Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition

Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 308; pp. 240 - 247
Main Authors Wang, Deqing, Zhu, Yongjie, Ristaniemi, Tapani, Cong, Fengyu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes. In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition. By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand. In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies. The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes. [Display omitted]
AbstractList Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes.BACKGROUNDPreprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes.In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition.NEW METHODIn this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition.By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand.RESULTSBy the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand.In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies.COMPARISON WITH EXISTING METHOD(S)In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies.The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes.CONCLUSIONSThe discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes.
Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes. In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition. By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand. In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies. The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes.
Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes. In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition. By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand. In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies. The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes. [Display omitted]
Author Ristaniemi, Tapani
Zhu, Yongjie
Cong, Fengyu
Wang, Deqing
Author_xml – sequence: 1
  givenname: Deqing
  orcidid: 0000-0002-1333-0928
  surname: Wang
  fullname: Wang, Deqing
  email: deqing.wang@foxmail.com
  organization: School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Yongjie
  surname: Zhu
  fullname: Zhu, Yongjie
  email: yongjie.zhu@foxmail.com
  organization: School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Tapani
  surname: Ristaniemi
  fullname: Ristaniemi, Tapani
  email: tapani.e.ristaniemi@jyu.fi
  organization: Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
– sequence: 4
  givenname: Fengyu
  surname: Cong
  fullname: Cong, Fengyu
  email: cong@dlut.edu.cn
  organization: School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30077630$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFqGzEQhkVJaZy0rxD2mMtuZrVraQ09pAQ3KQRaQgy9CXl2lMjsSq6kNenbR8ZxD73kMnOY7_8ZvjN24rwjxi5qqGqoxdWm2jiaRkrPFYe6q0BWwOEDm9Wd5KWQ3e8TNsvgvAQu4ZSdxbgBgHYB4hM7bQCkFA3M2Gr5koLGZN1TMU5DsuXoeyqWD78KQzpNgWIxxf3VWJOeSx96CkV-xtGTTnZHRSIXfSh6Qj9ufbTJeveZfTR6iPTlbZ-z1ffl481def_z9sfNt_sSG9GlUsxNj0SiIwFGLnrRUGeQa9Ei77DlmO9yjXMQer3Q2Mo5Ga3X2EguayPb5pxdHnq3wf-ZKCY12og0DNqRn6Li0LVNm2ed0Ys3dFqP1KttsKMOf9VRRQbEAcDgYwxk_iE1qL1ztVFH52rvXIFU2XkOfv0viDbpvYZs1g7vx68PccqidpaCimjJIfU2ECbVe_texSt1GqQY
CitedBy_id crossref_primary_10_1016_j_dsp_2022_103682
crossref_primary_10_1007_s11431_020_1840_4
crossref_primary_10_1109_ACCESS_2019_2943497
crossref_primary_10_1016_j_neuroimage_2022_119331
crossref_primary_10_1142_S0129065721500015
crossref_primary_10_1155_2022_9441697
crossref_primary_10_1109_TNSRE_2019_2953971
crossref_primary_10_1109_TNSRE_2021_3111564
crossref_primary_10_1016_j_neuroimage_2021_117829
crossref_primary_10_1088_1741_2552_ab5247
crossref_primary_10_1088_1361_6579_ace510
crossref_primary_10_1088_1741_2552_ac954f
crossref_primary_10_1525_mp_2022_39_3_249
crossref_primary_10_1016_j_neuroimage_2020_116924
crossref_primary_10_1016_j_sigpro_2024_109532
crossref_primary_10_1016_j_jneumeth_2019_108502
crossref_primary_10_3389_fnins_2023_1180293
crossref_primary_10_1016_j_neuroimage_2021_118720
crossref_primary_10_1016_j_neuroimage_2022_119193
crossref_primary_10_1007_s12021_022_09599_y
Cites_doi 10.1016/j.psychres.2009.10.005
10.1016/j.sigpro.2014.01.031
10.1142/S0129065712500256
10.1016/j.jneumeth.2003.10.009
10.1002/cem.801
10.1002/cem.1223
10.1186/1471-2202-5-13
10.1109/TNSRE.2013.2279680
10.1016/j.neuroimage.2006.02.034
10.1348/000711000159132
10.1109/TSP.2017.2690524
10.1109/MSP.2013.2297439
10.1142/S0129065713500068
10.1016/j.jneumeth.2015.03.018
10.1109/TBME.2016.2553960
10.1016/j.neuroimage.2005.08.005
10.1016/j.tics.2004.06.006
10.1111/j.1469-8986.2012.01405.x
10.1016/j.jneumeth.2006.11.008
10.1109/JPROC.2015.2474704
10.1016/j.patcog.2017.05.004
10.1137/120887795
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2018.07.020
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 247
ExternalDocumentID 30077630
10_1016_j_jneumeth_2018_07_020
S0165027018302358
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c368t-65fdcee68e60f79d63e8fc2a64c28c42c5fd7bc506ab9ac475efaabc37271f743
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Tue Aug 05 09:32:44 EDT 2025
Wed Feb 19 02:43:51 EST 2025
Tue Jul 01 02:57:09 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Fri Feb 23 02:48:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Event-related potential
Component number selection
CANDECOMP/PARAFAC
Multi-mode features
Nonnegative tensor decomposition
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-65fdcee68e60f79d63e8fc2a64c28c42c5fd7bc506ab9ac475efaabc37271f743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1333-0928
PMID 30077630
PQID 2084342081
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2084342081
pubmed_primary_30077630
crossref_primary_10_1016_j_jneumeth_2018_07_020
crossref_citationtrail_10_1016_j_jneumeth_2018_07_020
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2018_07_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
2018-10-00
2018-Oct-01
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bro, Kiers (b2) 2003; 17
Cong, Phan, Zhao, Huttunen-Scott, Kaartinen, Ristaniemi, Lyytinen, Cichocki (b8) 2012; 22
Cong, Phan, Astikainen, Zhao, Wu, Hietanen, Ristaniemi, Cichocki (b7) 2013; 23
David, Kilner, Friston (b9) 2006; 31
Arnfred, Mørup, Thalbitzer, Jansson, Parnas (b1) 2011; 185
Sidiropoulos, Lathauwer, Fu, Huang, Papalexakis, Faloutsos (b21) 2017; 65
Mørup, Hansen, Arnfred (b17) 2007; 161
Zhang, Zhou, Jin, Wang, Wang, Cichocki (b27) 2013; 21
Handy (b11) 2005
Vanderperren, Mijović, Novitskiy, Vanrumste, Stiers, den Bergh, Lagae, Sunaert, Wagemans, Huffel, Vos (b23) 2012; 50
Zhou, Zhao, Zhang, Adali, Xie, Cichocki (b29) 2016; 104
Herrmann, Munk, Engel (b13) 2004; 8
Zhao, Caiafa, Mandic, Zhang, Ball, Schulze-bonhage, Cichocki (b28) 2011
Timmerman, Kiers (b22) 2000; 53
Wang, Wang, Zhu, Toiviainen, Huotilainen, Ristaniemi, Cong (b24) 2018
Mørup, Hansen, Herrmann, Parnas, Arnfred (b18) 2006; 29
Cohen (b5) 2014
Cichocki, Mandic, Lathauwer, Zhou, Zhao, Caiafa, Phan (b3) 2015; 32
Cichocki, Zdunek, Phan, Amari (b4) 2009
Idaji, Shamsollahi, Sardouie (b14) 2017; 70
Mørup, Hansen (b16) 2009; 23
Herrmann, Lenz, Junge, Busch, Maess (b12) 2004; 5
Mørup, Hansen, Parnas, Arnfred (b19) 2006
Mahyari, Zoltowski, Bernat, Aviyente (b15) 2017; 64
Niknazar, Becker, Rivet, Jutten, Comon (b20) 2014; 101
Xu, Yin (b26) 2013; 6
Delorme, Makeig (b10) 2004; 134
Cong, Lin, Kuang, Gong, Astikainen, Ristaniemi (b6) 2015; 248
Weis, Romer, Haardt, Jannek, Husar (b25) 2009
Niknazar (10.1016/j.jneumeth.2018.07.020_b20) 2014; 101
Mahyari (10.1016/j.jneumeth.2018.07.020_b15) 2017; 64
Xu (10.1016/j.jneumeth.2018.07.020_b26) 2013; 6
Cong (10.1016/j.jneumeth.2018.07.020_b8) 2012; 22
David (10.1016/j.jneumeth.2018.07.020_b9) 2006; 31
Cichocki (10.1016/j.jneumeth.2018.07.020_b3) 2015; 32
Cong (10.1016/j.jneumeth.2018.07.020_b6) 2015; 248
Zhou (10.1016/j.jneumeth.2018.07.020_b29) 2016; 104
Bro (10.1016/j.jneumeth.2018.07.020_b2) 2003; 17
Mørup (10.1016/j.jneumeth.2018.07.020_b18) 2006; 29
Handy (10.1016/j.jneumeth.2018.07.020_b11) 2005
Wang (10.1016/j.jneumeth.2018.07.020_b24) 2018
Idaji (10.1016/j.jneumeth.2018.07.020_b14) 2017; 70
Mørup (10.1016/j.jneumeth.2018.07.020_b17) 2007; 161
Timmerman (10.1016/j.jneumeth.2018.07.020_b22) 2000; 53
Herrmann (10.1016/j.jneumeth.2018.07.020_b12) 2004; 5
Sidiropoulos (10.1016/j.jneumeth.2018.07.020_b21) 2017; 65
Cong (10.1016/j.jneumeth.2018.07.020_b7) 2013; 23
Weis (10.1016/j.jneumeth.2018.07.020_b25) 2009
Arnfred (10.1016/j.jneumeth.2018.07.020_b1) 2011; 185
Herrmann (10.1016/j.jneumeth.2018.07.020_b13) 2004; 8
Mørup (10.1016/j.jneumeth.2018.07.020_b16) 2009; 23
Zhang (10.1016/j.jneumeth.2018.07.020_b27) 2013; 21
Vanderperren (10.1016/j.jneumeth.2018.07.020_b23) 2012; 50
Delorme (10.1016/j.jneumeth.2018.07.020_b10) 2004; 134
Mørup (10.1016/j.jneumeth.2018.07.020_b19) 2006
Cichocki (10.1016/j.jneumeth.2018.07.020_b4) 2009
Cohen (10.1016/j.jneumeth.2018.07.020_b5) 2014
Zhao (10.1016/j.jneumeth.2018.07.020_b28) 2011
References_xml – volume: 6
  start-page: 1758
  year: 2013
  end-page: 1789
  ident: b26
  article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
– volume: 22
  start-page: 1250025
  year: 2012
  ident: b8
  article-title: Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from EEG collected by low-density array
  publication-title: Int. J. Neural Syst.
– volume: 8
  start-page: 347
  year: 2004
  end-page: 355
  ident: b13
  article-title: Cognitive functions of gamma-band activity: memory match and utilization
  publication-title: Trends Cogn. Sci.
– start-page: 1269
  year: 2011
  end-page: 1277
  ident: b28
  article-title: Multilinear subspace regression: An orthogonal tensor decomposition approach
  publication-title: Advances in Neural Information Processing Systems, vol. 24
– start-page: 1
  year: 2006
  end-page: 28
  ident: b19
  article-title: Decomposing the Time-Frequency Representation of EEG Using Non-Negative Matrix and Multi-Way Factorization
– volume: 65
  start-page: 3551
  year: 2017
  end-page: 3582
  ident: b21
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Trans. Signal Process.
– volume: 29
  start-page: 938
  year: 2006
  end-page: 947
  ident: b18
  article-title: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG
  publication-title: NeuroImage
– volume: 70
  start-page: 152
  year: 2017
  end-page: 162
  ident: b14
  article-title: Higher order spectral regression discriminant analysis (HOSRDA): A tensor feature reduction method for ERP detection
  publication-title: Pattern Recognit.
– volume: 185
  start-page: 215
  year: 2011
  end-page: 224
  ident: b1
  article-title: Attenuation of beta and gamma oscillations in schizophrenia spectrum patients following hand posture perturbation
  publication-title: Psychiatry Res.
– volume: 32
  start-page: 145
  year: 2015
  end-page: 163
  ident: b3
  article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 50
  start-page: 97
  year: 2012
  end-page: 110
  ident: b23
  article-title: Single trial ERP reading based on parallel factor analysis
  publication-title: Psychophysiology
– year: 2009
  ident: b25
  article-title: Multi-dimensional space–time-frequency component analysis of event related EEG data using closed-form PARAFAC
  publication-title: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 23
  start-page: 1350006
  year: 2013
  ident: b7
  article-title: Multi-domain feature extraction for small event-related potentials through nonnegative multi-way array decomposition from low dense array EEG
  publication-title: Int. J. Neural Syst.
– year: 2014
  ident: b5
  publication-title: Analyzing Neural Time Series Data: Theory and Practice
– start-page: 789
  year: 2018
  end-page: 799
  ident: b24
  article-title: Increasing stability of EEG components extraction using sparsity regularized tensor decomposition
  publication-title: Advances in Neural Networks - ISNN 2018
– volume: 101
  start-page: 52
  year: 2014
  end-page: 64
  ident: b20
  article-title: Blind source separation of underdetermined mixtures of event-related sources
  publication-title: Signal Process.
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: b10
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– year: 2005
  ident: b11
  article-title: Event-Related Potentials: A Methods Handbook
– volume: 248
  start-page: 59
  year: 2015
  end-page: 69
  ident: b6
  article-title: Tensor decomposition of EEG signals: A brief review
  publication-title: J. Neurosci. Methods
– volume: 31
  start-page: 1580
  year: 2006
  end-page: 1591
  ident: b9
  article-title: Mechanisms of evoked and induced responses in MEG/EEG
  publication-title: NeuroImage
– volume: 5
  start-page: 13
  year: 2004
  ident: b12
  article-title: Memory-matches evoke human gamma-responses
  publication-title: BMC Neurosci.
– volume: 23
  start-page: 352
  year: 2009
  end-page: 363
  ident: b16
  article-title: Automatic relevance determination for multi-way models
  publication-title: J. Chemometrics
– volume: 64
  start-page: 225
  year: 2017
  end-page: 237
  ident: b15
  article-title: A tensor decomposition-based approach for detecting dynamic network states from EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 274
  year: 2003
  end-page: 286
  ident: b2
  article-title: A new efficient method for determining the number of components in PARAFAC models
  publication-title: J. Chemometrics
– year: 2009
  ident: b4
  article-title: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation
– volume: 161
  start-page: 361
  year: 2007
  end-page: 368
  ident: b17
  article-title: ERPWAVELAB: A toolbox for multi-channel analysis of time–frequency transformed event related potentials
  publication-title: J. Neurosci. Methods
– volume: 104
  start-page: 310
  year: 2016
  end-page: 331
  ident: b29
  article-title: Linked component analysis from matrices to high-order tensors: Applications to biomedical data
  publication-title: Proc. IEEE
– volume: 21
  start-page: 887
  year: 2013
  end-page: 896
  ident: b27
  article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 53
  start-page: 1
  year: 2000
  end-page: 16
  ident: b22
  article-title: Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima
  publication-title: Br. J. Math. Statist. Psychol.
– volume: 185
  start-page: 215
  year: 2011
  ident: 10.1016/j.jneumeth.2018.07.020_b1
  article-title: Attenuation of beta and gamma oscillations in schizophrenia spectrum patients following hand posture perturbation
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2009.10.005
– year: 2009
  ident: 10.1016/j.jneumeth.2018.07.020_b4
– volume: 101
  start-page: 52
  year: 2014
  ident: 10.1016/j.jneumeth.2018.07.020_b20
  article-title: Blind source separation of underdetermined mixtures of event-related sources
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.01.031
– volume: 22
  start-page: 1250025
  year: 2012
  ident: 10.1016/j.jneumeth.2018.07.020_b8
  article-title: Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from EEG collected by low-density array
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065712500256
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.jneumeth.2018.07.020_b10
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 17
  start-page: 274
  year: 2003
  ident: 10.1016/j.jneumeth.2018.07.020_b2
  article-title: A new efficient method for determining the number of components in PARAFAC models
  publication-title: J. Chemometrics
  doi: 10.1002/cem.801
– start-page: 1269
  year: 2011
  ident: 10.1016/j.jneumeth.2018.07.020_b28
  article-title: Multilinear subspace regression: An orthogonal tensor decomposition approach
– year: 2014
  ident: 10.1016/j.jneumeth.2018.07.020_b5
– volume: 23
  start-page: 352
  year: 2009
  ident: 10.1016/j.jneumeth.2018.07.020_b16
  article-title: Automatic relevance determination for multi-way models
  publication-title: J. Chemometrics
  doi: 10.1002/cem.1223
– start-page: 789
  year: 2018
  ident: 10.1016/j.jneumeth.2018.07.020_b24
  article-title: Increasing stability of EEG components extraction using sparsity regularized tensor decomposition
– volume: 5
  start-page: 13
  year: 2004
  ident: 10.1016/j.jneumeth.2018.07.020_b12
  article-title: Memory-matches evoke human gamma-responses
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-5-13
– volume: 21
  start-page: 887
  year: 2013
  ident: 10.1016/j.jneumeth.2018.07.020_b27
  article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2279680
– volume: 31
  start-page: 1580
  year: 2006
  ident: 10.1016/j.jneumeth.2018.07.020_b9
  article-title: Mechanisms of evoked and induced responses in MEG/EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.034
– volume: 53
  start-page: 1
  year: 2000
  ident: 10.1016/j.jneumeth.2018.07.020_b22
  article-title: Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima
  publication-title: Br. J. Math. Statist. Psychol.
  doi: 10.1348/000711000159132
– volume: 65
  start-page: 3551
  year: 2017
  ident: 10.1016/j.jneumeth.2018.07.020_b21
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2690524
– volume: 32
  start-page: 145
  year: 2015
  ident: 10.1016/j.jneumeth.2018.07.020_b3
  article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2297439
– volume: 23
  start-page: 1350006
  year: 2013
  ident: 10.1016/j.jneumeth.2018.07.020_b7
  article-title: Multi-domain feature extraction for small event-related potentials through nonnegative multi-way array decomposition from low dense array EEG
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065713500068
– volume: 248
  start-page: 59
  year: 2015
  ident: 10.1016/j.jneumeth.2018.07.020_b6
  article-title: Tensor decomposition of EEG signals: A brief review
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.03.018
– start-page: 1
  year: 2006
  ident: 10.1016/j.jneumeth.2018.07.020_b19
– volume: 64
  start-page: 225
  year: 2017
  ident: 10.1016/j.jneumeth.2018.07.020_b15
  article-title: A tensor decomposition-based approach for detecting dynamic network states from EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2553960
– volume: 29
  start-page: 938
  year: 2006
  ident: 10.1016/j.jneumeth.2018.07.020_b18
  article-title: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.005
– year: 2009
  ident: 10.1016/j.jneumeth.2018.07.020_b25
  article-title: Multi-dimensional space–time-frequency component analysis of event related EEG data using closed-form PARAFAC
– volume: 8
  start-page: 347
  year: 2004
  ident: 10.1016/j.jneumeth.2018.07.020_b13
  article-title: Cognitive functions of gamma-band activity: memory match and utilization
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2004.06.006
– volume: 50
  start-page: 97
  year: 2012
  ident: 10.1016/j.jneumeth.2018.07.020_b23
  article-title: Single trial ERP reading based on parallel factor analysis
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2012.01405.x
– volume: 161
  start-page: 361
  year: 2007
  ident: 10.1016/j.jneumeth.2018.07.020_b17
  article-title: ERPWAVELAB: A toolbox for multi-channel analysis of time–frequency transformed event related potentials
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.11.008
– volume: 104
  start-page: 310
  year: 2016
  ident: 10.1016/j.jneumeth.2018.07.020_b29
  article-title: Linked component analysis from matrices to high-order tensors: Applications to biomedical data
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2474704
– volume: 70
  start-page: 152
  year: 2017
  ident: 10.1016/j.jneumeth.2018.07.020_b14
  article-title: Higher order spectral regression discriminant analysis (HOSRDA): A tensor feature reduction method for ERP detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.004
– volume: 6
  start-page: 1758
  year: 2013
  ident: 10.1016/j.jneumeth.2018.07.020_b26
  article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– year: 2005
  ident: 10.1016/j.jneumeth.2018.07.020_b11
SSID ssj0004906
Score 2.3782923
Snippet Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 240
SubjectTerms CANDECOMP/PARAFAC
Component number selection
Event-related potential
Multi-mode features
Nonnegative tensor decomposition
Title Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition
URI https://dx.doi.org/10.1016/j.jneumeth.2018.07.020
https://www.ncbi.nlm.nih.gov/pubmed/30077630
https://www.proquest.com/docview/2084342081
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB5KBfFFtK31qpYI4tv2sruz2c3jUa6cSotoD_oWkmxyvaPdlnYP9MXfbia7Wy1U-uDj7iYkZGYzk8w33wB8yFOLunSYZHUQA5rCJFKgSxw6pLgTSkMX-scnYjbHz2fF2QYcDrkwBKvs9_5uT4-7df9m3K_m-Hq5HH-nRJxwqOIpUVjlBSX8Ipak5Qe__sA8UMb6mtSY4pX8ryzh1cGqcWuq1EwQryqSeFLd74cN1L8c0GiIjl7A896DZJNuki9hwzVbsD1pwun58if7yCKmM16Wb8HT4z50vg3z6Y82ZkQ1CxZRhAkVwWHTb1-Zd5Hd85YRCH7B_NK350nk5GQN4WAWkRycEdb96obVjmDoPdZrB-ZH09PDWdLXVEhsLqo2EYWvg10UlRPcl7IWuau8zbRAm1UWMxu-l8YWXGgjtcWycF5rY_Pg56Q-uBuvYDMM7V4Dq1NpuOdcB58ShTEm47KSttK-SK0ROIJiWEhle8JxqntxoQZk2UoNAlAkAMVLFQQwgvFdv-uOcuPRHnKQk7qnPCrYhUf7vh8Eq8KfReES3bir9W1oVGFO6IN0BLudxO_mk0capJzv_cfIb-AZPXXIwLew2d6s3bvg4bRmP6rwPjyZfPoyO_kNRkT8qQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgJeEGx8lE8jId5CncRx7cdq6tSxtUKwSnuzbMfuWkE2bakE_z0-xxkggfbAa-yTLZ_jO_t-9zuAd2VumR47lhV1UAMzlckkZy5zzDGMOzFp8EF_vuCzJft4Vp3twEGfC4OwynT2d2d6PK3Tl1FazdHlej36gok44VJFc6SwKitxB3aRnaoawO7k6Hi2-JUeKWOJTeyPIUv6W6Lw5sOmcVss1owoLxF5PLH0999t1L980GiLDh_Cg-REkkk3z0ew45o92J804QL97Qd5TyKsM76X78HdeYqe78Ny-r2NSVHNikQgYYZ1cMj08yfiXST4vCaIg18Rv_bteRZpOUmDUJhV5AcnCHe_uCK1QyR6gns9huXh9PRglqWyCpktuWgzXvk6mEYuHKd-LGteOuFtoTmzhbCssKF9bGxFuTZS27CizmttbBlcndwHj-MJDMLQ7hmQOpeGekp1cCsZN8YUVApphfZVbg1nQ6j6hVQ2cY5j6YuvqgeXbVSvAIUKUHSsggKGMLqRu-xYN26VkL2e1B_7RwXTcKvs216xKvxcGDHRjbvYXodOgpUIQMiH8LTT-M18ysiEVNLn_zHyG7g3O52fqJOjxfELuI8tHVDwJQzaq617FRye1rxOG_on5dL_Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+multi-mode+ERP+features+using+fifth-order+nonnegative+tensor+decomposition&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Wang%2C+Deqing&rft.au=Zhu%2C+Yongjie&rft.au=Ristaniemi%2C+Tapani&rft.au=Cong%2C+Fengyu&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=308&rft.spage=240&rft.epage=247&rft_id=info:doi/10.1016%2Fj.jneumeth.2018.07.020&rft.externalDocID=S0165027018302358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon