Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis

Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 42; no. 5; pp. 1188 - 1212
Main Authors Crabbe, Marjolein, Jones, Bradley, Vandebroek, Martina
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 01.05.2013
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2011.654035

Cover

Abstract Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as segmentation basis in two-stage methods, the forces and the dfbetas. Both bases express a subject's effect on the aggregate estimates of the parameters in a conditional logit model. Further, individual-level estimates, obtained by either estimating a conditional logit model for each individual separately with maximum likelihood or by hierarchical Bayes (HB) estimation of a mixed logit choice model, and the respondents' raw choices are also used as segmentation basis. In the second stage of the methods the bases are classified into segments with cluster analysis or latent class models. All methods are applied to choice data because of the increasing popularity of choice experiments to analyze choice behavior. To verify whether two-stage segmentation methods can compete with a one-stage approach, a latent class choice model is estimated as well. A simulation study reveals the superiority of the two-stage method that clusters the HB estimates and the one-stage latent class choice model. Additionally, very good results are obtained for two-stage latent class cluster analysis of the choices as well as for the two-stage methods clustering the forces, the dfbetas and the choices.
AbstractList Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as segmentation basis in two-stage methods, the forces and the dfbetas. Both bases express a subject's effect on the aggregate estimates of the parameters in a conditional logit model. Further, individual-level estimates, obtained by either estimating a conditional logit model for each individual separately with maximum likelihood or by hierarchical Bayes (HB) estimation of a mixed logit choice model, and the respondents' raw choices are also used as segmentation basis. In the second stage of the methods the bases are classified into segments with cluster analysis or latent class models. All methods are applied to choice data because of the increasing popularity of choice experiments to analyze choice behavior. To verify whether two-stage segmentation methods can compete with a one-stage approach, a latent class choice model is estimated as well. A simulation study reveals the superiority of the two-stage method that clusters the HB estimates and the one-stage latent class choice model. Additionally, very good results are obtained for two-stage latent class cluster analysis of the choices as well as for the two-stage methods clustering the forces, the dfbetas and the choices. [PUBLICATION ABSTRACT]
Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as segmentation basis in two-stage methods, the forces and the dfbetas. Both bases express a subject's effect on the aggregate estimates of the parameters in a conditional logit model. Further, individual-level estimates, obtained by either estimating a conditional logit model for each individual separately with maximum likelihood or by hierarchical Bayes (HB) estimation of a mixed logit choice model, and the respondents' raw choices are also used as segmentation basis. In the second stage of the methods the bases are classified into segments with cluster analysis or latent class models. All methods are applied to choice data because of the increasing popularity of choice experiments to analyze choice behavior. To verify whether two-stage segmentation methods can compete with a one-stage approach, a latent class choice model is estimated as well. A simulation study reveals the superiority of the two-stage method that clusters the HB estimates and the one-stage latent class choice model. Additionally, very good results are obtained for two-stage latent class cluster analysis of the choices as well as for the two-stage methods clustering the forces, the dfbetas and the choices.
Author Crabbe, Marjolein
Jones, Bradley
Vandebroek, Martina
Author_xml – sequence: 1
  givenname: Marjolein
  surname: Crabbe
  fullname: Crabbe, Marjolein
  organization: Faculty of Business and Economics , KU Leuven
– sequence: 2
  givenname: Bradley
  surname: Jones
  fullname: Jones, Bradley
  organization: Faculty of Applied Economics
– sequence: 3
  givenname: Martina
  surname: Vandebroek
  fullname: Vandebroek, Martina
  organization: Leuven Statistics Research Centre
BookMark eNqFkT1v2zAQhokiBWqn_QcdCHTJIocfIkV3CQylbQq4yJB0Jk40ZTOQSIekYfjfl4aSJUN6yy3P8-Jw7xxd-OAtQl8pWVCiyDXhkpIlVQtGKF1IURMuPqAZFZxVNa3pBZqdkerMfELzlJ4IIVzVaob6Nox7iM5v8eMxVA8ZthY_2O1ofYbsgsd_bN6FTcJ9iLjdBWcsvoUM-OjyDgO-9_bFWkMuEm4HSOmVXHkYTsmlz-hjD0OyX172Jfr788dje1et73_9blfrynCpctUoRiUYtjEglRKqY0YA7ztDlqTvOOmMkfWGGNnxvrEFZrbhXJTpmOyE5Jfoasrdx_B8sCnr0SVjhwG8DYekKaeiJKtaFPTbG_QpHGK5t1BMSkaaJW8K9X2iTAwpRdtr46bH5Ahu0JTocwX6tQJ9rkBPFRS5fiPvoxshnv6n3Uya8-XpIxxDHDY6w2kIsY_gjUuav5vwD-57nTE
CitedBy_id crossref_primary_10_1161_CIRCOUTCOMES_114_001013
crossref_primary_10_1016_j_foodqual_2019_04_006
crossref_primary_10_1016_j_jhtm_2020_08_014
crossref_primary_10_1016_j_jocm_2018_12_002
crossref_primary_10_1002_sim_10156
crossref_primary_10_1186_s12955_020_01466_1
crossref_primary_10_1007_s00291_017_0478_y
crossref_primary_10_1016_j_jspi_2015_09_007
crossref_primary_10_1080_15598608_2017_1292482
crossref_primary_10_1016_j_socscimed_2019_03_025
crossref_primary_10_1080_13657305_2022_2100005
Cites_doi 10.1287/mksc.17.1.29
10.1177/002224378302000204
10.2307/3152014
10.1017/CBO9780511499531.004
10.1007/BF01202266
10.1007/BF02294188
10.1017/CBO9780511499531
10.1017/CBO9780511753930
10.1509/jmkr.39.1.87.18936
10.1016/0167-8116(94)90033-7
10.2307/3150971
10.1080/10705510701575396
10.1016/j.indmarman.2003.10.007
10.1016/j.indmarman.2010.06.004
10.2307/3151362
10.1007/BF00994135
10.1509/jmkr.43.3.409
10.1016/S0191-2615(02)00046-2
10.1007/BF00994929
10.1016/j.ejor.2008.05.029
10.1007/s10802-009-9338-9
10.1509/jmkr.39.4.479.19124
10.1080/09652540802117140
10.1086/208721
10.1086/322902
10.1509/jmkr.40.2.235.19225
10.1007/978-1-4757-3285-6_20
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
Copyright Taylor and Francis Group, LLC
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
– notice: Copyright Taylor and Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2011.654035
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1212
ExternalDocumentID 2856045511
10_1080_03610918_2011_654035
654035
Genre Feature
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ACTCW
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMEWO
AMVHM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
H~9
IVXBP
LJTGL
NHB
NUSFT
QCRFL
TAQ
TASJS
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
VH1
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-78216ac2dca68858b2c5a3fbc090fb30bcc64d0c6b3f7e8212e7335555b26b563
ISSN 0361-0918
IngestDate Sun Aug 24 03:56:03 EDT 2025
Wed Aug 13 06:59:36 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Wed Sep 10 04:13:46 EDT 2025
Thu Mar 20 02:00:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-78216ac2dca68858b2c5a3fbc090fb30bcc64d0c6b3f7e8212e7335555b26b563
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1266207937
PQPubID 186203
PageCount 25
ParticipantIDs proquest_miscellaneous_1315688845
crossref_primary_10_1080_03610918_2011_654035
informaworld_taylorfrancis_310_1080_03610918_2011_654035
proquest_journals_1266207937
crossref_citationtrail_10_1080_03610918_2011_654035
PublicationCentury 2000
PublicationDate 5/1/2013
2013-05-00
20130501
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 5/1/2013
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2013
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References McFadden D. (e_1_3_3_26_1) 1974
SAS Institute Inc. (e_1_3_3_30_1) 2009
Bigsby H. (e_1_3_3_7_1) 2002; 52
Magidson J. (e_1_3_3_24_1) 2002; 20
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
Sharma S. (e_1_3_3_32_1) 1996
Vermunt J. K. (e_1_3_3_34_1) 2002
e_1_3_3_37_1
Vermunt J. K. (e_1_3_3_35_1) 2005
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_33_1
Dolnicar S. (e_1_3_3_13_1) 2002
e_1_3_3_12_1
e_1_3_3_11_1
Cunningham C. E. (e_1_3_3_9_1) 2009; 37
Vermunt J. K. (e_1_3_3_36_1) 2005
Sawtooth Software Inc. (e_1_3_3_31_1) 2008
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_29_1
Lattin J. M. (e_1_3_3_22_1) 2003
e_1_3_3_28_1
Magidson J. (e_1_3_3_25_1) 2004
e_1_3_3_27_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
References_xml – volume-title: JMP(r) 8 Statistics and Graphics Guide. 2nd ed
  year: 2009
  ident: e_1_3_3_30_1
– volume-title: Technical Guide for Latent GOLD Choice 4.0: Basic and Advanced
  year: 2005
  ident: e_1_3_3_36_1
– ident: e_1_3_3_5_1
  doi: 10.1287/mksc.17.1.29
– ident: e_1_3_3_29_1
  doi: 10.1177/002224378302000204
– ident: e_1_3_3_37_1
  doi: 10.2307/3152014
– start-page: 105
  volume-title: Frontiers in Econometrics
  year: 1974
  ident: e_1_3_3_26_1
– start-page: 89
  volume-title: Applied Latent Class Analysis
  year: 2002
  ident: e_1_3_3_34_1
  doi: 10.1017/CBO9780511499531.004
– ident: e_1_3_3_38_1
  doi: 10.1007/BF01202266
– ident: e_1_3_3_23_1
  doi: 10.1007/BF02294188
– ident: e_1_3_3_18_1
  doi: 10.1017/CBO9780511499531
– year: 2002
  ident: e_1_3_3_13_1
  article-title: A review of unquestioned standards in using cluster analysis for data-driven market segmentation
  publication-title: CD Conference Proceedings of the Australian and New Zealand Marketing Academy Conference 2002
– ident: e_1_3_3_33_1
  doi: 10.1017/CBO9780511753930
– ident: e_1_3_3_3_1
  doi: 10.1509/jmkr.39.1.87.18936
– ident: e_1_3_3_39_1
  doi: 10.1016/0167-8116(94)90033-7
– ident: e_1_3_3_10_1
  doi: 10.2307/3150971
– ident: e_1_3_3_27_1
  doi: 10.1080/10705510701575396
– volume-title: Applied Multivariate Statistics
  year: 1996
  ident: e_1_3_3_32_1
– volume-title: Analyzing Multivariate Data
  year: 2003
  ident: e_1_3_3_22_1
– start-page: 175
  volume-title: The Sage Handbook of Quantitative Methodology for the Social Sciences
  year: 2004
  ident: e_1_3_3_25_1
– ident: e_1_3_3_28_1
  doi: 10.1016/j.indmarman.2003.10.007
– ident: e_1_3_3_8_1
  doi: 10.1016/j.indmarman.2010.06.004
– ident: e_1_3_3_19_1
  doi: 10.2307/3151362
– start-page: 1
  year: 2008
  ident: e_1_3_3_31_1
  article-title: The CBC technical paper (version 6)
  publication-title: Sawtooth Software Technical Paper Series
– ident: e_1_3_3_12_1
  doi: 10.1007/BF00994135
– ident: e_1_3_3_21_1
  doi: 10.1509/jmkr.43.3.409
– ident: e_1_3_3_17_1
  doi: 10.1016/S0191-2615(02)00046-2
– volume-title: Technical Guide for Latent GOLD 4.0: Basic and Advanced
  year: 2005
  ident: e_1_3_3_35_1
– ident: e_1_3_3_11_1
  doi: 10.1007/BF00994929
– ident: e_1_3_3_20_1
  doi: 10.1016/j.ejor.2008.05.029
– volume: 37
  start-page: 1089
  year: 2009
  ident: e_1_3_3_9_1
  article-title: Providing information to parents of children with mental health problems: A discrete choice conjoint analysis of professional preferences
  publication-title: Journal of Abnormal Child Psychology
  doi: 10.1007/s10802-009-9338-9
– ident: e_1_3_3_2_1
  doi: 10.1509/jmkr.39.4.479.19124
– volume: 20
  start-page: 77
  year: 2002
  ident: e_1_3_3_24_1
  article-title: Latent class modeling as a probabilistic extension of k-means clustering
  publication-title: Quirks Marketing Research Review
– ident: e_1_3_3_15_1
  doi: 10.1080/09652540802117140
– volume: 52
  start-page: 100
  year: 2002
  ident: e_1_3_3_7_1
  article-title: The purchase decision: Consumers and environmentally certified wood products
  publication-title: Forest Products Journal
– ident: e_1_3_3_16_1
  doi: 10.1086/208721
– ident: e_1_3_3_6_1
  doi: 10.1086/322902
– ident: e_1_3_3_4_1
  doi: 10.1509/jmkr.40.2.235.19225
– ident: e_1_3_3_14_1
  doi: 10.1007/978-1-4757-3285-6_20
SSID ssj0003848
Score 2.0127017
Snippet Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1188
SubjectTerms 62P20, 91B08, 91B10
Choice-based conjoint data
Cluster analysis
Computer simulation
Conditional logit model
Consumer behavior
Economic models
Estimates
Estimating
Latent class model
Logit models
Market segmentation
Marketing
Methods
Mixed logit model
Segmentation
Segmentation methods
Segments
Studies
Title Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2011.654035
https://www.proquest.com/docview/1266207937
https://www.proquest.com/docview/1315688845
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWcikHPhYQCwUZidvK1dpOHPeIVqAK0XLoVuotih2nlLZJ1WaFxL_iHzL-JKFVoVyiVWJb2czLeBzPvIfQu6zIGwOBMdEiEyRTOxmpFo0inGtdMCNo7fRT9vbF7mH26Sg_mkx-DrKW1r3a1j9urCv5H6vCObCrrZK9g2XToHACfoN94QgWhuM_2XjpRQRhsb_63hGIG48NvPzH56GeyG7DWH1oR7kwX37twCmAmfsqVLTNv7Qm9PoMIWfbe4nM2DLylQzj11E9iUultRVJnux5e35wch7UwGK53MV6vNW_vKyUMqFI6Ft3Zk7SpaQaYLf343azlwKrYeHemdPQrQ-K3_FjBR2kBqYiLUogRPEu10Sfy0hGPf9VdMoZG4AvH3hYWBDJwWxNmc_CvjYThNRJbunkqfRcrQLCU0-OMibe_mNCTGmKNPKnhlFKO0rpR7mH7rOicJkBfLGfJn8unWBb-p-xWtPSud9wL6NoaMSVey02cAHP6jF6GFYq-L2H3RM0Me0UPYoqIDhMClP0YC8x_15N0eZBwsNT1CSA4gRQPAQoDgDFcEfYww5bgGILUFzhBFDsAYodQGPLCNBn6PDjh9VylwRhD6K5kD2BqJSKSrNaV0LKXCqm84o3Si92wE_whdLgOeqFFoo3hYHGzBQcAuM8V0yoXPDnaKMFUL5AWDNdSBiVVuBVauhh-QvrTDQsU9IUcoZ4fMClDqz3VnzlrLzNuDNEUq8Lz_ryl_ZyaLuyd1_bGi-NU_Lbu25FO5fBtVyVFMJm5qgrZ-htugyO3-7mVa3p1tCG0xyenszyl3e821do8_e7uYU2-su1eQ2hda_eODD_An9sxSI
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CcWAcGBQQZQOMxNUjsWPHO06FqUBbDnQSNyt2nCIBKaKpkPbX7_lXxUCABGf7ObHz_PzZef4-gOdVLTqHwJhaWUlamZOKNkVnKOfW1szJsg36KfOFnJ5Xbz6InE24SWmVfg_dRaKIEKv95PaH0Tkl7gVGXc9nqSIDp0TQwcV1uCEQunsn58ViF4y5CgJa3oJ6k3x77jetXFmdrnCX_hKrwwJ0dgAmv3rMO_l0vB3Msb34idXxv_p2B24neEpOoz_dhWuuH8FBln4gKRKM4NZ8R_e6GcG-h6yR8fkedJMobdivyPL7mmLRypH3bvUl3XLqyTyoVm8IdptMPq4xVJGXzdAQfyZMGvKud8lqhkC4H0gQ7sw1M4vKfTg_e7WcTGlSc6CWSzVQhCKlbCxrbSOVEsowKxreGVucoHPwwlh0l7aw0vCudliZuZojGhLCMGmE5A9gr1_37iEQy2ytsNWyQVdq0cKT1rWV7FhllKvVGHj-itomqnOvuPFZl5kRNY2y9qOs4yiPge6svkaqj7_UVz86iB7CEUsX9VA0_7PpUXYmnWLGRpeIlVjgKxzDs10xznb_C6fp3XqLdTjut5VSlXj0709_Cjeny_lMz14v3h7CPgsCHz6F8wj2hm9b9xhh1mCehIl0CUXdF2Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RbxQhEJ5oTUz7YPXU9LQqJr5Sd5eFpY_m6qVq7zSxTfpGgIVrou413l5M_PUOsFxajZroMwy7sMPwwQ7fB_Cibrh3CIypFbWgtTmsqS68oYxZ21ROlG3UT5nNxfFZ_facn1-5xR_SKsMe2ieiiBirw-S-bH3OiHuJQTfQWcpEwCkQczB-E24JRCchqY8V800sZjLqZwULGkzy5bnftHJtcbpGXfpLqI7rz3QXdH7zlHby6WDdmwP7_SdSx__p2l24M4BT8ip50z244boR7GbhBzLEgRHszDZkr6sRbAfAmvie74OfJGHDbkFOvy0pFi0c-egWX4Y7Th2ZRc3qFcFek8nFEgMVOdK9JuFEmGjyvnOD1QnC4K4nUbYz18wcKg_gbPr6dHJMBy0HapmQPUUgUgptq9ZqISWXprJcM29scYiuwQpj0VnawgrDfOOwcuUahliIc1MJwwV7CFvdsnN7QGxlG4mtlhodqUWLQFnX1sJXtZGukWNg-SMqOxCdB72Nz6rMfKjDKKswyiqN8hjoxuoyEX38pb686h-qjwcsPqmhKPZn0_3sS2qIGCtVIlKqIlvhGJ5vinGuhx84unPLNdZhuNuWUtb80b8__Rnc_nA0VSdv5u8ew3YV1T1C_uY-bPVf1-4JYqzePI3T6AeyeBYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Two-Stage+Segmentation+Methods+for+Choice+Data+with+a+One-Stage+Latent+Class+Choice+Analysis&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Crabbe%2C+Marjolein&rft.au=Jones%2C+Bradley&rft.au=Vandebroek%2C+Martina&rft.date=2013-05-01&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=42&rft.issue=5&rft.spage=1188&rft.epage=1212&rft_id=info:doi/10.1080%2F03610918.2011.654035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2011_654035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon