: 2017
  end-page: 3752
  ident: b36
  article-title: Seagrass leaf motion under waves and its impact on wave decay
  publication-title: J. Geophys. Res.: Oceans
– volume: 11
  start-page: 5237
  year: 2021
  ident: b51
  article-title: Role of wetlands in reducing structural loss is highly dependent on characteristics of storms and local wetland and structure conditions
  publication-title: Sci. Rep.
– volume: 106
  year: 2017
  ident: b29
  article-title: Wind wave analysis in depth limited water using oceanlyz, a Matlab toolbox
  publication-title: Comput. Geosci.
– volume: 141
  year: 2015
  ident: b63
  article-title: Numerical modeling of surface waves over submerged flexible vegetation
  publication-title: J. Eng. Mech.
– volume: 60
  start-page: 423
  year: 1958
  end-page: 440
  ident: b31
  article-title: Forces on cylinders and plates in an oscillating fluid
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 107
  start-page: 1
  year: 2016
  end-page: 13
  ident: b35
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
– year: 2012
  ident: b25
  article-title: Field Investigation of Wave and Surge Attenuation in Salt Marsh Vegetation and Wave Climate in a Shallow Estuary
– volume: 83
  start-page: 82
  year: 2014
  end-page: 92
  ident: b1
  article-title: Wave attenuation by flexible, idealized salt marsh vegetation
  publication-title: Coast. Eng.
– volume: 7
  start-page: 701
  year: 2014
  end-page: 702
  ident: b13
  article-title: Storm-proofing with marshes
  publication-title: Nat. Geosci.
– year: 2012
  ident: b5
  article-title: The Biomechanics of Salt Marsh Vegetation Applied to Wave and Surge Attenuation
– volume: 113
  start-page: 64
  year: 2016
  end-page: 68
  ident: b33
  article-title: A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes
  publication-title: Proc. Natl. Acad. Sci.
– volume: 110
  start-page: 67
  year: 1984
  end-page: 79
  ident: b9
  article-title: Wave diffraction due to areas of energy dissipation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 15
  start-page: 173
  year: 1991
  end-page: 184
  ident: b28
  article-title: Wave transformation
  publication-title: Coast. Eng.
– volume: 96
  start-page: 100
  year: 2015
  end-page: 117
  ident: b34
  article-title: Periodic water waves through an aquatic forest
  publication-title: Coast. Eng.
– volume: 200
  start-page: 41
  year: 2018
  end-page: 58
  ident: b58
  article-title: Stem breakage of salt marsh vegetation under wave forcing: A field and model study
  publication-title: Estuar. Coast. Shelf Sci.
– year: 2011
  ident: b60
  article-title: SERRI Project: Investigation of Surge and Wave Reduction by Vegetation
– volume: 56
  start-page: 332
  year: 2009
  end-page: 340
  ident: b2
  article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation
  publication-title: Coast. Eng.
– volume: 38
  start-page: 569
  year: 2015
  end-page: 577
  ident: b20
  article-title: Influence of leaf flexibility on the drag coefficient of aquatic vegetation
  publication-title: Estuaries Coasts
– volume: 157
  year: 2020
  ident: b56
  article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure
  publication-title: Coast. Eng.
– volume: 7
  start-page: 727
  year: 2014
  ident: 10.1016/j.coastaleng.2022.104256_b45
  article-title: Wave attenuation over coastal salt marshes under storm surge conditions
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2251
– volume: 80
  start-page: 16
  year: 2013
  ident: 10.1016/j.coastaleng.2022.104256_b40
  article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.04.009
– volume: 15
  start-page: 173
  issue: 3
  year: 1991
  ident: 10.1016/j.coastaleng.2022.104256_b28
  article-title: Wave transformation
  publication-title: Coast. Eng.
  doi: 10.1016/0378-3839(91)90001-W
– volume: 200
  start-page: 41
  year: 2018
  ident: 10.1016/j.coastaleng.2022.104256_b58
  article-title: Stem breakage of salt marsh vegetation under wave forcing: A field and model study
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2017.09.028
– volume: 122
  start-page: 3736
  year: 2017
  ident: 10.1016/j.coastaleng.2022.104256_b36
  article-title: Seagrass leaf motion under waves and its impact on wave decay
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1002/2017JC012731
– volume: 3
  start-page: 961
  year: 2013
  ident: 10.1016/j.coastaleng.2022.104256_b11
  article-title: The role of coastal plant communities for climate change mitigation and adaptation
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1970
– year: 2004
  ident: 10.1016/j.coastaleng.2022.104256_b30
– volume: 107
  start-page: 1
  year: 2016
  ident: 10.1016/j.coastaleng.2022.104256_b35
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.09.011
– volume: 77
  start-page: 99
  year: 2013
  ident: 10.1016/j.coastaleng.2022.104256_b26
  article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.02.013
– volume: 110
  start-page: 67
  year: 1984
  ident: 10.1016/j.coastaleng.2022.104256_b9
  article-title: Wave diffraction due to areas of energy dissipation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1984)110:1(67)
– volume: 100
  year: 2021
  ident: 10.1016/j.coastaleng.2022.104256_b62
  article-title: Wave-induced reconfiguration of and drag on marsh plants
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2020.103192
– volume: 11
  start-page: 5237
  year: 2021
  ident: 10.1016/j.coastaleng.2022.104256_b51
  article-title: Role of wetlands in reducing structural loss is highly dependent on characteristics of storms and local wetland and structure conditions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84701-z
– volume: 115
  issue: C12061
  year: 2010
  ident: 10.1016/j.coastaleng.2022.104256_b46
  article-title: Wave-forced motion of submerged single-stem vegetation
  publication-title: J. Geophys. Res.: Oceans
– year: 2011
  ident: 10.1016/j.coastaleng.2022.104256_b60
– volume: 149
  start-page: 1
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b64
  article-title: Discussion of field-based numerical model investigation of wave propagation across marshes in the chesapeake bay under storm conditions by Juan L, Garzon, Tyler Miesse and Celso M. Ferreira
  publication-title: Coastal Eng.
  doi: 10.1016/j.coastaleng.2019.03.005
– volume: 7
  year: 2015
  ident: 10.1016/j.coastaleng.2022.104256_b53
  article-title: Ruling on IHNC floodwall failures during Hurricane Katrina
  publication-title: J. Legal Aff. Dispute Resol. Eng. Constr.
– ident: 10.1016/j.coastaleng.2022.104256_b38
– volume: 117
  start-page: 5719
  year: 2020
  ident: 10.1016/j.coastaleng.2022.104256_b54
  article-title: Coastal wetlands reduce property damage during tropical cyclones
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1915169117
– volume: 124
  start-page: 5220
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b15
  article-title: Wave attenuation by Spartina saltmarshes in the chesapeake bay under storm surge conditions
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/2018JC014865
– volume: 107
  start-page: 14014
  year: 2010
  ident: 10.1016/j.coastaleng.2022.104256_b21
  article-title: Hurricane-induced failure of low salinity wetlands
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0914582107
– volume: 125
  year: 2020
  ident: 10.1016/j.coastaleng.2022.104256_b67
  article-title: Mechanisms for the asymmetric motion of submerged aquatic vegetation in waves: A consistent-mass cable model
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/2019JC015517
– volume: 66
  start-page: 4182
  issue: 12
  year: 2021
  ident: 10.1016/j.coastaleng.2022.104256_b61
  article-title: A simple-wave damping model for flexible marsh plants
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.11952
– volume: 7
  start-page: 701
  year: 2014
  ident: 10.1016/j.coastaleng.2022.104256_b13
  article-title: Storm-proofing with marshes
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2262
– volume: 125
  year: 2020
  ident: 10.1016/j.coastaleng.2022.104256_b17
  article-title: Wave dissipation by bottom friction on the inner shelf of a rocky shore
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/2019JC015963
– volume: 90
  start-page: 9159
  year: 1985
  ident: 10.1016/j.coastaleng.2022.104256_b3
  article-title: Calibration and verification of a dissipation model for random breaking waves
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/JC090iC05p09159
– volume: 106
  issue: 181
  year: 2017
  ident: 10.1016/j.coastaleng.2022.104256_b29
  article-title: Wind wave analysis in depth limited water using oceanlyz, a Matlab toolbox
  publication-title: Comput. Geosci.
– volume: 14
  start-page: 235
  issue: 1
  year: 2014
  ident: 10.1016/j.coastaleng.2022.104256_b42
  article-title: Waves of intermediate length through an array of vertical cylinders
  publication-title: Environ. Fluid Mech.
  doi: 10.1007/s10652-013-9308-1
– volume: 168
  year: 2021
  ident: 10.1016/j.coastaleng.2022.104256_b23
  article-title: Effect of flexible coastal vegetation on waves in water of intermediate depth
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2021.103937
– volume: 117
  start-page: 265
  year: 2020
  ident: 10.1016/j.coastaleng.2022.104256_b10
  article-title: JJ Miranda, mangroves protect coastal economic activity from hurricanes
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1911617116
– volume: 3
  start-page: 853
  year: 2020
  ident: 10.1016/j.coastaleng.2022.104256_b66
  article-title: Historic storms and the hidden value of coastal wetlands for nature-based flood defence
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0556-z
– volume: 64
  start-page: 1750
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b50
  article-title: How effective are tidal marshes as nature based shoreline protection throughout seasons?
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.11149
– volume: 56
  start-page: 332
  issue: 3
  year: 2009
  ident: 10.1016/j.coastaleng.2022.104256_b2
  article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2008.09.004
– year: 2012
  ident: 10.1016/j.coastaleng.2022.104256_b25
– volume: 687
  start-page: 461
  year: 2011
  ident: 10.1016/j.coastaleng.2022.104256_b43
  article-title: Long waves through emergent coastal vegetation
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.373
– volume: 80
  start-page: 483
  year: 2008
  ident: 10.1016/j.coastaleng.2022.104256_b59
  article-title: An equilibrium profile model for retreating marsh shorelines in southeast Louisiana
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2008.09.004
– volume: 9
  issue: 1986
  year: 2018
  ident: 10.1016/j.coastaleng.2022.104256_b27
  article-title: Effective adaptation to rising flood risk
  publication-title: Nature Commun.
– volume: 83
  start-page: 82
  year: 2014
  ident: 10.1016/j.coastaleng.2022.104256_b1
  article-title: Wave attenuation by flexible, idealized salt marsh vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.10.004
– volume: 60
  start-page: 423
  year: 1958
  ident: 10.1016/j.coastaleng.2022.104256_b31
  article-title: Forces on cylinders and plates in an oscillating fluid
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.060.043
– issue: 164
  year: 2021
  ident: 10.1016/j.coastaleng.2022.104256_b57
  article-title: Modelling wave attenuation by quasi-flexible coastal vegetation
  publication-title: Coast. Eng.
– volume: 14
  start-page: 111
  year: 2021
  ident: 10.1016/j.coastaleng.2022.104256_b12
  article-title: Valuing wetlands
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-021-00713-4
– volume: 7
  issue: 9643
  year: 2017
  ident: 10.1016/j.coastaleng.2022.104256_b47
  article-title: The value of coastal wetlands for flood damage reduction in the northeastern USA
  publication-title: Sci. Rep.
– volume: 142
  issue: 8
  year: 2016
  ident: 10.1016/j.coastaleng.2022.104256_b4
  article-title: Large Eddy simulation of unidirectional and wave flows through vegetation
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001087
– volume: 138
  start-page: 221
  year: 2012
  ident: 10.1016/j.coastaleng.2022.104256_b8
  article-title: Theoretical models for wave energy dissipation caused by vegetation
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000318
– volume: 124
  start-page: 4368
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b65
  article-title: Phase-averaged drag force of nonlinear waves over submerged and through emergent vegetation
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/2018JC014867
– volume: 7
  start-page: 722
  year: 2014
  ident: 10.1016/j.coastaleng.2022.104256_b48
  article-title: Optimum vegetation height and density for inorganic sedimentation in deltaic marshes
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo2233
– volume: 106
  start-page: 73
  year: 2015
  ident: 10.1016/j.coastaleng.2022.104256_b41
  article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation, Part 2: Experimental analysis
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.09.010
– volume: 157
  year: 2020
  ident: 10.1016/j.coastaleng.2022.104256_b56
  article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2020.103648
– year: 2012
  ident: 10.1016/j.coastaleng.2022.104256_b5
– year: 1993
  ident: 10.1016/j.coastaleng.2022.104256_b6
– volume: 96
  start-page: 100
  year: 2015
  ident: 10.1016/j.coastaleng.2022.104256_b34
  article-title: Periodic water waves through an aquatic forest
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.11.002
– volume: 152
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b18
  article-title: Motion of buoyant, flexible aquatic vegetation under waves: simple theoretical models and parameterization of wave dissipation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2019.04.009
– volume: 8
  issue: 14156
  year: 2017
  ident: 10.1016/j.coastaleng.2022.104256_b14
  article-title: Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes
  publication-title: Nature Commun.
– volume: 145
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b39
  article-title: Computational model for wave attenuation by flexible vegetation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000487
– volume: 95
  start-page: 66
  year: 2015
  ident: 10.1016/j.coastaleng.2022.104256_b22
  article-title: A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.09.008
– year: 1993
  ident: 10.1016/j.coastaleng.2022.104256_b55
– volume: 33
  year: 2000
  ident: 10.1016/j.coastaleng.2022.104256_b16
  article-title: Random seas and design of maritime structures
  publication-title: Adv. Ser. Ocean Eng.
  doi: 10.1142/3587
– volume: 10
  year: 2015
  ident: 10.1016/j.coastaleng.2022.104256_b52
  article-title: Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118687
– volume: 116
  start-page: C08019
  year: 2011
  ident: 10.1016/j.coastaleng.2022.104256_b49
  article-title: Spatial and seasonal variation in wave attenuation over Zostera noltii
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JC006797
– volume: 116
  start-page: 12232
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b19
  article-title: Mangroves shelter coastal economic activity from cyclones
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1820067116
– volume: 51
  start-page: 103
  year: 2004
  ident: 10.1016/j.coastaleng.2022.104256_b44
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2003.11.003
– volume: 141
  issue: A4015001
  year: 2015
  ident: 10.1016/j.coastaleng.2022.104256_b63
  article-title: Numerical modeling of surface waves over submerged flexible vegetation
  publication-title: J. Eng. Mech.
– volume: 147
  start-page: 138
  year: 2019
  ident: 10.1016/j.coastaleng.2022.104256_b32
  article-title: Wave damping by flexible vegetation: Connecting individual leaf dynamics to the meadow scale
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2019.01.008
– volume: 61
  start-page: 20
  year: 2016
  ident: 10.1016/j.coastaleng.2022.104256_b37
  article-title: Wave-induced dynamics of flexible leafs
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2015.11.007
– volume: 31
  start-page: 1098
  issue: 6
  year: 2008
  ident: 10.1016/j.coastaleng.2022.104256_b7
  article-title: Hydrodynamic response of northeastern Gulf of Mexico to hurricanes
  publication-title: Estuar. Coasts
  doi: 10.1007/s12237-008-9089-9
– volume: 113
  start-page: 64
  year: 2016
  ident: 10.1016/j.coastaleng.2022.104256_b33
  article-title: A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1510095112
– volume: 38
  start-page: 569
  year: 2015
  ident: 10.1016/j.coastaleng.2022.104256_b20
  article-title: Influence of leaf flexibility on the drag coefficient of aquatic vegetation
  publication-title: Estuaries Coasts
  doi: 10.1007/s12237-014-9840-3
– volume: 88
  start-page: 131
  year: 2014
  ident: 10.1016/j.coastaleng.2022.104256_b24
  article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.02.009
SSID ssj0000685
Score 2.47484
Snippet Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104256
SubjectTerms Effective plant height
Flexible vegetation
Unified drag coefficient
Wave attenuation
Title Towards a unified drag coefficient formula for quantifying wave energy reduction by salt marshes
URI https://dx.doi.org/10.1016/j.coastaleng.2022.104256
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68xuax2SR4KsVSX0W0hd7i7mailZrWNlG8-NvdyUMrCAqeFsIOhNllvm_Yb2YIOeJceRZ4yvB81zQY-JEhInANcOJISOEoDzBRvOrx7oCdD91hjbSrWhiUVZaxv4jpebQuvzRLbzano1Hz1nQ830F8R1kQD7CinDEPb_nxu7UQjfOxnLjZwN2lmqfQeKmJ0BwMR5boTNG28cHTxlHWP0HUAux01slayRdpq_ilDVKDZJOsLnQR3CJ3_Vz6OqeCZsko1pySRjNxT9UE8v4QGlYoUtNsLHClz5lAhRDWN9FX8QIU8vo_OsMurnhOVL7RuRin9ElnvQ8w3yaDzmm_3TXKwQmGcrifGr72gxV4ABrOpRI2F44INEZp6gAgmDQZs1kcc2kz6USRUtwFHRRdDvgKoznIDllKJgnsEmojBY9NBgHT3MX1pdIZYMDcILIDJBN14lW-ClXZVRyHW4zDSj72GH55OUQvh4WX68T6tJwWnTX-YHNSHUf47ZaEGgB-td77l_U-WcFR84X-7IAspbMMDjUhSWUjv3ENstxq31xe43p20e19AInv4yQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrcw9eQ9tks0nwVIqltY-LLfQWN5uJVmpb21Tx37uTh1YQFDwFQgbC7DLfN-y33wBcCaGcGjrKcFy7anB0Q0OGaBtoRaEMpKUcpEax1xetIb8d2aMCNPK7MCSrzGp_WtOTap29qWTZrMzH48pd1XJci_CdZEHCczagRO5UdhFK9Xan1V8ryMlkTvreoIBM0JPKvNRMahpGU0t0s2iadOZp0jTrn1BqDXmau7CTUUZWT_9qDwo43YftNSPBA7gfJOrXJZNsNR1HmlaycCEfmJphYhGhkYURO11NJD3Zy0qSSIiuOLE3-YoMkyuAbEFGrrRULHhnSzmJ2bNufB9xeQjD5s2g0TKy2QmGsoQbGy7XqOM5iBrRAyVNIS3paZjS7AFR8qDKucmjSAQmD6wwVErYqOuiLZAOYjQNOYLidDbFY2AmsfCoytHjmr7YbqB0E-hx2wtNj_hEGZw8V77KjMVpvsXEzxVkT_5Xln3Ksp9muQy1z8h5aq7xh5jrfDn8bxvF1xjwa_TJv6IvYbM16HX9brvfOYUtmjyfytHOoBgvVniu-UkcXGT77wM51eRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+unified+drag+coefficient+formula+for+quantifying+wave+energy+reduction+by+salt+marshes&rft.jtitle=Coastal+engineering+%28Amsterdam%29&rft.au=Zhu%2C+Ling&rft.au=Chen%2C+Qin&rft.au=Ding%2C+Yan&rft.au=Jafari%2C+Navid&rft.date=2023-03-01&rft.issn=0378-3839&rft.volume=180&rft.spage=104256&rft_id=info:doi/10.1016%2Fj.coastaleng.2022.104256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_coastaleng_2022_104256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3839&client=summon