Generic point equivalence and Pisot numbers
Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a s...
Saved in:
Published in | Ergodic theory and dynamical systems Vol. 40; no. 12; pp. 3169 - 3180 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a sufficient condition for $T$ and $S$ to have the same generic points. We also give an uncountable family of maps which share the same set of generic points. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2019.46 |