Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis
Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 42; no. 5; pp. 1188 - 1212 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Group
01.05.2013
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2011.654035 |
Cover
Abstract | Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as segmentation basis in two-stage methods, the forces and the dfbetas. Both bases express a subject's effect on the aggregate estimates of the parameters in a conditional logit model. Further, individual-level estimates, obtained by either estimating a conditional logit model for each individual separately with maximum likelihood or by hierarchical Bayes (HB) estimation of a mixed logit choice model, and the respondents' raw choices are also used as segmentation basis. In the second stage of the methods the bases are classified into segments with cluster analysis or latent class models. All methods are applied to choice data because of the increasing popularity of choice experiments to analyze choice behavior. To verify whether two-stage segmentation methods can compete with a one-stage approach, a latent class choice model is estimated as well. A simulation study reveals the superiority of the two-stage method that clusters the HB estimates and the one-stage latent class choice model. Additionally, very good results are obtained for two-stage latent class cluster analysis of the choices as well as for the two-stage methods clustering the forces, the dfbetas and the choices. |
---|---|
AbstractList | Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as segmentation basis in two-stage methods, the forces and the dfbetas. Both bases express a subject's effect on the aggregate estimates of the parameters in a conditional logit model. Further, individual-level estimates, obtained by either estimating a conditional logit model for each individual separately with maximum likelihood or by hierarchical Bayes (HB) estimation of a mixed logit choice model, and the respondents' raw choices are also used as segmentation basis. In the second stage of the methods the bases are classified into segments with cluster analysis or latent class models. All methods are applied to choice data because of the increasing popularity of choice experiments to analyze choice behavior. To verify whether two-stage segmentation methods can compete with a one-stage approach, a latent class choice model is estimated as well. A simulation study reveals the superiority of the two-stage method that clusters the HB estimates and the one-stage latent class choice model. Additionally, very good results are obtained for two-stage latent class cluster analysis of the choices as well as for the two-stage methods clustering the forces, the dfbetas and the choices. [PUBLICATION ABSTRACT] Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as segmentation basis in two-stage methods, the forces and the dfbetas. Both bases express a subject's effect on the aggregate estimates of the parameters in a conditional logit model. Further, individual-level estimates, obtained by either estimating a conditional logit model for each individual separately with maximum likelihood or by hierarchical Bayes (HB) estimation of a mixed logit choice model, and the respondents' raw choices are also used as segmentation basis. In the second stage of the methods the bases are classified into segments with cluster analysis or latent class models. All methods are applied to choice data because of the increasing popularity of choice experiments to analyze choice behavior. To verify whether two-stage segmentation methods can compete with a one-stage approach, a latent class choice model is estimated as well. A simulation study reveals the superiority of the two-stage method that clusters the HB estimates and the one-stage latent class choice model. Additionally, very good results are obtained for two-stage latent class cluster analysis of the choices as well as for the two-stage methods clustering the forces, the dfbetas and the choices. |
Author | Crabbe, Marjolein Jones, Bradley Vandebroek, Martina |
Author_xml | – sequence: 1 givenname: Marjolein surname: Crabbe fullname: Crabbe, Marjolein organization: Faculty of Business and Economics , KU Leuven – sequence: 2 givenname: Bradley surname: Jones fullname: Jones, Bradley organization: Faculty of Applied Economics – sequence: 3 givenname: Martina surname: Vandebroek fullname: Vandebroek, Martina organization: Leuven Statistics Research Centre |
BookMark | eNqFkT1v2zAQhokiBWqn_QcdCHTJIocfIkV3CQylbQq4yJB0Jk40ZTOQSIekYfjfl4aSJUN6yy3P8-Jw7xxd-OAtQl8pWVCiyDXhkpIlVQtGKF1IURMuPqAZFZxVNa3pBZqdkerMfELzlJ4IIVzVaob6Nox7iM5v8eMxVA8ZthY_2O1ofYbsgsd_bN6FTcJ9iLjdBWcsvoUM-OjyDgO-9_bFWkMuEm4HSOmVXHkYTsmlz-hjD0OyX172Jfr788dje1et73_9blfrynCpctUoRiUYtjEglRKqY0YA7ztDlqTvOOmMkfWGGNnxvrEFZrbhXJTpmOyE5Jfoasrdx_B8sCnr0SVjhwG8DYekKaeiJKtaFPTbG_QpHGK5t1BMSkaaJW8K9X2iTAwpRdtr46bH5Ahu0JTocwX6tQJ9rkBPFRS5fiPvoxshnv6n3Uya8-XpIxxDHDY6w2kIsY_gjUuav5vwD-57nTE |
CitedBy_id | crossref_primary_10_1161_CIRCOUTCOMES_114_001013 crossref_primary_10_1016_j_foodqual_2019_04_006 crossref_primary_10_1016_j_jhtm_2020_08_014 crossref_primary_10_1016_j_jocm_2018_12_002 crossref_primary_10_1002_sim_10156 crossref_primary_10_1186_s12955_020_01466_1 crossref_primary_10_1007_s00291_017_0478_y crossref_primary_10_1016_j_jspi_2015_09_007 crossref_primary_10_1080_15598608_2017_1292482 crossref_primary_10_1016_j_socscimed_2019_03_025 crossref_primary_10_1080_13657305_2022_2100005 |
Cites_doi | 10.1287/mksc.17.1.29 10.1177/002224378302000204 10.2307/3152014 10.1017/CBO9780511499531.004 10.1007/BF01202266 10.1007/BF02294188 10.1017/CBO9780511499531 10.1017/CBO9780511753930 10.1509/jmkr.39.1.87.18936 10.1016/0167-8116(94)90033-7 10.2307/3150971 10.1080/10705510701575396 10.1016/j.indmarman.2003.10.007 10.1016/j.indmarman.2010.06.004 10.2307/3151362 10.1007/BF00994135 10.1509/jmkr.43.3.409 10.1016/S0191-2615(02)00046-2 10.1007/BF00994929 10.1016/j.ejor.2008.05.029 10.1007/s10802-009-9338-9 10.1509/jmkr.39.4.479.19124 10.1080/09652540802117140 10.1086/208721 10.1086/322902 10.1509/jmkr.40.2.235.19225 10.1007/978-1-4757-3285-6_20 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2013 Copyright Taylor and Francis Group, LLC |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2013 – notice: Copyright Taylor and Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2011.654035 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 1212 |
ExternalDocumentID | 2856045511 10_1080_03610918_2011_654035 654035 |
Genre | Feature |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ACAGQ ACGEE ACTCW AEUMN AGCQS AGLEN AGROQ AHMOU AI. ALCKM AMEWO AMVHM AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK H~9 IVXBP LJTGL NHB NUSFT QCRFL TAQ TASJS TFMCV TOXWX UB9 UU8 V3K V4Q VH1 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-78216ac2dca68858b2c5a3fbc090fb30bcc64d0c6b3f7e8212e7335555b26b563 |
ISSN | 0361-0918 |
IngestDate | Sun Aug 24 03:56:03 EDT 2025 Wed Aug 13 06:59:36 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Wed Sep 10 04:13:46 EDT 2025 Thu Mar 20 02:00:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-78216ac2dca68858b2c5a3fbc090fb30bcc64d0c6b3f7e8212e7335555b26b563 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1266207937 |
PQPubID | 186203 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_1315688845 crossref_primary_10_1080_03610918_2011_654035 informaworld_taylorfrancis_310_1080_03610918_2011_654035 proquest_journals_1266207937 crossref_citationtrail_10_1080_03610918_2011_654035 |
PublicationCentury | 2000 |
PublicationDate | 5/1/2013 2013-05-00 20130501 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 5/1/2013 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2013 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | McFadden D. (e_1_3_3_26_1) 1974 SAS Institute Inc. (e_1_3_3_30_1) 2009 Bigsby H. (e_1_3_3_7_1) 2002; 52 Magidson J. (e_1_3_3_24_1) 2002; 20 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 Sharma S. (e_1_3_3_32_1) 1996 Vermunt J. K. (e_1_3_3_34_1) 2002 e_1_3_3_37_1 Vermunt J. K. (e_1_3_3_35_1) 2005 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_33_1 Dolnicar S. (e_1_3_3_13_1) 2002 e_1_3_3_12_1 e_1_3_3_11_1 Cunningham C. E. (e_1_3_3_9_1) 2009; 37 Vermunt J. K. (e_1_3_3_36_1) 2005 Sawtooth Software Inc. (e_1_3_3_31_1) 2008 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_29_1 Lattin J. M. (e_1_3_3_22_1) 2003 e_1_3_3_28_1 Magidson J. (e_1_3_3_25_1) 2004 e_1_3_3_27_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 |
References_xml | – volume-title: JMP(r) 8 Statistics and Graphics Guide. 2nd ed year: 2009 ident: e_1_3_3_30_1 – volume-title: Technical Guide for Latent GOLD Choice 4.0: Basic and Advanced year: 2005 ident: e_1_3_3_36_1 – ident: e_1_3_3_5_1 doi: 10.1287/mksc.17.1.29 – ident: e_1_3_3_29_1 doi: 10.1177/002224378302000204 – ident: e_1_3_3_37_1 doi: 10.2307/3152014 – start-page: 105 volume-title: Frontiers in Econometrics year: 1974 ident: e_1_3_3_26_1 – start-page: 89 volume-title: Applied Latent Class Analysis year: 2002 ident: e_1_3_3_34_1 doi: 10.1017/CBO9780511499531.004 – ident: e_1_3_3_38_1 doi: 10.1007/BF01202266 – ident: e_1_3_3_23_1 doi: 10.1007/BF02294188 – ident: e_1_3_3_18_1 doi: 10.1017/CBO9780511499531 – year: 2002 ident: e_1_3_3_13_1 article-title: A review of unquestioned standards in using cluster analysis for data-driven market segmentation publication-title: CD Conference Proceedings of the Australian and New Zealand Marketing Academy Conference 2002 – ident: e_1_3_3_33_1 doi: 10.1017/CBO9780511753930 – ident: e_1_3_3_3_1 doi: 10.1509/jmkr.39.1.87.18936 – ident: e_1_3_3_39_1 doi: 10.1016/0167-8116(94)90033-7 – ident: e_1_3_3_10_1 doi: 10.2307/3150971 – ident: e_1_3_3_27_1 doi: 10.1080/10705510701575396 – volume-title: Applied Multivariate Statistics year: 1996 ident: e_1_3_3_32_1 – volume-title: Analyzing Multivariate Data year: 2003 ident: e_1_3_3_22_1 – start-page: 175 volume-title: The Sage Handbook of Quantitative Methodology for the Social Sciences year: 2004 ident: e_1_3_3_25_1 – ident: e_1_3_3_28_1 doi: 10.1016/j.indmarman.2003.10.007 – ident: e_1_3_3_8_1 doi: 10.1016/j.indmarman.2010.06.004 – ident: e_1_3_3_19_1 doi: 10.2307/3151362 – start-page: 1 year: 2008 ident: e_1_3_3_31_1 article-title: The CBC technical paper (version 6) publication-title: Sawtooth Software Technical Paper Series – ident: e_1_3_3_12_1 doi: 10.1007/BF00994135 – ident: e_1_3_3_21_1 doi: 10.1509/jmkr.43.3.409 – ident: e_1_3_3_17_1 doi: 10.1016/S0191-2615(02)00046-2 – volume-title: Technical Guide for Latent GOLD 4.0: Basic and Advanced year: 2005 ident: e_1_3_3_35_1 – ident: e_1_3_3_11_1 doi: 10.1007/BF00994929 – ident: e_1_3_3_20_1 doi: 10.1016/j.ejor.2008.05.029 – volume: 37 start-page: 1089 year: 2009 ident: e_1_3_3_9_1 article-title: Providing information to parents of children with mental health problems: A discrete choice conjoint analysis of professional preferences publication-title: Journal of Abnormal Child Psychology doi: 10.1007/s10802-009-9338-9 – ident: e_1_3_3_2_1 doi: 10.1509/jmkr.39.4.479.19124 – volume: 20 start-page: 77 year: 2002 ident: e_1_3_3_24_1 article-title: Latent class modeling as a probabilistic extension of k-means clustering publication-title: Quirks Marketing Research Review – ident: e_1_3_3_15_1 doi: 10.1080/09652540802117140 – volume: 52 start-page: 100 year: 2002 ident: e_1_3_3_7_1 article-title: The purchase decision: Consumers and environmentally certified wood products publication-title: Forest Products Journal – ident: e_1_3_3_16_1 doi: 10.1086/208721 – ident: e_1_3_3_6_1 doi: 10.1086/322902 – ident: e_1_3_3_4_1 doi: 10.1509/jmkr.40.2.235.19225 – ident: e_1_3_3_14_1 doi: 10.1007/978-1-4757-3285-6_20 |
SSID | ssj0003848 |
Score | 2.0127017 |
Snippet | Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1188 |
SubjectTerms | 62P20, 91B08, 91B10 Choice-based conjoint data Cluster analysis Computer simulation Conditional logit model Consumer behavior Economic models Estimates Estimating Latent class model Logit models Market segmentation Marketing Methods Mixed logit model Segmentation Segmentation methods Segments Studies |
Title | Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2011.654035 https://www.proquest.com/docview/1266207937 https://www.proquest.com/docview/1315688845 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWcikHPhYQCwUZidvK1dpOHPeIVqAK0XLoVuotih2nlLZJ1WaFxL_iHzL-JKFVoVyiVWJb2czLeBzPvIfQu6zIGwOBMdEiEyRTOxmpFo0inGtdMCNo7fRT9vbF7mH26Sg_mkx-DrKW1r3a1j9urCv5H6vCObCrrZK9g2XToHACfoN94QgWhuM_2XjpRQRhsb_63hGIG48NvPzH56GeyG7DWH1oR7kwX37twCmAmfsqVLTNv7Qm9PoMIWfbe4nM2DLylQzj11E9iUultRVJnux5e35wch7UwGK53MV6vNW_vKyUMqFI6Ft3Zk7SpaQaYLf343azlwKrYeHemdPQrQ-K3_FjBR2kBqYiLUogRPEu10Sfy0hGPf9VdMoZG4AvH3hYWBDJwWxNmc_CvjYThNRJbunkqfRcrQLCU0-OMibe_mNCTGmKNPKnhlFKO0rpR7mH7rOicJkBfLGfJn8unWBb-p-xWtPSud9wL6NoaMSVey02cAHP6jF6GFYq-L2H3RM0Me0UPYoqIDhMClP0YC8x_15N0eZBwsNT1CSA4gRQPAQoDgDFcEfYww5bgGILUFzhBFDsAYodQGPLCNBn6PDjh9VylwRhD6K5kD2BqJSKSrNaV0LKXCqm84o3Si92wE_whdLgOeqFFoo3hYHGzBQcAuM8V0yoXPDnaKMFUL5AWDNdSBiVVuBVauhh-QvrTDQsU9IUcoZ4fMClDqz3VnzlrLzNuDNEUq8Lz_ryl_ZyaLuyd1_bGi-NU_Lbu25FO5fBtVyVFMJm5qgrZ-htugyO3-7mVa3p1tCG0xyenszyl3e821do8_e7uYU2-su1eQ2hda_eODD_An9sxSI |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CcWAcGBQQZQOMxNUjsWPHO06FqUBbDnQSNyt2nCIBKaKpkPbX7_lXxUCABGf7ObHz_PzZef4-gOdVLTqHwJhaWUlamZOKNkVnKOfW1szJsg36KfOFnJ5Xbz6InE24SWmVfg_dRaKIEKv95PaH0Tkl7gVGXc9nqSIDp0TQwcV1uCEQunsn58ViF4y5CgJa3oJ6k3x77jetXFmdrnCX_hKrwwJ0dgAmv3rMO_l0vB3Msb34idXxv_p2B24neEpOoz_dhWuuH8FBln4gKRKM4NZ8R_e6GcG-h6yR8fkedJMobdivyPL7mmLRypH3bvUl3XLqyTyoVm8IdptMPq4xVJGXzdAQfyZMGvKud8lqhkC4H0gQ7sw1M4vKfTg_e7WcTGlSc6CWSzVQhCKlbCxrbSOVEsowKxreGVucoHPwwlh0l7aw0vCudliZuZojGhLCMGmE5A9gr1_37iEQy2ytsNWyQVdq0cKT1rWV7FhllKvVGHj-itomqnOvuPFZl5kRNY2y9qOs4yiPge6svkaqj7_UVz86iB7CEUsX9VA0_7PpUXYmnWLGRpeIlVjgKxzDs10xznb_C6fp3XqLdTjut5VSlXj0709_Cjeny_lMz14v3h7CPgsCHz6F8wj2hm9b9xhh1mCehIl0CUXdF2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RbxQhEJ5oTUz7YPXU9LQqJr5Sd5eFpY_m6qVq7zSxTfpGgIVrou413l5M_PUOsFxajZroMwy7sMPwwQ7fB_Cibrh3CIypFbWgtTmsqS68oYxZ21ROlG3UT5nNxfFZ_facn1-5xR_SKsMe2ieiiBirw-S-bH3OiHuJQTfQWcpEwCkQczB-E24JRCchqY8V800sZjLqZwULGkzy5bnftHJtcbpGXfpLqI7rz3QXdH7zlHby6WDdmwP7_SdSx__p2l24M4BT8ip50z244boR7GbhBzLEgRHszDZkr6sRbAfAmvie74OfJGHDbkFOvy0pFi0c-egWX4Y7Th2ZRc3qFcFek8nFEgMVOdK9JuFEmGjyvnOD1QnC4K4nUbYz18wcKg_gbPr6dHJMBy0HapmQPUUgUgptq9ZqISWXprJcM29scYiuwQpj0VnawgrDfOOwcuUahliIc1MJwwV7CFvdsnN7QGxlG4mtlhodqUWLQFnX1sJXtZGukWNg-SMqOxCdB72Nz6rMfKjDKKswyiqN8hjoxuoyEX38pb686h-qjwcsPqmhKPZn0_3sS2qIGCtVIlKqIlvhGJ5vinGuhx84unPLNdZhuNuWUtb80b8__Rnc_nA0VSdv5u8ew3YV1T1C_uY-bPVf1-4JYqzePI3T6AeyeBYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Two-Stage+Segmentation+Methods+for+Choice+Data+with+a+One-Stage+Latent+Class+Choice+Analysis&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Crabbe%2C+Marjolein&rft.au=Jones%2C+Bradley&rft.au=Vandebroek%2C+Martina&rft.date=2013-05-01&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=42&rft.issue=5&rft.spage=1188&rft.epage=1212&rft_id=info:doi/10.1080%2F03610918.2011.654035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2011_654035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |