Towards a unified drag coefficient formula for quantifying wave energy reduction by salt marshes
Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards. Vegetation exerts a drag force to the flow and dampens storm surges and wind waves. The prediction of wave attenuation by vegetation typically relies...
Saved in:
Published in | Coastal engineering (Amsterdam) Vol. 180; p. 104256 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards. Vegetation exerts a drag force to the flow and dampens storm surges and wind waves. The prediction of wave attenuation by vegetation typically relies on a pre-determined drag coefficient CD. Existing CD formulas are subject to vegetation biomechanical properties, especially the flexibility. Accounting for vegetation flexibility through the effective plant height (EPH), we propose and validate a species-independent relationship between CD and the Reynolds number Re based on three independent datasets that cover a wide range of hydrodynamic conditions and vegetation traits. The proposed CD−Re relationship, used together with EPH, allows for predicting wave attenuation in salt marshes with high accuracy. Furthermore, a total of 308,000 numerical experiments with diverse wave conditions are conducted using the proposed CD−Re relationship and EPH to quantify the wave attenuation capacity of two typical salt mash species: Elymus athericus (highly flexible) and Spartina alterniflora (relatively rigid). It is found that wave attenuation is controlled by wave height to water depth ratio and EPH to water depth ratio. When swaying in large waves in shallow to intermediate water depth, a 50-m-long Elymus athericus field may lose up to 30% capacity for wave attenuation. As wave height increases, highly flexible vegetation causes reduced wave attenuation, whereas relatively rigid vegetation induces increased wave attenuation. The leaf contribution to wave attenuation is highly dependent on the leaf rigidity. It is recommended that leaf properties, especially its Young’s modulus be collected in future field experiments.
•A drag coefficient (Cd) formula unifying four datasets is proposed for modeling wave decay in saltmarshes.•This Cd formula helps quantify the capacity of deformable vegetation for wave attenuation.•Wave decay is controlled by wave height, effective plant height, and water depth.•Leaf contribution to wave decay relies on its Young’s modulus and should be included when it is large.•Collecting both stem and leaf biophysical properties is highly recommended in future studies. |
---|---|
AbstractList | Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards. Vegetation exerts a drag force to the flow and dampens storm surges and wind waves. The prediction of wave attenuation by vegetation typically relies on a pre-determined drag coefficient CD. Existing CD formulas are subject to vegetation biomechanical properties, especially the flexibility. Accounting for vegetation flexibility through the effective plant height (EPH), we propose and validate a species-independent relationship between CD and the Reynolds number Re based on three independent datasets that cover a wide range of hydrodynamic conditions and vegetation traits. The proposed CD−Re relationship, used together with EPH, allows for predicting wave attenuation in salt marshes with high accuracy. Furthermore, a total of 308,000 numerical experiments with diverse wave conditions are conducted using the proposed CD−Re relationship and EPH to quantify the wave attenuation capacity of two typical salt mash species: Elymus athericus (highly flexible) and Spartina alterniflora (relatively rigid). It is found that wave attenuation is controlled by wave height to water depth ratio and EPH to water depth ratio. When swaying in large waves in shallow to intermediate water depth, a 50-m-long Elymus athericus field may lose up to 30% capacity for wave attenuation. As wave height increases, highly flexible vegetation causes reduced wave attenuation, whereas relatively rigid vegetation induces increased wave attenuation. The leaf contribution to wave attenuation is highly dependent on the leaf rigidity. It is recommended that leaf properties, especially its Young’s modulus be collected in future field experiments.
•A drag coefficient (Cd) formula unifying four datasets is proposed for modeling wave decay in saltmarshes.•This Cd formula helps quantify the capacity of deformable vegetation for wave attenuation.•Wave decay is controlled by wave height, effective plant height, and water depth.•Leaf contribution to wave decay relies on its Young’s modulus and should be included when it is large.•Collecting both stem and leaf biophysical properties is highly recommended in future studies. |
ArticleNumber | 104256 |
Author | Ding, Yan Wang, Hongqing Johnson, Bradley D. Jafari, Navid Chen, Qin Zhu, Ling |
Author_xml | – sequence: 1 givenname: Ling surname: Zhu fullname: Zhu, Ling organization: Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA – sequence: 2 givenname: Qin orcidid: 0000-0002-6540-8758 surname: Chen fullname: Chen, Qin email: q.chen@northeastern.edu organization: Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA – sequence: 3 givenname: Yan surname: Ding fullname: Ding, Yan organization: U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS 39180, USA – sequence: 4 givenname: Navid surname: Jafari fullname: Jafari, Navid organization: Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA – sequence: 5 givenname: Hongqing surname: Wang fullname: Wang, Hongqing organization: U.S. Geological Survey, Wetland and Aquatic Research Center, Baton Rouge, LA 70803, USA – sequence: 6 givenname: Bradley D. surname: Johnson fullname: Johnson, Bradley D. organization: U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS 39180, USA |
BookMark | eNqNkF1LwzAUhoNMcJv-h_yBziZN0_ZG0OEXDLyZ1_E0PakZXapJtrF_b8sEwRs9NwcOvA_nfWZk4nqHhFCWLljK5PVmoXsIETp07YKnnA9nwXN5RqasLHhSZEU1IdM0K8okK7PqgsxC2KTDyDKfkrd1fwDfBAp056yx2NDGQ0t1j8ZYbdFFanq_3XUwbvq5AxetOVrX0gPskaJD3x6px2ano-0drY80QBfpFnx4x3BJzg10Aa--95y8Ptyvl0_J6uXxeXm7SnQmy5iUQhSsKhBZzmoNXEIGFWc8zwUiiDoVggtjZM1FnTWN1jLHQg49MS9yJmU2JzcnrvZ9CB6N0jbC-FH0YDvFUjX6Uhv140uNvtTJ1wAofwE-vB1KHP8TvTtFcSi4t-hVGM1pbKxHHVXT278hX5iyj4Q |
CitedBy_id | crossref_primary_10_1002_lom3_10616 crossref_primary_10_5194_essd_16_1047_2024 crossref_primary_10_1061_JWPED5_WWENG_2182 crossref_primary_10_1061_JWPED5_WWENG_2084 crossref_primary_10_3389_fmars_2023_1106070 crossref_primary_10_1016_j_ocemod_2024_102391 crossref_primary_10_1016_j_coastaleng_2024_104688 crossref_primary_10_1016_j_coastaleng_2024_104575 crossref_primary_10_1016_j_oceaneng_2023_116590 crossref_primary_10_1016_j_ocemod_2024_102422 crossref_primary_10_1016_j_wavemoti_2024_103389 crossref_primary_10_1016_j_aquaeng_2025_102528 crossref_primary_10_1016_j_coastaleng_2025_104747 crossref_primary_10_1073_pnas_2410883122 |
Cites_doi | 10.1038/ngeo2251 10.1016/j.coastaleng.2013.04.009 10.1016/0378-3839(91)90001-W 10.1016/j.ecss.2017.09.028 10.1002/2017JC012731 10.1038/nclimate1970 10.1016/j.coastaleng.2015.09.011 10.1016/j.coastaleng.2013.02.013 10.1061/(ASCE)0733-950X(1984)110:1(67) 10.1016/j.jfluidstructs.2020.103192 10.1038/s41598-021-84701-z 10.1016/j.coastaleng.2019.03.005 10.1073/pnas.1915169117 10.1029/2018JC014865 10.1073/pnas.0914582107 10.1029/2019JC015517 10.1002/lno.11952 10.1038/ngeo2262 10.1029/2019JC015963 10.1029/JC090iC05p09159 10.1007/s10652-013-9308-1 10.1016/j.coastaleng.2021.103937 10.1073/pnas.1911617116 10.1038/s41893-020-0556-z 10.1002/lno.11149 10.1016/j.coastaleng.2008.09.004 10.1017/jfm.2011.373 10.1016/j.ecss.2008.09.004 10.1016/j.coastaleng.2013.10.004 10.6028/jres.060.043 10.1038/s41561-021-00713-4 10.1061/(ASCE)EM.1943-7889.0001087 10.1061/(ASCE)EM.1943-7889.0000318 10.1029/2018JC014867 10.1038/ngeo2233 10.1016/j.coastaleng.2015.09.010 10.1016/j.coastaleng.2020.103648 10.1016/j.coastaleng.2014.11.002 10.1016/j.coastaleng.2019.04.009 10.1061/(ASCE)WW.1943-5460.0000487 10.1016/j.coastaleng.2014.09.008 10.1142/3587 10.1371/journal.pone.0118687 10.1029/2010JC006797 10.1073/pnas.1820067116 10.1016/j.coastaleng.2003.11.003 10.1016/j.coastaleng.2019.01.008 10.1016/j.jfluidstructs.2015.11.007 10.1007/s12237-008-9089-9 10.1073/pnas.1510095112 10.1007/s12237-014-9840-3 10.1016/j.coastaleng.2014.02.009 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.coastaleng.2022.104256 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7379 |
ExternalDocumentID | 10_1016_j_coastaleng_2022_104256 S0378383922001697 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6TJ 6TS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFYP ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE J1W JJJVA KCYFY KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSJ SST SSZ T5K TN5 WUQ XJT XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c368t-8447197ee151bca26a3a9212554eea4b04424ff6b24b3ddcc65e76256e5751663 |
IEDL.DBID | .~1 |
ISSN | 0378-3839 |
IngestDate | Thu Apr 24 23:05:25 EDT 2025 Tue Jul 01 00:25:29 EDT 2025 Fri Feb 23 02:39:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Effective plant height Wave attenuation Unified drag coefficient Flexible vegetation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-8447197ee151bca26a3a9212554eea4b04424ff6b24b3ddcc65e76256e5751663 |
ORCID | 0000-0002-6540-8758 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378383922001697 |
ParticipantIDs | crossref_citationtrail_10_1016_j_coastaleng_2022_104256 crossref_primary_10_1016_j_coastaleng_2022_104256 elsevier_sciencedirect_doi_10_1016_j_coastaleng_2022_104256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Coastal engineering (Amsterdam) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Losada, Maza, Lara (b35) 2016; 107 Dalrymple, Kirby, Hwang (b9) 1984; 110 Paul, Amos (b49) 2011; 116 Zhang, Nepf (b62) 2021; 100 Zhu, Chen (b64) 2019; 149 Jongman (b27) 2018; 9 Luhar, Infantes, Nepf (b36) 2017; 122 Sheng, Rivera-Nieves, Zou, Paramygin (b51) 2021; 11 Zhu, Vuik, Visser, Soens, van Wesenbeeck, van de Koppel, Jonkman, Temmerman, Bouma (b66) 2020; 3 Narayan, Beck, W, Wilson, Thomas, Guerrero, Shepard, Reguero, Franco, Ingram, Trespalacios (b47) 2017; 7 Houser, Trimble, Morales (b20) 2015; 38 Vuik, Suh Heo, Zhu, Borsje, Jonkman (b58) 2018; 200 Wilson, Allison (b59) 2008; 80 van Rijn (b55) 1993 Zhu, Chen (b65) 2019; 124 MACE,, 2022. Zhang, Lin, Nepf (b61) 2021; 66 Battjes, Stive (b3) 1985; 90 Zhu, Zou, Huguenard, Fredriksson (b67) 2020; 125 Duarte, Losada, Hendriks, Mazarrasa, Marba (b11) 2013; 3 Anderson, Smith (b1) 2014; 83 Jadhav (b25) 2012 Fagherazzi (b13) 2014; 7 Mei, Chan, Liu (b42) 2014; 14 Chen, Wang, Tawes (b7) 2008; 31 van Veelen, Karunarathna, Reeve (b57) 2021 Hu, Chen, Wang (b22) 2015; 95 Gon, MacMahan, Thornton, Denny (b17) 2020; 125 Liu, Chang, Mei, Lomonaco, Martin, Maza (b34) 2015; 96 Sun, Carson (b54) 2020; 117 Schoutens, Heuner, Minden, Ostermann, Silinski, Belliard, Temmerman (b50) 2019; 64 Wu, Ozeren, Wren, Chen, Zhang, Holland, Ding, Kuiry, Zhang, Jadhav, Chatagnier, Chen, Gordji (b60) 2011 Chakrabarti, Chen, Smith, Liu (b4) 2016; 142 van Veelen, Fairchild, Reeve, Karunarathna (b56) 2020; 157 Mendez, Losada (b44) 2004; 51 Ganju, Defne, Kirwan, Fagherazzi, D’Alpaos, Carniello (b14) 2017; 8 Editorial (b12) 2021; 14 (last Accessed on 30 April 2022). Nardin, Edmonds (b48) 2014; 7 Hu, Mei, Chang, Liu (b23) 2021; 168 Hu, Suzuki, Tjerk, Wim, Stive (b24) 2014; 88 Mattis, Christopher, Maya, Aggelos, Clint (b39) 2019; 145 Stark, Jafari (b53) 2015; 7 del Valle, Eriksson, Ishizawa (b10) 2020; 117 Goda (b16) 2000; 33 Maza, Lara, Losada (b40) 2013; 80 Henderson (b18) 2019; 152 Zhu, Chen (b63) 2015; 141 Luhar, Nepf (b37) 2016; 61 Hochard, Hamilton, Barbier (b19) 2019; 116 Karnovsky, Lebed (b30) 2004 Chatagnier (b5) 2012 Jadhav, Chen, Smith (b26) 2013; 77 Mei, Chan, Liu, Huang, Zhang (b43) 2011; 687 Silinski, Heuner, Schoelynck, Puijalon, Schroder, Fuchs, Troch, Bouma, Meire, Temmerman (b52) 2015; 10 Chen, Zhao (b8) 2012; 138 Keulegan, Carpenter (b31) 1958; 60 Leonardi, Ganju, Fagherazzi (b33) 2016; 113 Augustin, Irish, Lynett (b2) 2009; 56 Howes, FitzGerald, Hughes, Georgiou, Kulp, Miner, Smith, Barras (b21) 2010; 107 Maza, Lara, Losada, Ondiviela, Trinogga, Bouma (b41) 2015; 106 Möller, Kudella, Rupprecht, Spencer, Paul, van Wesenbeeck, Wolters, Jensen, Bouma, Miranda-Lange, Schimmels (b45) 2014; 7 Mullarney, Henderson (b46) 2010; 115 Chaudhry (b6) 1993 Garzon, Maza, Ferreira, Lara, Losada (b15) 2019; 124 Karimpour, Chen (b29) 2017; 106 Lei, Nepf (b32) 2019; 147 Kamphuis (b28) 1991; 15 Nardin (10.1016/j.coastaleng.2022.104256_b48) 2014; 7 Mendez (10.1016/j.coastaleng.2022.104256_b44) 2004; 51 Dalrymple (10.1016/j.coastaleng.2022.104256_b9) 1984; 110 van Veelen (10.1016/j.coastaleng.2022.104256_b56) 2020; 157 Zhu (10.1016/j.coastaleng.2022.104256_b67) 2020; 125 Mei (10.1016/j.coastaleng.2022.104256_b43) 2011; 687 Chen (10.1016/j.coastaleng.2022.104256_b7) 2008; 31 Henderson (10.1016/j.coastaleng.2022.104256_b18) 2019; 152 Garzon (10.1016/j.coastaleng.2022.104256_b15) 2019; 124 Battjes (10.1016/j.coastaleng.2022.104256_b3) 1985; 90 Silinski (10.1016/j.coastaleng.2022.104256_b52) 2015; 10 Howes (10.1016/j.coastaleng.2022.104256_b21) 2010; 107 Sheng (10.1016/j.coastaleng.2022.104256_b51) 2021; 11 van Rijn (10.1016/j.coastaleng.2022.104256_b55) 1993 Karimpour (10.1016/j.coastaleng.2022.104256_b29) 2017; 106 Liu (10.1016/j.coastaleng.2022.104256_b34) 2015; 96 Gon (10.1016/j.coastaleng.2022.104256_b17) 2020; 125 van Veelen (10.1016/j.coastaleng.2022.104256_b57) 2021 Zhu (10.1016/j.coastaleng.2022.104256_b64) 2019; 149 Chakrabarti (10.1016/j.coastaleng.2022.104256_b4) 2016; 142 Chaudhry (10.1016/j.coastaleng.2022.104256_b6) 1993 Hochard (10.1016/j.coastaleng.2022.104256_b19) 2019; 116 Vuik (10.1016/j.coastaleng.2022.104256_b58) 2018; 200 Zhang (10.1016/j.coastaleng.2022.104256_b62) 2021; 100 Jadhav (10.1016/j.coastaleng.2022.104256_b25) 2012 Maza (10.1016/j.coastaleng.2022.104256_b41) 2015; 106 Wilson (10.1016/j.coastaleng.2022.104256_b59) 2008; 80 Mei (10.1016/j.coastaleng.2022.104256_b42) 2014; 14 Zhu (10.1016/j.coastaleng.2022.104256_b63) 2015; 141 Goda (10.1016/j.coastaleng.2022.104256_b16) 2000; 33 Hu (10.1016/j.coastaleng.2022.104256_b23) 2021; 168 Kamphuis (10.1016/j.coastaleng.2022.104256_b28) 1991; 15 del Valle (10.1016/j.coastaleng.2022.104256_b10) 2020; 117 Sun (10.1016/j.coastaleng.2022.104256_b54) 2020; 117 Stark (10.1016/j.coastaleng.2022.104256_b53) 2015; 7 Leonardi (10.1016/j.coastaleng.2022.104256_b33) 2016; 113 Möller (10.1016/j.coastaleng.2022.104256_b45) 2014; 7 Anderson (10.1016/j.coastaleng.2022.104256_b1) 2014; 83 Hu (10.1016/j.coastaleng.2022.104256_b24) 2014; 88 Augustin (10.1016/j.coastaleng.2022.104256_b2) 2009; 56 Karnovsky (10.1016/j.coastaleng.2022.104256_b30) 2004 10.1016/j.coastaleng.2022.104256_b38 Keulegan (10.1016/j.coastaleng.2022.104256_b31) 1958; 60 Chen (10.1016/j.coastaleng.2022.104256_b8) 2012; 138 Lei (10.1016/j.coastaleng.2022.104256_b32) 2019; 147 Losada (10.1016/j.coastaleng.2022.104256_b35) 2016; 107 Wu (10.1016/j.coastaleng.2022.104256_b60) 2011 Fagherazzi (10.1016/j.coastaleng.2022.104256_b13) 2014; 7 Schoutens (10.1016/j.coastaleng.2022.104256_b50) 2019; 64 Houser (10.1016/j.coastaleng.2022.104256_b20) 2015; 38 Ganju (10.1016/j.coastaleng.2022.104256_b14) 2017; 8 Jadhav (10.1016/j.coastaleng.2022.104256_b26) 2013; 77 Jongman (10.1016/j.coastaleng.2022.104256_b27) 2018; 9 Editorial (10.1016/j.coastaleng.2022.104256_b12) 2021; 14 Maza (10.1016/j.coastaleng.2022.104256_b40) 2013; 80 Mattis (10.1016/j.coastaleng.2022.104256_b39) 2019; 145 Luhar (10.1016/j.coastaleng.2022.104256_b36) 2017; 122 Luhar (10.1016/j.coastaleng.2022.104256_b37) 2016; 61 Paul (10.1016/j.coastaleng.2022.104256_b49) 2011; 116 Zhu (10.1016/j.coastaleng.2022.104256_b66) 2020; 3 Chatagnier (10.1016/j.coastaleng.2022.104256_b5) 2012 Mullarney (10.1016/j.coastaleng.2022.104256_b46) 2010; 115 Zhu (10.1016/j.coastaleng.2022.104256_b65) 2019; 124 Hu (10.1016/j.coastaleng.2022.104256_b22) 2015; 95 Zhang (10.1016/j.coastaleng.2022.104256_b61) 2021; 66 Narayan (10.1016/j.coastaleng.2022.104256_b47) 2017; 7 Duarte (10.1016/j.coastaleng.2022.104256_b11) 2013; 3 |
References_xml | – volume: 116 start-page: 12232 year: 2019 end-page: 12237 ident: b19 article-title: Mangroves shelter coastal economic activity from cyclones publication-title: Proc. Natl. Acad. Sci. – year: 1993 ident: b6 article-title: Open-Channel Flow – volume: 138 start-page: 221 year: 2012 end-page: 229 ident: b8 article-title: Theoretical models for wave energy dissipation caused by vegetation publication-title: J. Eng. Mech. – volume: 80 start-page: 16 year: 2013 end-page: 34 ident: b40 article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations publication-title: Coast. Eng. – volume: 95 start-page: 66 year: 2015 end-page: 76 ident: b22 article-title: A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary publication-title: Coast. Eng. – volume: 124 start-page: 4368 year: 2019 end-page: 4388 ident: b65 article-title: Phase-averaged drag force of nonlinear waves over submerged and through emergent vegetation publication-title: J. Geophys. Res.: Oceans – volume: 14 start-page: 111 year: 2021 ident: b12 article-title: Valuing wetlands publication-title: Nat. Geosci. – volume: 152 year: 2019 ident: b18 article-title: Motion of buoyant, flexible aquatic vegetation under waves: simple theoretical models and parameterization of wave dissipation publication-title: Coast. Eng. – volume: 88 start-page: 131 year: 2014 end-page: 142 ident: b24 article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow publication-title: Coast. Eng. – volume: 31 start-page: 1098 year: 2008 end-page: 1116 ident: b7 article-title: Hydrodynamic response of northeastern Gulf of Mexico to hurricanes publication-title: Estuar. Coasts – volume: 168 year: 2021 ident: b23 article-title: Effect of flexible coastal vegetation on waves in water of intermediate depth publication-title: Coast. Eng. – reference: . (last Accessed on 30 April 2022). – volume: 8 year: 2017 ident: b14 article-title: Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes publication-title: Nature Commun. – volume: 14 start-page: 235 year: 2014 end-page: 261 ident: b42 article-title: Waves of intermediate length through an array of vertical cylinders publication-title: Environ. Fluid Mech. – volume: 142 year: 2016 ident: b4 article-title: Large Eddy simulation of unidirectional and wave flows through vegetation publication-title: J. Eng. Mech. – volume: 61 start-page: 20 year: 2016 end-page: 41 ident: b37 article-title: Wave-induced dynamics of flexible leafs publication-title: J. Fluids Struct. – volume: 7 start-page: 727 year: 2014 end-page: 731 ident: b45 article-title: Wave attenuation over coastal salt marshes under storm surge conditions publication-title: Nat. Geosci. – volume: 80 start-page: 483 year: 2008 end-page: 494 ident: b59 article-title: An equilibrium profile model for retreating marsh shorelines in southeast Louisiana publication-title: Estuar. Coast. Shelf Sci. – volume: 77 start-page: 99 year: 2013 end-page: 107 ident: b26 article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation publication-title: Coast. Eng. – volume: 3 start-page: 853 year: 2020 end-page: 862 ident: b66 article-title: Historic storms and the hidden value of coastal wetlands for nature-based flood defence publication-title: Nat. Sustain. – volume: 147 start-page: 138 year: 2019 end-page: 148 ident: b32 article-title: Wave damping by flexible vegetation: Connecting individual leaf dynamics to the meadow scale publication-title: Coast. Eng. – volume: 7 year: 2015 ident: b53 article-title: Ruling on IHNC floodwall failures during Hurricane Katrina publication-title: J. Legal Aff. Dispute Resol. Eng. Constr. – year: 1993 ident: b55 article-title: Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas – volume: 106 start-page: 73 year: 2015 end-page: 86 ident: b41 article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation, Part 2: Experimental analysis publication-title: Coast. Eng. – volume: 64 start-page: 1750 year: 2019 end-page: 1762 ident: b50 article-title: How effective are tidal marshes as nature based shoreline protection throughout seasons? publication-title: Limnol. Oceanogr. – volume: 116 start-page: C08019 year: 2011 ident: b49 article-title: Spatial and seasonal variation in wave attenuation over publication-title: J. Geophys. Res. – volume: 51 start-page: 103 year: 2004 end-page: 118 ident: b44 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. – volume: 9 year: 2018 ident: b27 article-title: Effective adaptation to rising flood risk publication-title: Nature Commun. – volume: 66 start-page: 4182 year: 2021 end-page: 4196 ident: b61 article-title: A simple-wave damping model for flexible marsh plants publication-title: Limnol. Oceanogr. – year: 2004 ident: b30 article-title: Free Vibrations of Beams and Frames: Eigenvalues and Eigenfunctions – volume: 145 year: 2019 ident: b39 article-title: Computational model for wave attenuation by flexible vegetation publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 7 year: 2017 ident: b47 article-title: The value of coastal wetlands for flood damage reduction in the northeastern USA publication-title: Sci. Rep. – volume: 10 year: 2015 ident: b52 article-title: Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of publication-title: PLoS One – volume: 125 year: 2020 ident: b17 article-title: Wave dissipation by bottom friction on the inner shelf of a rocky shore publication-title: J. Geophys. Res.: Oceans – volume: 7 start-page: 722 year: 2014 end-page: 726 ident: b48 article-title: Optimum vegetation height and density for inorganic sedimentation in deltaic marshes publication-title: Nature Geosci. – volume: 3 start-page: 961 year: 2013 end-page: 968 ident: b11 article-title: The role of coastal plant communities for climate change mitigation and adaptation publication-title: Nat. Clim. Change – reference: MACE,, 2022. – volume: 687 start-page: 461 year: 2011 end-page: 491 ident: b43 article-title: Long waves through emergent coastal vegetation publication-title: J. Fluid Mech. – volume: 149 start-page: 1 year: 2019 end-page: 3 ident: b64 article-title: Discussion of field-based numerical model investigation of wave propagation across marshes in the chesapeake bay under storm conditions by Juan L, Garzon, Tyler Miesse and Celso M. Ferreira publication-title: Coastal Eng. – volume: 90 start-page: 9159 year: 1985 end-page: 9167 ident: b3 article-title: Calibration and verification of a dissipation model for random breaking waves publication-title: J. Geophys. Res.: Oceans – volume: 124 start-page: 5220 year: 2019 end-page: 5243 ident: b15 article-title: Wave attenuation by Spartina saltmarshes in the chesapeake bay under storm surge conditions publication-title: J. Geophys. Res.: Oceans – volume: 117 start-page: 265 year: 2020 end-page: 270 ident: b10 article-title: JJ Miranda, mangroves protect coastal economic activity from hurricanes publication-title: Proc. Natl. Acad. Sci. – year: 2021 ident: b57 article-title: Modelling wave attenuation by quasi-flexible coastal vegetation publication-title: Coast. Eng. – volume: 33 year: 2000 ident: b16 article-title: Random seas and design of maritime structures publication-title: Adv. Ser. Ocean Eng. – volume: 117 start-page: 5719 year: 2020 end-page: 5725 ident: b54 article-title: Coastal wetlands reduce property damage during tropical cyclones publication-title: Proc. Natl. Acad. Sci. USA – volume: 125 year: 2020 ident: b67 article-title: Mechanisms for the asymmetric motion of submerged aquatic vegetation in waves: A consistent-mass cable model publication-title: J. Geophys. Res.: Oceans – volume: 115 year: 2010 ident: b46 article-title: Wave-forced motion of submerged single-stem vegetation publication-title: J. Geophys. Res.: Oceans – volume: 100 year: 2021 ident: b62 article-title: Wave-induced reconfiguration of and drag on marsh plants publication-title: J. Fluids Struct. – volume: 107 start-page: 14014 year: 2010 end-page: 14019 ident: b21 article-title: Hurricane-induced failure of low salinity wetlands publication-title: Proc. Natl. Acad. Sci. – volume: 122 start-page: 3736 year: 2017 end-page: 3752 ident: b36 article-title: Seagrass leaf motion under waves and its impact on wave decay publication-title: J. Geophys. Res.: Oceans – volume: 11 start-page: 5237 year: 2021 ident: b51 article-title: Role of wetlands in reducing structural loss is highly dependent on characteristics of storms and local wetland and structure conditions publication-title: Sci. Rep. – volume: 106 year: 2017 ident: b29 article-title: Wind wave analysis in depth limited water using oceanlyz, a Matlab toolbox publication-title: Comput. Geosci. – volume: 141 year: 2015 ident: b63 article-title: Numerical modeling of surface waves over submerged flexible vegetation publication-title: J. Eng. Mech. – volume: 60 start-page: 423 year: 1958 end-page: 440 ident: b31 article-title: Forces on cylinders and plates in an oscillating fluid publication-title: J. Res. Natl. Bur. Stand. – volume: 107 start-page: 1 year: 2016 end-page: 13 ident: b35 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. – year: 2012 ident: b25 article-title: Field Investigation of Wave and Surge Attenuation in Salt Marsh Vegetation and Wave Climate in a Shallow Estuary – volume: 83 start-page: 82 year: 2014 end-page: 92 ident: b1 article-title: Wave attenuation by flexible, idealized salt marsh vegetation publication-title: Coast. Eng. – volume: 7 start-page: 701 year: 2014 end-page: 702 ident: b13 article-title: Storm-proofing with marshes publication-title: Nat. Geosci. – year: 2012 ident: b5 article-title: The Biomechanics of Salt Marsh Vegetation Applied to Wave and Surge Attenuation – volume: 113 start-page: 64 year: 2016 end-page: 68 ident: b33 article-title: A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes publication-title: Proc. Natl. Acad. Sci. – volume: 110 start-page: 67 year: 1984 end-page: 79 ident: b9 article-title: Wave diffraction due to areas of energy dissipation publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 15 start-page: 173 year: 1991 end-page: 184 ident: b28 article-title: Wave transformation publication-title: Coast. Eng. – volume: 96 start-page: 100 year: 2015 end-page: 117 ident: b34 article-title: Periodic water waves through an aquatic forest publication-title: Coast. Eng. – volume: 200 start-page: 41 year: 2018 end-page: 58 ident: b58 article-title: Stem breakage of salt marsh vegetation under wave forcing: A field and model study publication-title: Estuar. Coast. Shelf Sci. – year: 2011 ident: b60 article-title: SERRI Project: Investigation of Surge and Wave Reduction by Vegetation – volume: 56 start-page: 332 year: 2009 end-page: 340 ident: b2 article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation publication-title: Coast. Eng. – volume: 38 start-page: 569 year: 2015 end-page: 577 ident: b20 article-title: Influence of leaf flexibility on the drag coefficient of aquatic vegetation publication-title: Estuaries Coasts – volume: 157 year: 2020 ident: b56 article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure publication-title: Coast. Eng. – volume: 7 start-page: 727 year: 2014 ident: 10.1016/j.coastaleng.2022.104256_b45 article-title: Wave attenuation over coastal salt marshes under storm surge conditions publication-title: Nat. Geosci. doi: 10.1038/ngeo2251 – volume: 80 start-page: 16 year: 2013 ident: 10.1016/j.coastaleng.2022.104256_b40 article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.04.009 – volume: 15 start-page: 173 issue: 3 year: 1991 ident: 10.1016/j.coastaleng.2022.104256_b28 article-title: Wave transformation publication-title: Coast. Eng. doi: 10.1016/0378-3839(91)90001-W – volume: 200 start-page: 41 year: 2018 ident: 10.1016/j.coastaleng.2022.104256_b58 article-title: Stem breakage of salt marsh vegetation under wave forcing: A field and model study publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2017.09.028 – volume: 122 start-page: 3736 year: 2017 ident: 10.1016/j.coastaleng.2022.104256_b36 article-title: Seagrass leaf motion under waves and its impact on wave decay publication-title: J. Geophys. Res.: Oceans doi: 10.1002/2017JC012731 – volume: 3 start-page: 961 year: 2013 ident: 10.1016/j.coastaleng.2022.104256_b11 article-title: The role of coastal plant communities for climate change mitigation and adaptation publication-title: Nat. Clim. Change doi: 10.1038/nclimate1970 – year: 2004 ident: 10.1016/j.coastaleng.2022.104256_b30 – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.coastaleng.2022.104256_b35 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.09.011 – volume: 77 start-page: 99 year: 2013 ident: 10.1016/j.coastaleng.2022.104256_b26 article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.02.013 – volume: 110 start-page: 67 year: 1984 ident: 10.1016/j.coastaleng.2022.104256_b9 article-title: Wave diffraction due to areas of energy dissipation publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1984)110:1(67) – volume: 100 year: 2021 ident: 10.1016/j.coastaleng.2022.104256_b62 article-title: Wave-induced reconfiguration of and drag on marsh plants publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2020.103192 – volume: 11 start-page: 5237 year: 2021 ident: 10.1016/j.coastaleng.2022.104256_b51 article-title: Role of wetlands in reducing structural loss is highly dependent on characteristics of storms and local wetland and structure conditions publication-title: Sci. Rep. doi: 10.1038/s41598-021-84701-z – volume: 115 issue: C12061 year: 2010 ident: 10.1016/j.coastaleng.2022.104256_b46 article-title: Wave-forced motion of submerged single-stem vegetation publication-title: J. Geophys. Res.: Oceans – year: 2011 ident: 10.1016/j.coastaleng.2022.104256_b60 – volume: 149 start-page: 1 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b64 article-title: Discussion of field-based numerical model investigation of wave propagation across marshes in the chesapeake bay under storm conditions by Juan L, Garzon, Tyler Miesse and Celso M. Ferreira publication-title: Coastal Eng. doi: 10.1016/j.coastaleng.2019.03.005 – volume: 7 year: 2015 ident: 10.1016/j.coastaleng.2022.104256_b53 article-title: Ruling on IHNC floodwall failures during Hurricane Katrina publication-title: J. Legal Aff. Dispute Resol. Eng. Constr. – ident: 10.1016/j.coastaleng.2022.104256_b38 – volume: 117 start-page: 5719 year: 2020 ident: 10.1016/j.coastaleng.2022.104256_b54 article-title: Coastal wetlands reduce property damage during tropical cyclones publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1915169117 – volume: 124 start-page: 5220 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b15 article-title: Wave attenuation by Spartina saltmarshes in the chesapeake bay under storm surge conditions publication-title: J. Geophys. Res.: Oceans doi: 10.1029/2018JC014865 – volume: 107 start-page: 14014 year: 2010 ident: 10.1016/j.coastaleng.2022.104256_b21 article-title: Hurricane-induced failure of low salinity wetlands publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0914582107 – volume: 125 year: 2020 ident: 10.1016/j.coastaleng.2022.104256_b67 article-title: Mechanisms for the asymmetric motion of submerged aquatic vegetation in waves: A consistent-mass cable model publication-title: J. Geophys. Res.: Oceans doi: 10.1029/2019JC015517 – volume: 66 start-page: 4182 issue: 12 year: 2021 ident: 10.1016/j.coastaleng.2022.104256_b61 article-title: A simple-wave damping model for flexible marsh plants publication-title: Limnol. Oceanogr. doi: 10.1002/lno.11952 – volume: 7 start-page: 701 year: 2014 ident: 10.1016/j.coastaleng.2022.104256_b13 article-title: Storm-proofing with marshes publication-title: Nat. Geosci. doi: 10.1038/ngeo2262 – volume: 125 year: 2020 ident: 10.1016/j.coastaleng.2022.104256_b17 article-title: Wave dissipation by bottom friction on the inner shelf of a rocky shore publication-title: J. Geophys. Res.: Oceans doi: 10.1029/2019JC015963 – volume: 90 start-page: 9159 year: 1985 ident: 10.1016/j.coastaleng.2022.104256_b3 article-title: Calibration and verification of a dissipation model for random breaking waves publication-title: J. Geophys. Res.: Oceans doi: 10.1029/JC090iC05p09159 – volume: 106 issue: 181 year: 2017 ident: 10.1016/j.coastaleng.2022.104256_b29 article-title: Wind wave analysis in depth limited water using oceanlyz, a Matlab toolbox publication-title: Comput. Geosci. – volume: 14 start-page: 235 issue: 1 year: 2014 ident: 10.1016/j.coastaleng.2022.104256_b42 article-title: Waves of intermediate length through an array of vertical cylinders publication-title: Environ. Fluid Mech. doi: 10.1007/s10652-013-9308-1 – volume: 168 year: 2021 ident: 10.1016/j.coastaleng.2022.104256_b23 article-title: Effect of flexible coastal vegetation on waves in water of intermediate depth publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2021.103937 – volume: 117 start-page: 265 year: 2020 ident: 10.1016/j.coastaleng.2022.104256_b10 article-title: JJ Miranda, mangroves protect coastal economic activity from hurricanes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1911617116 – volume: 3 start-page: 853 year: 2020 ident: 10.1016/j.coastaleng.2022.104256_b66 article-title: Historic storms and the hidden value of coastal wetlands for nature-based flood defence publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0556-z – volume: 64 start-page: 1750 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b50 article-title: How effective are tidal marshes as nature based shoreline protection throughout seasons? publication-title: Limnol. Oceanogr. doi: 10.1002/lno.11149 – volume: 56 start-page: 332 issue: 3 year: 2009 ident: 10.1016/j.coastaleng.2022.104256_b2 article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2008.09.004 – year: 2012 ident: 10.1016/j.coastaleng.2022.104256_b25 – volume: 687 start-page: 461 year: 2011 ident: 10.1016/j.coastaleng.2022.104256_b43 article-title: Long waves through emergent coastal vegetation publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.373 – volume: 80 start-page: 483 year: 2008 ident: 10.1016/j.coastaleng.2022.104256_b59 article-title: An equilibrium profile model for retreating marsh shorelines in southeast Louisiana publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2008.09.004 – volume: 9 issue: 1986 year: 2018 ident: 10.1016/j.coastaleng.2022.104256_b27 article-title: Effective adaptation to rising flood risk publication-title: Nature Commun. – volume: 83 start-page: 82 year: 2014 ident: 10.1016/j.coastaleng.2022.104256_b1 article-title: Wave attenuation by flexible, idealized salt marsh vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.10.004 – volume: 60 start-page: 423 year: 1958 ident: 10.1016/j.coastaleng.2022.104256_b31 article-title: Forces on cylinders and plates in an oscillating fluid publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.060.043 – issue: 164 year: 2021 ident: 10.1016/j.coastaleng.2022.104256_b57 article-title: Modelling wave attenuation by quasi-flexible coastal vegetation publication-title: Coast. Eng. – volume: 14 start-page: 111 year: 2021 ident: 10.1016/j.coastaleng.2022.104256_b12 article-title: Valuing wetlands publication-title: Nat. Geosci. doi: 10.1038/s41561-021-00713-4 – volume: 7 issue: 9643 year: 2017 ident: 10.1016/j.coastaleng.2022.104256_b47 article-title: The value of coastal wetlands for flood damage reduction in the northeastern USA publication-title: Sci. Rep. – volume: 142 issue: 8 year: 2016 ident: 10.1016/j.coastaleng.2022.104256_b4 article-title: Large Eddy simulation of unidirectional and wave flows through vegetation publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001087 – volume: 138 start-page: 221 year: 2012 ident: 10.1016/j.coastaleng.2022.104256_b8 article-title: Theoretical models for wave energy dissipation caused by vegetation publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000318 – volume: 124 start-page: 4368 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b65 article-title: Phase-averaged drag force of nonlinear waves over submerged and through emergent vegetation publication-title: J. Geophys. Res.: Oceans doi: 10.1029/2018JC014867 – volume: 7 start-page: 722 year: 2014 ident: 10.1016/j.coastaleng.2022.104256_b48 article-title: Optimum vegetation height and density for inorganic sedimentation in deltaic marshes publication-title: Nature Geosci. doi: 10.1038/ngeo2233 – volume: 106 start-page: 73 year: 2015 ident: 10.1016/j.coastaleng.2022.104256_b41 article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation, Part 2: Experimental analysis publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.09.010 – volume: 157 year: 2020 ident: 10.1016/j.coastaleng.2022.104256_b56 article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2020.103648 – year: 2012 ident: 10.1016/j.coastaleng.2022.104256_b5 – year: 1993 ident: 10.1016/j.coastaleng.2022.104256_b6 – volume: 96 start-page: 100 year: 2015 ident: 10.1016/j.coastaleng.2022.104256_b34 article-title: Periodic water waves through an aquatic forest publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.11.002 – volume: 152 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b18 article-title: Motion of buoyant, flexible aquatic vegetation under waves: simple theoretical models and parameterization of wave dissipation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.04.009 – volume: 8 issue: 14156 year: 2017 ident: 10.1016/j.coastaleng.2022.104256_b14 article-title: Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes publication-title: Nature Commun. – volume: 145 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b39 article-title: Computational model for wave attenuation by flexible vegetation publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000487 – volume: 95 start-page: 66 year: 2015 ident: 10.1016/j.coastaleng.2022.104256_b22 article-title: A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.09.008 – year: 1993 ident: 10.1016/j.coastaleng.2022.104256_b55 – volume: 33 year: 2000 ident: 10.1016/j.coastaleng.2022.104256_b16 article-title: Random seas and design of maritime structures publication-title: Adv. Ser. Ocean Eng. doi: 10.1142/3587 – volume: 10 year: 2015 ident: 10.1016/j.coastaleng.2022.104256_b52 article-title: Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus publication-title: PLoS One doi: 10.1371/journal.pone.0118687 – volume: 116 start-page: C08019 year: 2011 ident: 10.1016/j.coastaleng.2022.104256_b49 article-title: Spatial and seasonal variation in wave attenuation over Zostera noltii publication-title: J. Geophys. Res. doi: 10.1029/2010JC006797 – volume: 116 start-page: 12232 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b19 article-title: Mangroves shelter coastal economic activity from cyclones publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1820067116 – volume: 51 start-page: 103 year: 2004 ident: 10.1016/j.coastaleng.2022.104256_b44 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2003.11.003 – volume: 141 issue: A4015001 year: 2015 ident: 10.1016/j.coastaleng.2022.104256_b63 article-title: Numerical modeling of surface waves over submerged flexible vegetation publication-title: J. Eng. Mech. – volume: 147 start-page: 138 year: 2019 ident: 10.1016/j.coastaleng.2022.104256_b32 article-title: Wave damping by flexible vegetation: Connecting individual leaf dynamics to the meadow scale publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.01.008 – volume: 61 start-page: 20 year: 2016 ident: 10.1016/j.coastaleng.2022.104256_b37 article-title: Wave-induced dynamics of flexible leafs publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2015.11.007 – volume: 31 start-page: 1098 issue: 6 year: 2008 ident: 10.1016/j.coastaleng.2022.104256_b7 article-title: Hydrodynamic response of northeastern Gulf of Mexico to hurricanes publication-title: Estuar. Coasts doi: 10.1007/s12237-008-9089-9 – volume: 113 start-page: 64 year: 2016 ident: 10.1016/j.coastaleng.2022.104256_b33 article-title: A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1510095112 – volume: 38 start-page: 569 year: 2015 ident: 10.1016/j.coastaleng.2022.104256_b20 article-title: Influence of leaf flexibility on the drag coefficient of aquatic vegetation publication-title: Estuaries Coasts doi: 10.1007/s12237-014-9840-3 – volume: 88 start-page: 131 year: 2014 ident: 10.1016/j.coastaleng.2022.104256_b24 article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.02.009 |
SSID | ssj0000685 |
Score | 2.47484 |
Snippet | Coastal regions are susceptible to increasing flood risks amid climate change. Coastal wetlands play an important role in mitigating coastal hazards.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104256 |
SubjectTerms | Effective plant height Flexible vegetation Unified drag coefficient Wave attenuation |
Title | Towards a unified drag coefficient formula for quantifying wave energy reduction by salt marshes |
URI | https://dx.doi.org/10.1016/j.coastaleng.2022.104256 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68xuax2SR4KsVSX0W0hd7i7mailZrWNlG8-NvdyUMrCAqeFsIOhNllvm_Yb2YIOeJceRZ4yvB81zQY-JEhInANcOJISOEoDzBRvOrx7oCdD91hjbSrWhiUVZaxv4jpebQuvzRLbzano1Hz1nQ830F8R1kQD7CinDEPb_nxu7UQjfOxnLjZwN2lmqfQeKmJ0BwMR5boTNG28cHTxlHWP0HUAux01slayRdpq_ilDVKDZJOsLnQR3CJ3_Vz6OqeCZsko1pySRjNxT9UE8v4QGlYoUtNsLHClz5lAhRDWN9FX8QIU8vo_OsMurnhOVL7RuRin9ElnvQ8w3yaDzmm_3TXKwQmGcrifGr72gxV4ABrOpRI2F44INEZp6gAgmDQZs1kcc2kz6USRUtwFHRRdDvgKoznIDllKJgnsEmojBY9NBgHT3MX1pdIZYMDcILIDJBN14lW-ClXZVRyHW4zDSj72GH55OUQvh4WX68T6tJwWnTX-YHNSHUf47ZaEGgB-td77l_U-WcFR84X-7IAspbMMDjUhSWUjv3ENstxq31xe43p20e19AInv4yQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrcw9eQ9tks0nwVIqltY-LLfQWN5uJVmpb21Tx37uTh1YQFDwFQgbC7DLfN-y33wBcCaGcGjrKcFy7anB0Q0OGaBtoRaEMpKUcpEax1xetIb8d2aMCNPK7MCSrzGp_WtOTap29qWTZrMzH48pd1XJci_CdZEHCczagRO5UdhFK9Xan1V8ryMlkTvreoIBM0JPKvNRMahpGU0t0s2iadOZp0jTrn1BqDXmau7CTUUZWT_9qDwo43YftNSPBA7gfJOrXJZNsNR1HmlaycCEfmJphYhGhkYURO11NJD3Zy0qSSIiuOLE3-YoMkyuAbEFGrrRULHhnSzmJ2bNufB9xeQjD5s2g0TKy2QmGsoQbGy7XqOM5iBrRAyVNIS3paZjS7AFR8qDKucmjSAQmD6wwVErYqOuiLZAOYjQNOYLidDbFY2AmsfCoytHjmr7YbqB0E-hx2wtNj_hEGZw8V77KjMVpvsXEzxVkT_5Xln3Ksp9muQy1z8h5aq7xh5jrfDn8bxvF1xjwa_TJv6IvYbM16HX9brvfOYUtmjyfytHOoBgvVniu-UkcXGT77wM51eRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+unified+drag+coefficient+formula+for+quantifying+wave+energy+reduction+by+salt+marshes&rft.jtitle=Coastal+engineering+%28Amsterdam%29&rft.au=Zhu%2C+Ling&rft.au=Chen%2C+Qin&rft.au=Ding%2C+Yan&rft.au=Jafari%2C+Navid&rft.date=2023-03-01&rft.issn=0378-3839&rft.volume=180&rft.spage=104256&rft_id=info:doi/10.1016%2Fj.coastaleng.2022.104256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_coastaleng_2022_104256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3839&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3839&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3839&client=summon |