Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition
Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-...
Saved in:
Published in | Journal of neuroscience methods Vol. 308; pp. 240 - 247 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes.
In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition.
By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand.
In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies.
The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes.
[Display omitted] |
---|---|
AbstractList | Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes.BACKGROUNDPreprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes.In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition.NEW METHODIn this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition.By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand.RESULTSBy the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand.In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies.COMPARISON WITH EXISTING METHOD(S)In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies.The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes.CONCLUSIONSThe discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes. Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes. In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition. By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand. In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies. The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes. Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes. In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition. By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand. In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies. The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes. [Display omitted] |
Author | Ristaniemi, Tapani Zhu, Yongjie Cong, Fengyu Wang, Deqing |
Author_xml | – sequence: 1 givenname: Deqing orcidid: 0000-0002-1333-0928 surname: Wang fullname: Wang, Deqing email: deqing.wang@foxmail.com organization: School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China – sequence: 2 givenname: Yongjie surname: Zhu fullname: Zhu, Yongjie email: yongjie.zhu@foxmail.com organization: School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China – sequence: 3 givenname: Tapani surname: Ristaniemi fullname: Ristaniemi, Tapani email: tapani.e.ristaniemi@jyu.fi organization: Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland – sequence: 4 givenname: Fengyu surname: Cong fullname: Cong, Fengyu email: cong@dlut.edu.cn organization: School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30077630$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFqGzEQhkVJaZy0rxD2mMtuZrVraQ09pAQ3KQRaQgy9CXl2lMjsSq6kNenbR8ZxD73kMnOY7_8ZvjN24rwjxi5qqGqoxdWm2jiaRkrPFYe6q0BWwOEDm9Wd5KWQ3e8TNsvgvAQu4ZSdxbgBgHYB4hM7bQCkFA3M2Gr5koLGZN1TMU5DsuXoeyqWD78KQzpNgWIxxf3VWJOeSx96CkV-xtGTTnZHRSIXfSh6Qj9ufbTJeveZfTR6iPTlbZ-z1ffl481def_z9sfNt_sSG9GlUsxNj0SiIwFGLnrRUGeQa9Ei77DlmO9yjXMQer3Q2Mo5Ga3X2EguayPb5pxdHnq3wf-ZKCY12og0DNqRn6Li0LVNm2ed0Ys3dFqP1KttsKMOf9VRRQbEAcDgYwxk_iE1qL1ztVFH52rvXIFU2XkOfv0viDbpvYZs1g7vx68PccqidpaCimjJIfU2ECbVe_texSt1GqQY |
CitedBy_id | crossref_primary_10_1016_j_dsp_2022_103682 crossref_primary_10_1007_s11431_020_1840_4 crossref_primary_10_1109_ACCESS_2019_2943497 crossref_primary_10_1016_j_neuroimage_2022_119331 crossref_primary_10_1142_S0129065721500015 crossref_primary_10_1155_2022_9441697 crossref_primary_10_1109_TNSRE_2019_2953971 crossref_primary_10_1109_TNSRE_2021_3111564 crossref_primary_10_1016_j_neuroimage_2021_117829 crossref_primary_10_1088_1741_2552_ab5247 crossref_primary_10_1088_1361_6579_ace510 crossref_primary_10_1088_1741_2552_ac954f crossref_primary_10_1525_mp_2022_39_3_249 crossref_primary_10_1016_j_neuroimage_2020_116924 crossref_primary_10_1016_j_sigpro_2024_109532 crossref_primary_10_1016_j_jneumeth_2019_108502 crossref_primary_10_3389_fnins_2023_1180293 crossref_primary_10_1016_j_neuroimage_2021_118720 crossref_primary_10_1016_j_neuroimage_2022_119193 crossref_primary_10_1007_s12021_022_09599_y |
Cites_doi | 10.1016/j.psychres.2009.10.005 10.1016/j.sigpro.2014.01.031 10.1142/S0129065712500256 10.1016/j.jneumeth.2003.10.009 10.1002/cem.801 10.1002/cem.1223 10.1186/1471-2202-5-13 10.1109/TNSRE.2013.2279680 10.1016/j.neuroimage.2006.02.034 10.1348/000711000159132 10.1109/TSP.2017.2690524 10.1109/MSP.2013.2297439 10.1142/S0129065713500068 10.1016/j.jneumeth.2015.03.018 10.1109/TBME.2016.2553960 10.1016/j.neuroimage.2005.08.005 10.1016/j.tics.2004.06.006 10.1111/j.1469-8986.2012.01405.x 10.1016/j.jneumeth.2006.11.008 10.1109/JPROC.2015.2474704 10.1016/j.patcog.2017.05.004 10.1137/120887795 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jneumeth.2018.07.020 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 247 |
ExternalDocumentID | 30077630 10_1016_j_jneumeth_2018_07_020 S0165027018302358 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c368t-65fdcee68e60f79d63e8fc2a64c28c42c5fd7bc506ab9ac475efaabc37271f743 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Tue Aug 05 09:32:44 EDT 2025 Wed Feb 19 02:43:51 EST 2025 Tue Jul 01 02:57:09 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Fri Feb 23 02:48:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Event-related potential Component number selection CANDECOMP/PARAFAC Multi-mode features Nonnegative tensor decomposition |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-65fdcee68e60f79d63e8fc2a64c28c42c5fd7bc506ab9ac475efaabc37271f743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1333-0928 |
PMID | 30077630 |
PQID | 2084342081 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2084342081 pubmed_primary_30077630 crossref_primary_10_1016_j_jneumeth_2018_07_020 crossref_citationtrail_10_1016_j_jneumeth_2018_07_020 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2018_07_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 2018-10-00 2018-Oct-01 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bro, Kiers (b2) 2003; 17 Cong, Phan, Zhao, Huttunen-Scott, Kaartinen, Ristaniemi, Lyytinen, Cichocki (b8) 2012; 22 Cong, Phan, Astikainen, Zhao, Wu, Hietanen, Ristaniemi, Cichocki (b7) 2013; 23 David, Kilner, Friston (b9) 2006; 31 Arnfred, Mørup, Thalbitzer, Jansson, Parnas (b1) 2011; 185 Sidiropoulos, Lathauwer, Fu, Huang, Papalexakis, Faloutsos (b21) 2017; 65 Mørup, Hansen, Arnfred (b17) 2007; 161 Zhang, Zhou, Jin, Wang, Wang, Cichocki (b27) 2013; 21 Handy (b11) 2005 Vanderperren, Mijović, Novitskiy, Vanrumste, Stiers, den Bergh, Lagae, Sunaert, Wagemans, Huffel, Vos (b23) 2012; 50 Zhou, Zhao, Zhang, Adali, Xie, Cichocki (b29) 2016; 104 Herrmann, Munk, Engel (b13) 2004; 8 Zhao, Caiafa, Mandic, Zhang, Ball, Schulze-bonhage, Cichocki (b28) 2011 Timmerman, Kiers (b22) 2000; 53 Wang, Wang, Zhu, Toiviainen, Huotilainen, Ristaniemi, Cong (b24) 2018 Mørup, Hansen, Herrmann, Parnas, Arnfred (b18) 2006; 29 Cohen (b5) 2014 Cichocki, Mandic, Lathauwer, Zhou, Zhao, Caiafa, Phan (b3) 2015; 32 Cichocki, Zdunek, Phan, Amari (b4) 2009 Idaji, Shamsollahi, Sardouie (b14) 2017; 70 Mørup, Hansen (b16) 2009; 23 Herrmann, Lenz, Junge, Busch, Maess (b12) 2004; 5 Mørup, Hansen, Parnas, Arnfred (b19) 2006 Mahyari, Zoltowski, Bernat, Aviyente (b15) 2017; 64 Niknazar, Becker, Rivet, Jutten, Comon (b20) 2014; 101 Xu, Yin (b26) 2013; 6 Delorme, Makeig (b10) 2004; 134 Cong, Lin, Kuang, Gong, Astikainen, Ristaniemi (b6) 2015; 248 Weis, Romer, Haardt, Jannek, Husar (b25) 2009 Niknazar (10.1016/j.jneumeth.2018.07.020_b20) 2014; 101 Mahyari (10.1016/j.jneumeth.2018.07.020_b15) 2017; 64 Xu (10.1016/j.jneumeth.2018.07.020_b26) 2013; 6 Cong (10.1016/j.jneumeth.2018.07.020_b8) 2012; 22 David (10.1016/j.jneumeth.2018.07.020_b9) 2006; 31 Cichocki (10.1016/j.jneumeth.2018.07.020_b3) 2015; 32 Cong (10.1016/j.jneumeth.2018.07.020_b6) 2015; 248 Zhou (10.1016/j.jneumeth.2018.07.020_b29) 2016; 104 Bro (10.1016/j.jneumeth.2018.07.020_b2) 2003; 17 Mørup (10.1016/j.jneumeth.2018.07.020_b18) 2006; 29 Handy (10.1016/j.jneumeth.2018.07.020_b11) 2005 Wang (10.1016/j.jneumeth.2018.07.020_b24) 2018 Idaji (10.1016/j.jneumeth.2018.07.020_b14) 2017; 70 Mørup (10.1016/j.jneumeth.2018.07.020_b17) 2007; 161 Timmerman (10.1016/j.jneumeth.2018.07.020_b22) 2000; 53 Herrmann (10.1016/j.jneumeth.2018.07.020_b12) 2004; 5 Sidiropoulos (10.1016/j.jneumeth.2018.07.020_b21) 2017; 65 Cong (10.1016/j.jneumeth.2018.07.020_b7) 2013; 23 Weis (10.1016/j.jneumeth.2018.07.020_b25) 2009 Arnfred (10.1016/j.jneumeth.2018.07.020_b1) 2011; 185 Herrmann (10.1016/j.jneumeth.2018.07.020_b13) 2004; 8 Mørup (10.1016/j.jneumeth.2018.07.020_b16) 2009; 23 Zhang (10.1016/j.jneumeth.2018.07.020_b27) 2013; 21 Vanderperren (10.1016/j.jneumeth.2018.07.020_b23) 2012; 50 Delorme (10.1016/j.jneumeth.2018.07.020_b10) 2004; 134 Mørup (10.1016/j.jneumeth.2018.07.020_b19) 2006 Cichocki (10.1016/j.jneumeth.2018.07.020_b4) 2009 Cohen (10.1016/j.jneumeth.2018.07.020_b5) 2014 Zhao (10.1016/j.jneumeth.2018.07.020_b28) 2011 |
References_xml | – volume: 6 start-page: 1758 year: 2013 end-page: 1789 ident: b26 article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. – volume: 22 start-page: 1250025 year: 2012 ident: b8 article-title: Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from EEG collected by low-density array publication-title: Int. J. Neural Syst. – volume: 8 start-page: 347 year: 2004 end-page: 355 ident: b13 article-title: Cognitive functions of gamma-band activity: memory match and utilization publication-title: Trends Cogn. Sci. – start-page: 1269 year: 2011 end-page: 1277 ident: b28 article-title: Multilinear subspace regression: An orthogonal tensor decomposition approach publication-title: Advances in Neural Information Processing Systems, vol. 24 – start-page: 1 year: 2006 end-page: 28 ident: b19 article-title: Decomposing the Time-Frequency Representation of EEG Using Non-Negative Matrix and Multi-Way Factorization – volume: 65 start-page: 3551 year: 2017 end-page: 3582 ident: b21 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans. Signal Process. – volume: 29 start-page: 938 year: 2006 end-page: 947 ident: b18 article-title: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG publication-title: NeuroImage – volume: 70 start-page: 152 year: 2017 end-page: 162 ident: b14 article-title: Higher order spectral regression discriminant analysis (HOSRDA): A tensor feature reduction method for ERP detection publication-title: Pattern Recognit. – volume: 185 start-page: 215 year: 2011 end-page: 224 ident: b1 article-title: Attenuation of beta and gamma oscillations in schizophrenia spectrum patients following hand posture perturbation publication-title: Psychiatry Res. – volume: 32 start-page: 145 year: 2015 end-page: 163 ident: b3 article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. – volume: 50 start-page: 97 year: 2012 end-page: 110 ident: b23 article-title: Single trial ERP reading based on parallel factor analysis publication-title: Psychophysiology – year: 2009 ident: b25 article-title: Multi-dimensional space–time-frequency component analysis of event related EEG data using closed-form PARAFAC publication-title: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 23 start-page: 1350006 year: 2013 ident: b7 article-title: Multi-domain feature extraction for small event-related potentials through nonnegative multi-way array decomposition from low dense array EEG publication-title: Int. J. Neural Syst. – year: 2014 ident: b5 publication-title: Analyzing Neural Time Series Data: Theory and Practice – start-page: 789 year: 2018 end-page: 799 ident: b24 article-title: Increasing stability of EEG components extraction using sparsity regularized tensor decomposition publication-title: Advances in Neural Networks - ISNN 2018 – volume: 101 start-page: 52 year: 2014 end-page: 64 ident: b20 article-title: Blind source separation of underdetermined mixtures of event-related sources publication-title: Signal Process. – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: b10 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – year: 2005 ident: b11 article-title: Event-Related Potentials: A Methods Handbook – volume: 248 start-page: 59 year: 2015 end-page: 69 ident: b6 article-title: Tensor decomposition of EEG signals: A brief review publication-title: J. Neurosci. Methods – volume: 31 start-page: 1580 year: 2006 end-page: 1591 ident: b9 article-title: Mechanisms of evoked and induced responses in MEG/EEG publication-title: NeuroImage – volume: 5 start-page: 13 year: 2004 ident: b12 article-title: Memory-matches evoke human gamma-responses publication-title: BMC Neurosci. – volume: 23 start-page: 352 year: 2009 end-page: 363 ident: b16 article-title: Automatic relevance determination for multi-way models publication-title: J. Chemometrics – volume: 64 start-page: 225 year: 2017 end-page: 237 ident: b15 article-title: A tensor decomposition-based approach for detecting dynamic network states from EEG publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 274 year: 2003 end-page: 286 ident: b2 article-title: A new efficient method for determining the number of components in PARAFAC models publication-title: J. Chemometrics – year: 2009 ident: b4 article-title: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation – volume: 161 start-page: 361 year: 2007 end-page: 368 ident: b17 article-title: ERPWAVELAB: A toolbox for multi-channel analysis of time–frequency transformed event related potentials publication-title: J. Neurosci. Methods – volume: 104 start-page: 310 year: 2016 end-page: 331 ident: b29 article-title: Linked component analysis from matrices to high-order tensors: Applications to biomedical data publication-title: Proc. IEEE – volume: 21 start-page: 887 year: 2013 end-page: 896 ident: b27 article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 53 start-page: 1 year: 2000 end-page: 16 ident: b22 article-title: Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima publication-title: Br. J. Math. Statist. Psychol. – volume: 185 start-page: 215 year: 2011 ident: 10.1016/j.jneumeth.2018.07.020_b1 article-title: Attenuation of beta and gamma oscillations in schizophrenia spectrum patients following hand posture perturbation publication-title: Psychiatry Res. doi: 10.1016/j.psychres.2009.10.005 – year: 2009 ident: 10.1016/j.jneumeth.2018.07.020_b4 – volume: 101 start-page: 52 year: 2014 ident: 10.1016/j.jneumeth.2018.07.020_b20 article-title: Blind source separation of underdetermined mixtures of event-related sources publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.01.031 – volume: 22 start-page: 1250025 year: 2012 ident: 10.1016/j.jneumeth.2018.07.020_b8 article-title: Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from EEG collected by low-density array publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065712500256 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.jneumeth.2018.07.020_b10 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 17 start-page: 274 year: 2003 ident: 10.1016/j.jneumeth.2018.07.020_b2 article-title: A new efficient method for determining the number of components in PARAFAC models publication-title: J. Chemometrics doi: 10.1002/cem.801 – start-page: 1269 year: 2011 ident: 10.1016/j.jneumeth.2018.07.020_b28 article-title: Multilinear subspace regression: An orthogonal tensor decomposition approach – year: 2014 ident: 10.1016/j.jneumeth.2018.07.020_b5 – volume: 23 start-page: 352 year: 2009 ident: 10.1016/j.jneumeth.2018.07.020_b16 article-title: Automatic relevance determination for multi-way models publication-title: J. Chemometrics doi: 10.1002/cem.1223 – start-page: 789 year: 2018 ident: 10.1016/j.jneumeth.2018.07.020_b24 article-title: Increasing stability of EEG components extraction using sparsity regularized tensor decomposition – volume: 5 start-page: 13 year: 2004 ident: 10.1016/j.jneumeth.2018.07.020_b12 article-title: Memory-matches evoke human gamma-responses publication-title: BMC Neurosci. doi: 10.1186/1471-2202-5-13 – volume: 21 start-page: 887 year: 2013 ident: 10.1016/j.jneumeth.2018.07.020_b27 article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2279680 – volume: 31 start-page: 1580 year: 2006 ident: 10.1016/j.jneumeth.2018.07.020_b9 article-title: Mechanisms of evoked and induced responses in MEG/EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.034 – volume: 53 start-page: 1 year: 2000 ident: 10.1016/j.jneumeth.2018.07.020_b22 article-title: Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima publication-title: Br. J. Math. Statist. Psychol. doi: 10.1348/000711000159132 – volume: 65 start-page: 3551 year: 2017 ident: 10.1016/j.jneumeth.2018.07.020_b21 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2690524 – volume: 32 start-page: 145 year: 2015 ident: 10.1016/j.jneumeth.2018.07.020_b3 article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2297439 – volume: 23 start-page: 1350006 year: 2013 ident: 10.1016/j.jneumeth.2018.07.020_b7 article-title: Multi-domain feature extraction for small event-related potentials through nonnegative multi-way array decomposition from low dense array EEG publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065713500068 – volume: 248 start-page: 59 year: 2015 ident: 10.1016/j.jneumeth.2018.07.020_b6 article-title: Tensor decomposition of EEG signals: A brief review publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.03.018 – start-page: 1 year: 2006 ident: 10.1016/j.jneumeth.2018.07.020_b19 – volume: 64 start-page: 225 year: 2017 ident: 10.1016/j.jneumeth.2018.07.020_b15 article-title: A tensor decomposition-based approach for detecting dynamic network states from EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2553960 – volume: 29 start-page: 938 year: 2006 ident: 10.1016/j.jneumeth.2018.07.020_b18 article-title: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.005 – year: 2009 ident: 10.1016/j.jneumeth.2018.07.020_b25 article-title: Multi-dimensional space–time-frequency component analysis of event related EEG data using closed-form PARAFAC – volume: 8 start-page: 347 year: 2004 ident: 10.1016/j.jneumeth.2018.07.020_b13 article-title: Cognitive functions of gamma-band activity: memory match and utilization publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2004.06.006 – volume: 50 start-page: 97 year: 2012 ident: 10.1016/j.jneumeth.2018.07.020_b23 article-title: Single trial ERP reading based on parallel factor analysis publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2012.01405.x – volume: 161 start-page: 361 year: 2007 ident: 10.1016/j.jneumeth.2018.07.020_b17 article-title: ERPWAVELAB: A toolbox for multi-channel analysis of time–frequency transformed event related potentials publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.11.008 – volume: 104 start-page: 310 year: 2016 ident: 10.1016/j.jneumeth.2018.07.020_b29 article-title: Linked component analysis from matrices to high-order tensors: Applications to biomedical data publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2474704 – volume: 70 start-page: 152 year: 2017 ident: 10.1016/j.jneumeth.2018.07.020_b14 article-title: Higher order spectral regression discriminant analysis (HOSRDA): A tensor feature reduction method for ERP detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.004 – volume: 6 start-page: 1758 year: 2013 ident: 10.1016/j.jneumeth.2018.07.020_b26 article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – year: 2005 ident: 10.1016/j.jneumeth.2018.07.020_b11 |
SSID | ssj0004906 |
Score | 2.3782923 |
Snippet | Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 240 |
SubjectTerms | CANDECOMP/PARAFAC Component number selection Event-related potential Multi-mode features Nonnegative tensor decomposition |
Title | Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition |
URI | https://dx.doi.org/10.1016/j.jneumeth.2018.07.020 https://www.ncbi.nlm.nih.gov/pubmed/30077630 https://www.proquest.com/docview/2084342081 |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB5KBfFFtK31qpYI4tv2sruz2c3jUa6cSotoD_oWkmxyvaPdlnYP9MXfbia7Wy1U-uDj7iYkZGYzk8w33wB8yFOLunSYZHUQA5rCJFKgSxw6pLgTSkMX-scnYjbHz2fF2QYcDrkwBKvs9_5uT4-7df9m3K_m-Hq5HH-nRJxwqOIpUVjlBSX8Ipak5Qe__sA8UMb6mtSY4pX8ryzh1cGqcWuq1EwQryqSeFLd74cN1L8c0GiIjl7A896DZJNuki9hwzVbsD1pwun58if7yCKmM16Wb8HT4z50vg3z6Y82ZkQ1CxZRhAkVwWHTb1-Zd5Hd85YRCH7B_NK350nk5GQN4WAWkRycEdb96obVjmDoPdZrB-ZH09PDWdLXVEhsLqo2EYWvg10UlRPcl7IWuau8zbRAm1UWMxu-l8YWXGgjtcWycF5rY_Pg56Q-uBuvYDMM7V4Dq1NpuOdcB58ShTEm47KSttK-SK0ROIJiWEhle8JxqntxoQZk2UoNAlAkAMVLFQQwgvFdv-uOcuPRHnKQk7qnPCrYhUf7vh8Eq8KfReES3bir9W1oVGFO6IN0BLudxO_mk0capJzv_cfIb-AZPXXIwLew2d6s3bvg4bRmP6rwPjyZfPoyO_kNRkT8qQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgJeEGx8lE8jId5CncRx7cdq6tSxtUKwSnuzbMfuWkE2bakE_z0-xxkggfbAa-yTLZ_jO_t-9zuAd2VumR47lhV1UAMzlckkZy5zzDGMOzFp8EF_vuCzJft4Vp3twEGfC4OwynT2d2d6PK3Tl1FazdHlej36gok44VJFc6SwKitxB3aRnaoawO7k6Hi2-JUeKWOJTeyPIUv6W6Lw5sOmcVss1owoLxF5PLH0999t1L980GiLDh_Cg-REkkk3z0ew45o92J804QL97Qd5TyKsM76X78HdeYqe78Ny-r2NSVHNikQgYYZ1cMj08yfiXST4vCaIg18Rv_bteRZpOUmDUJhV5AcnCHe_uCK1QyR6gns9huXh9PRglqWyCpktuWgzXvk6mEYuHKd-LGteOuFtoTmzhbCssKF9bGxFuTZS27CizmttbBlcndwHj-MJDMLQ7hmQOpeGekp1cCsZN8YUVApphfZVbg1nQ6j6hVQ2cY5j6YuvqgeXbVSvAIUKUHSsggKGMLqRu-xYN26VkL2e1B_7RwXTcKvs216xKvxcGDHRjbvYXodOgpUIQMiH8LTT-M18ysiEVNLn_zHyG7g3O52fqJOjxfELuI8tHVDwJQzaq617FRye1rxOG_on5dL_Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+multi-mode+ERP+features+using+fifth-order+nonnegative+tensor+decomposition&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Wang%2C+Deqing&rft.au=Zhu%2C+Yongjie&rft.au=Ristaniemi%2C+Tapani&rft.au=Cong%2C+Fengyu&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=308&rft.spage=240&rft.epage=247&rft_id=info:doi/10.1016%2Fj.jneumeth.2018.07.020&rft.externalDocID=S0165027018302358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |