Generic point equivalence and Pisot numbers

Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a s...

Full description

Saved in:
Bibliographic Details
Published inErgodic theory and dynamical systems Vol. 40; no. 12; pp. 3169 - 3180
Main Authors AKIYAMA, SHIGEKI, KANEKO, HAJIME, KIM, DONG HAN
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a sufficient condition for $T$ and $S$ to have the same generic points. We also give an uncountable family of maps which share the same set of generic points.
AbstractList Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$. We give a sufficient condition for $T$ and $S$ to have the same generic points. We also give an uncountable family of maps which share the same set of generic points.
Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow [0,1]$ be a piecewise linear transformation whose slopes have the form $\pm \unicode[STIX]{x1D6FD}^{m}$ with positive integers $m$ . We give a sufficient condition for $T$ and $S$ to have the same generic points. We also give an uncountable family of maps which share the same set of generic points.
Author KIM, DONG HAN
KANEKO, HAJIME
AKIYAMA, SHIGEKI
Author_xml – sequence: 1
  givenname: SHIGEKI
  orcidid: 0000-0001-7549-6686
  surname: AKIYAMA
  fullname: AKIYAMA, SHIGEKI
  email: akiyama@math.tsukuba.ac.jp
  organization: 1Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8571, Japan email akiyama@math.tsukuba.ac.jp, kanekoha@math.tsukuba.ac.jp
– sequence: 2
  givenname: HAJIME
  surname: KANEKO
  fullname: KANEKO, HAJIME
  email: akiyama@math.tsukuba.ac.jp
  organization: 1Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8571, Japan email akiyama@math.tsukuba.ac.jp, kanekoha@math.tsukuba.ac.jp
– sequence: 3
  givenname: DONG HAN
  orcidid: 0000-0001-5764-9466
  surname: KIM
  fullname: KIM, DONG HAN
  email: kim2010@dongguk.edu
  organization: 2Department of Mathematics Education, Dongguk University – Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul04620, Korea email kim2010@dongguk.edu
BookMark eNp1kMFKAzEQQINUsK3e_IAFj7prsskmm6MUW4WCHnoPyWYqKW3SJlnBv7dLC4LoaS7vzQxvgkY-eEDoluCKYCIeIdtU1ZjIivELNCaMy5IxIkZojAmjJW0bcYUmKW0wxpSIZozuF-Ahuq7YB-dzAYfefeot-A4K7W3x7lLIhe93BmK6RpdrvU1wc55TtJo_r2Yv5fJt8Tp7WpYd5W0uORYaM0ys5RYkEWDImnItiGk1GKmtpNa0tQXeygYMb7DlAlhLTC0BGjpFd6e1-xgOPaSsNqGP_nhR1azhtGai5UeqPlFdDClFWKvOZZ1d8Dlqt1UEq6GJGpqooYlig_TwS9pHt9Px6z-8OuN6Z6KzH_Dzyp_CN7ZedH4
CitedBy_id crossref_primary_10_1080_00207721_2024_2441454
Cites_doi 10.1006/jnth.1995.1114
10.24033/bsmf.2058
10.1006/jnth.1996.0022
10.1006/jnth.2000.2554
10.2969/jmsj/02610033
10.1080/10236198.2015.1043998
10.4064/fm-144-2-163-179
10.1016/0022-314X(69)90002-X
10.1017/S0143385707000053
10.1090/S0002-9947-1978-0457679-0
10.1023/A:1023263305857
10.1090/conm/135/1185092
10.1090/S0002-9947-1962-0137961-5
10.1007/BF02020954
10.2140/pjm.1953.3.189
10.1016/0096-3003(90)90027-Z
10.1017/S0143385708000801
10.2140/pjm.1960.10.661
10.2140/pjm.1981.95.193
10.1007/BF02760950
10.1007/BF01897025
ContentType Journal Article
Copyright Cambridge University Press, 2019
Copyright_xml – notice: Cambridge University Press, 2019
DBID AAYXX
CITATION
3V.
7SC
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/etds.2019.46
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4417
EndPage 3180
ExternalDocumentID 10_1017_etds_2019_46
GroupedDBID --Z
-1D
-1F
-2P
-2V
-DZ
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6TJ
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
7SC
7U5
7XB
8FD
8FK
H8D
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c368t-607a0401dd6de917eb1f36a71b8aeb9ad93db82de6895eb650d67e481b29ee53
IEDL.DBID BENPR
ISSN 0143-3857
IngestDate Fri Jul 25 10:54:08 EDT 2025
Tue Jul 01 00:22:27 EDT 2025
Thu Apr 24 23:20:21 EDT 2025
Wed Mar 13 05:54:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords beta expansion
11K16
Pisot number
generic point
37E05
normal number
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-607a0401dd6de917eb1f36a71b8aeb9ad93db82de6895eb650d67e481b29ee53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5764-9466
0000-0001-7549-6686
PQID 2456324786
PQPubID 36706
PageCount 12
ParticipantIDs proquest_journals_2456324786
crossref_citationtrail_10_1017_etds_2019_46
crossref_primary_10_1017_etds_2019_46
cambridge_journals_10_1017_etds_2019_46
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Ergodic theory and dynamical systems
PublicationTitleAlternate Ergod. Th. Dynam. Sys
PublicationYear 2020
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0143385719000464_r10
Kopf (S0143385719000464_r12) 1990; 39
Ki (S0143385719000464_r11) 1994; 144
S0143385719000464_r19
S0143385719000464_r2
S0143385719000464_r1
S0143385719000464_r18
S0143385719000464_r17
S0143385719000464_r16
S0143385719000464_r15
S0143385719000464_r6
S0143385719000464_r5
S0143385719000464_r14
S0143385719000464_r4
Postnikov (S0143385719000464_r21) 1966; 82
S0143385719000464_r3
Kowalski (S0143385719000464_r13) 1979; 27
Jäger (S0143385719000464_r8) 1971
S0143385719000464_r22
S0143385719000464_r20
S0143385719000464_r27
S0143385719000464_r26
S0143385719000464_r25
S0143385719000464_r24
S0143385719000464_r23
S0143385719000464_r9
S0143385719000464_r7
References_xml – ident: S0143385719000464_r26
  doi: 10.1006/jnth.1995.1114
– ident: S0143385719000464_r2
  doi: 10.24033/bsmf.2058
– ident: S0143385719000464_r9
  doi: 10.1006/jnth.1996.0022
– ident: S0143385719000464_r1
– ident: S0143385719000464_r14
  doi: 10.1006/jnth.2000.2554
– ident: S0143385719000464_r7
  doi: 10.2969/jmsj/02610033
– ident: S0143385719000464_r24
  doi: 10.1080/10236198.2015.1043998
– volume: 144
  start-page: 163
  year: 1994
  ident: S0143385719000464_r11
  article-title: Normal numbers and subset of N with given densities
  publication-title: Fund. Math.
  doi: 10.4064/fm-144-2-163-179
– ident: S0143385719000464_r23
  doi: 10.1016/0022-314X(69)90002-X
– ident: S0143385719000464_r4
  doi: 10.1017/S0143385707000053
– ident: S0143385719000464_r15
  doi: 10.1090/S0002-9947-1978-0457679-0
– volume: 82
  start-page: 3
  year: 1966
  ident: S0143385719000464_r21
  article-title: Ergodic problems in the theory of congruences and of diophantine approximations
  publication-title: Trudy Mat. Inst. Steklov
– ident: S0143385719000464_r27
– ident: S0143385719000464_r17
  doi: 10.1023/A:1023263305857
– ident: S0143385719000464_r25
– ident: S0143385719000464_r6
  doi: 10.1090/conm/135/1185092
– ident: S0143385719000464_r3
  doi: 10.1090/S0002-9947-1962-0137961-5
– ident: S0143385719000464_r18
  doi: 10.1007/BF02020954
– ident: S0143385719000464_r16
  doi: 10.2140/pjm.1953.3.189
– start-page: 67
  volume-title: Zahlentheorie (Tagung), Math. Forschungsinst. Oberwolfach, 1970
  year: 1971
  ident: S0143385719000464_r8
– volume: 39
  start-page: 123
  year: 1990
  ident: S0143385719000464_r12
  article-title: Invariant measures for piecewise linear transformations of the interval
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(90)90027-Z
– volume: 27
  start-page: 53
  year: 1979
  ident: S0143385719000464_r13
  article-title: Invariant measure for piecewise monotonic transformation has a positive lower bound on its support
  publication-title: Bull. Acad. Polon. Sci. Ser. Sci. Math.
– ident: S0143385719000464_r5
  doi: 10.1017/S0143385708000801
– ident: S0143385719000464_r22
  doi: 10.2140/pjm.1960.10.661
– ident: S0143385719000464_r20
  doi: 10.2140/pjm.1981.95.193
– ident: S0143385719000464_r10
  doi: 10.1007/BF02760950
– ident: S0143385719000464_r19
  doi: 10.1007/BF01897025
SSID ssj0003175
Score 2.2402196
Snippet Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow...
Let $\unicode[STIX]{x1D6FD}>1$ be an integer or, generally, a Pisot number. Put $T(x)=\{\unicode[STIX]{x1D6FD}x\}$ on $[0,1]$ and let $S:[0,1]\rightarrow...
Let \(\unicode[STIX]{x1D6FD}>1\) be an integer or, generally, a Pisot number. Put \(T(x)=\{\unicode[STIX]{x1D6FD}x\}\) on \([0,1]\) and let...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3169
SubjectTerms Linear transformations
Numbers
Original Article
Title Generic point equivalence and Pisot numbers
URI https://www.cambridge.org/core/product/identifier/S0143385719000464/type/journal_article
https://www.proquest.com/docview/2456324786
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uu-hB_InTOXpQPEi0bdokPYnK5hA2hkzYrSTNKxSk3Wz3_5usWccO89wHhS8v3_uRx_cQuiMAUeALhZM0cXGQuNI0mhSmQDgIqWlZmkJxPKGj7-BzHs5tw620Y5UbTlwTtSoS0yN_Ng90OvgzTl8WS2y2RpnXVbtCo4U6moI5b6PO22Ay_Wq42ETHeoiRYMJDZkffjWg0VMrIdXvRU7AjrLAboHb5eR10hifo2GaLzmt9vKfoAPIzdDRupFbLc1QLR2eJsyiyvHJgucq085j76ohcOdOsLCqn3vtRXqDZcDB7H2G7AQEnhPIKU5cJfcs8s_YJdGGlgUsJFcyTXICMhIqIktxXQHkUgtTZlqIMAp2K-hFASC5ROy9yuEJOkga6-Eg9wSKdxAlfhCJVgrmhC54UjHfRQ4NAbN24jOsRMBYbrGKDVRzQLnrc4BMnVkfcrLP42WN931gvav2MPXa9DdTb32_P_Pr_zzfo0Dd18HrMpIfa1e8KbnWyUMk-avHhR9_6xR_CXr_e
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6KHtSD-MRq1RwsHiSa525yEBG1tvaBhwq9hd3sBAqStCZF_FH-R3eaR-mh3nrOQMLk23nszn4fIVc2gO9YXOphFBq6ExoCN5qkTsH2gAsVlgU2iv0BbX84byN3VCO_5V0YHKssY-I8UMskxD3yOzygU8mfefRhMtVRNQpPV0sJjRwWXfj5Vi1bet95Vv-3aVmtl-FTWy9UBfTQpl6mU4NxhVwTpZRANSvqYyKbcmYKj4PwufRtKTxLAvV8F4SqYCRl4KjyzvIBUCRCRfxNx1aJHC-mt16rwI-pOJ-YtHXbc1kxZ48M1ZBJ5AY3_VtnicVhORsuJ4N5hmvtkd2iNNUecyztkxrEB2SnX_G6pockZ6keh9okGceZBtPZWCEVg4PGY6m9j9Mk03KRkfSIDNfhmGOyEScxnBAtjBzV6UQmZ76qGLnFXR5JzgzXAFNw5tXJdeWBoFgzaZDPm7EAfRWgrwKH1slN6Z8gLEjLUTvjc4V1s7Ke5GQdK-wapasXr18A7PT_x5dkqz3s94JeZ9A9I9sWNuDz-ZYG2ci-ZnCuqpRMXMyxoZFgzVj8A9LJ-rY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+point+equivalence+and+Pisot+numbers&rft.jtitle=Ergodic+theory+and+dynamical+systems&rft.au=Akiyama%2C+Shigeki&rft.au=Kaneko%2C+Hajime&rft.au=DONG+HAN+KIM&rft.date=2020-12-01&rft.pub=Cambridge+University+Press&rft.issn=0143-3857&rft.eissn=1469-4417&rft.volume=40&rft.issue=12&rft.spage=3169&rft.epage=3180&rft_id=info:doi/10.1017%2Fetds.2019.46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-3857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-3857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-3857&client=summon