A high order semi-Lagrangian discontinuous Galerkin method for Vlasov–Poisson simulations without operator splitting

•The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative, highly accurate, free of splitting error and allows for extra large time stepping size.•To the best of authors' knowledge, this is the fi...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 354; pp. 529 - 551
Main Authors Cai, Xiaofeng, Guo, Wei, Qiu, Jing-Mei
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.02.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative, highly accurate, free of splitting error and allows for extra large time stepping size.•To the best of authors' knowledge, this is the first SLDG scheme for VP simulations that is able to attain all these properties.•The method is applied to classic benchmark VP test problems, with effectiveness and efficiency showcased.•Tremendous CPU savings are observed, when compared with those from the classical Runge–Kutta DG method. In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge–Kutta DG method.
AbstractList •The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative, highly accurate, free of splitting error and allows for extra large time stepping size.•To the best of authors' knowledge, this is the first SLDG scheme for VP simulations that is able to attain all these properties.•The method is applied to classic benchmark VP test problems, with effectiveness and efficiency showcased.•Tremendous CPU savings are observed, when compared with those from the classical Runge–Kutta DG method. In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge–Kutta DG method.
In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge–Kutta DG method.
Author Guo, Wei
Qiu, Jing-Mei
Cai, Xiaofeng
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Cai
  fullname: Cai, Xiaofeng
  email: xfcai89@gmail.com
  organization: Department of Mathematical Science, University of Delaware, Newark, DE, 19716, United States
– sequence: 2
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  email: weimath.guo@ttu.edu
  organization: Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 70409, United States
– sequence: 3
  givenname: Jing-Mei
  surname: Qiu
  fullname: Qiu, Jing-Mei
  email: jingqiu@udel.edu
  organization: Department of Mathematical Science, University of Delaware, Newark, DE, 19716, United States
BookMark eNp9kE2O1DAQhS00SPQMHICdJdZp7Pw4tliNRjAgtQQLYGvZTqW7QtoOttMjdtyBG3IS3DQrFrMqVel9r_TeNbnywQMhLznbcsbF62k7uWVbM96Xfcta-YRsOFOsqnsursiGsZpXSin-jFynNDHGZNfKDTnd0gPuDzTEASJNcMRqZ_bR-D0aTwdMLviMfg1rovdmhvgNPT1CPoSBjiHSr7NJ4fT7569PAVMKniY8rrPJGHyiD1h0a6ZhgWhyUadlxlzs9s_J09HMCV78mzfky7u3n-_eV7uP9x_ubneVa4TMVTeowVnF2nY0YqyhMyM01ljJGWsaaXtXD0pK2Ttlne07O462E40V0FphnGluyKuL7xLD9xVS1lNYoy8vdc2E6jgToikqflG5GFKKMOol4tHEH5ozfa5XT7rUq8_1nk-l3sL0_zEO89_cORqcHyXfXEgowU8IUSeH4B0MGMFlPQR8hP4Dj9eb4Q
CitedBy_id crossref_primary_10_1007_s10915_018_0889_1
crossref_primary_10_1142_S0219876221500316
crossref_primary_10_1016_j_jcp_2024_113693
crossref_primary_10_1016_j_jcp_2025_113890
crossref_primary_10_1016_j_jcp_2018_10_012
crossref_primary_10_1016_j_cpc_2020_107400
crossref_primary_10_1137_20M1363273
crossref_primary_10_1016_j_jcp_2020_110036
crossref_primary_10_1007_s10915_018_0705_y
crossref_primary_10_1016_j_jcp_2021_110632
crossref_primary_10_1016_j_jcp_2023_112412
crossref_primary_10_1007_s42967_020_00088_0
crossref_primary_10_1016_j_jcp_2022_111160
crossref_primary_10_1016_j_jcp_2024_113664
crossref_primary_10_1016_j_jcp_2025_113840
crossref_primary_10_1007_s10915_018_0892_6
crossref_primary_10_1016_j_jcp_2023_112232
crossref_primary_10_1016_j_jcp_2021_110392
crossref_primary_10_1007_s10915_024_02714_y
crossref_primary_10_1016_j_cnsns_2021_105941
crossref_primary_10_1007_s10915_024_02520_6
crossref_primary_10_1016_j_cma_2022_114973
crossref_primary_10_1137_21M1456753
crossref_primary_10_1007_s40314_021_01683_4
crossref_primary_10_1103_PhysRevE_101_043307
Cites_doi 10.1002/fld.4171
10.1016/j.jcp.2009.12.030
10.4208/cicp.180210.251110a
10.1137/S0036142997316712
10.1007/s10915-017-0554-0
10.1016/j.jcp.2014.05.033
10.1137/S0036142901384162
10.1016/j.jcp.2016.07.021
10.1006/jcph.1998.6148
10.1016/0021-9991(76)90053-X
10.1137/130915091
10.1006/jcph.2001.6818
10.1175/MWR-D-13-00048.1
10.1016/j.jcp.2009.10.036
10.1007/s00211-016-0816-z
10.1137/S0036142900371003
10.1016/j.jcp.2012.09.014
10.1137/050644549
10.1006/jcph.2002.7098
10.1016/j.jcp.2009.10.016
10.1016/j.jcp.2013.09.013
10.1007/s10915-016-0305-7
10.1016/j.jcp.2011.09.020
10.1186/BF03352826
10.1016/j.jcp.2014.08.041
10.1016/j.jcp.2014.02.012
10.1016/S0010-4655(02)00694-X
10.1016/j.jcp.2011.07.018
10.1007/s10915-012-9680-x
10.1016/S0010-4655(99)00247-7
10.1016/j.jcp.2005.11.030
10.1016/j.jcp.2009.11.007
10.1016/j.jcp.2014.04.003
10.1016/j.jcp.2011.04.018
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright Elsevier Science Ltd. Feb 1, 2018
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Feb 1, 2018
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2017.10.048
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 551
ExternalDocumentID 10_1016_j_jcp_2017_10_048
S002199911730815X
GrantInformation_xml – fundername: Air Force Office of Scientific Computing
  grantid: FA9550-12-0318
– fundername: NSF
  grantid: NSF-DMS-1620047
  funderid: https://doi.org/10.13039/100000001
– fundername: NSF
  grantid: NSF-DMS-1522777
  funderid: https://doi.org/10.13039/100000001
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
SSH
T9H
UQL
WUQ
ZY4
7SC
7SP
7U5
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-5d9dcb9044fa6f2e5afe3bab8100338b7c2d98887c9bcb75bffb563b6e4b6aca3
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Fri Jul 25 04:47:41 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 01:54:37 EDT 2025
Fri Feb 23 02:49:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-splitting
Discontinuous Galerkin
Positivity-preserving
Semi-Lagrangian
Vlasov–Poisson
Mass conservative
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-5d9dcb9044fa6f2e5afe3bab8100338b7c2d98887c9bcb75bffb563b6e4b6aca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.jcp.2017.10.048
PQID 2069510663
PQPubID 2047462
PageCount 23
ParticipantIDs proquest_journals_2069510663
crossref_primary_10_1016_j_jcp_2017_10_048
crossref_citationtrail_10_1016_j_jcp_2017_10_048
elsevier_sciencedirect_doi_10_1016_j_jcp_2017_10_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Qiu, Christlieb (br0280) 2010; 229
Rossmanith, Seal (br0330) 2011; 230
Guo, Qiu (br0240) 2013; 234
Sonnendruecker, Roche, Bertrand, Ghizzo (br0340) 1999; 149
Xiong, Russo, Qiu (br0370) 2016
Castillo, Cockburn, Perugia, Schötzau (br0080) 2000; 38
Cockburn, Karniadakis, Shu (br0150) 2000
Filbet, Sonnendrucker (br0180) 2003; 150
Zhang, Shu (br0380) 2010; 229
Qiu, Shu (br0300) 2011; 10
Arber, Vann (br0010) 2002; 180
Christlieb, Guo, Morton, Qiu (br0140) 2014; 267
Nakamura, Yabe (br0270) 1999; 120
Birdsall, Langdon (br0030) 2005
Cai, Qiu, Qiu (br0050) 2016; 323
Casas, Crouseilles, Faou, Mehrenberger (br0070) 2017; 135
Qiu, Shu (br0310) 2011; 230
Heath, Gamba, Morrison, Michler (br0250) 2012; 231
Xiong, Qiu, Xu, Christlieb (br0360) 2014; 273
Qiu, Russo (br0290) 2017; 71
Carrillo, Vecil (br0060) 2007; 29
Filbet, Sonnendrücker, Bertrand (br0190) 2001; 172
Restelli, Bonaventura, Sacco (br0320) 2006; 216
Cockburn, Shu (br0160) 1998; 35
Guo, Nair, Zhong (br0230) 2015; 81
Cheng, Christlieb, Zhong (br0110) 2014; 279
Cheng, Christlieb, Zhong (br0100) 2014; 256
Lauritzen, Nair, Ullrich (br0260) 2010; 229
Filbet, Sonnendrücker, Bertrand (br0200) 2001; 172
Cai, Guo, Qiu (br0040) 2017
Cheng, Gamba, Li, Morrison (br0120) 2014; 52
Crouseilles, Mehrenberger, Sonnendrücker (br0170) 2010; 229
Cheng, Knorr (br0090) 1976; 22
Cheng, Gamba, Morrison (br0130) 2013; 56
Güçlü, Christlieb, Hitchon (br0210) 2014; 270
Guo, Nair, Qiu (br0220) 2013; 142
Arnold, Brezzi, Cockburn, Marini (br0020) 2002; 39
Umeda (br0350) 2008; 60
Lauritzen (10.1016/j.jcp.2017.10.048_br0260) 2010; 229
Xiong (10.1016/j.jcp.2017.10.048_br0360) 2014; 273
Güçlü (10.1016/j.jcp.2017.10.048_br0210) 2014; 270
Heath (10.1016/j.jcp.2017.10.048_br0250) 2012; 231
Birdsall (10.1016/j.jcp.2017.10.048_br0030) 2005
Casas (10.1016/j.jcp.2017.10.048_br0070) 2017; 135
Restelli (10.1016/j.jcp.2017.10.048_br0320) 2006; 216
Cockburn (10.1016/j.jcp.2017.10.048_br0160) 1998; 35
Arber (10.1016/j.jcp.2017.10.048_br0010) 2002; 180
Christlieb (10.1016/j.jcp.2017.10.048_br0140) 2014; 267
Filbet (10.1016/j.jcp.2017.10.048_br0190) 2001; 172
Rossmanith (10.1016/j.jcp.2017.10.048_br0330) 2011; 230
Cai (10.1016/j.jcp.2017.10.048_br0040) 2017
Qiu (10.1016/j.jcp.2017.10.048_br0300) 2011; 10
Guo (10.1016/j.jcp.2017.10.048_br0240) 2013; 234
Carrillo (10.1016/j.jcp.2017.10.048_br0060) 2007; 29
Cockburn (10.1016/j.jcp.2017.10.048_br0150) 2000
Nakamura (10.1016/j.jcp.2017.10.048_br0270) 1999; 120
Arnold (10.1016/j.jcp.2017.10.048_br0020) 2002; 39
Umeda (10.1016/j.jcp.2017.10.048_br0350) 2008; 60
Filbet (10.1016/j.jcp.2017.10.048_br0180) 2003; 150
Cheng (10.1016/j.jcp.2017.10.048_br0120) 2014; 52
Filbet (10.1016/j.jcp.2017.10.048_br0200) 2001; 172
Castillo (10.1016/j.jcp.2017.10.048_br0080) 2000; 38
Zhang (10.1016/j.jcp.2017.10.048_br0380) 2010; 229
Cheng (10.1016/j.jcp.2017.10.048_br0130) 2013; 56
Crouseilles (10.1016/j.jcp.2017.10.048_br0170) 2010; 229
Qiu (10.1016/j.jcp.2017.10.048_br0310) 2011; 230
Cheng (10.1016/j.jcp.2017.10.048_br0090) 1976; 22
Guo (10.1016/j.jcp.2017.10.048_br0230) 2015; 81
Cheng (10.1016/j.jcp.2017.10.048_br0110) 2014; 279
Guo (10.1016/j.jcp.2017.10.048_br0220) 2013; 142
Cheng (10.1016/j.jcp.2017.10.048_br0100) 2014; 256
Qiu (10.1016/j.jcp.2017.10.048_br0280) 2010; 229
Xiong (10.1016/j.jcp.2017.10.048_br0370)
Cai (10.1016/j.jcp.2017.10.048_br0050) 2016; 323
Sonnendruecker (10.1016/j.jcp.2017.10.048_br0340) 1999; 149
Qiu (10.1016/j.jcp.2017.10.048_br0290) 2017; 71
References_xml – volume: 323
  start-page: 95
  year: 2016
  end-page: 114
  ident: br0050
  article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 81
  start-page: 3
  year: 2015
  end-page: 21
  ident: br0230
  article-title: An efficient WENO limiter for discontinuous Galerkin transport scheme on the cubed sphere
  publication-title: Int. J. Numer. Methods Fluids
– volume: 273
  start-page: 618
  year: 2014
  end-page: 639
  ident: br0360
  article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 22
  start-page: 330
  year: 1976
  end-page: 351
  ident: br0090
  article-title: The integration of the Vlasov equation in configuration space
  publication-title: J. Comput. Phys.
– volume: 172
  start-page: 166
  year: 2001
  end-page: 187
  ident: br0190
  article-title: Conservative numerical schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 60
  start-page: 773
  year: 2008
  end-page: 779
  ident: br0350
  article-title: A conservative and non-oscillatory scheme for Vlasov code simulations
  publication-title: Earth Planets Space
– year: 2000
  ident: br0150
  article-title: Discontinuous Galerkin Methods, Theory, Computation and Applications
– volume: 29
  start-page: 1179
  year: 2007
  end-page: 1206
  ident: br0060
  article-title: Nonoscillatory interpolation methods applied to Vlasov-based models
  publication-title: SIAM J. Sci. Comput.
– volume: 71
  start-page: 414
  year: 2017
  end-page: 434
  ident: br0290
  article-title: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system
  publication-title: J. Sci. Comput.
– year: 2016
  ident: br0370
  article-title: Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations
– volume: 229
  start-page: 3091
  year: 2010
  end-page: 3120
  ident: br0380
  article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws
  publication-title: J. Comput. Phys.
– year: 2017
  ident: br0040
  article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations
  publication-title: J. Sci. Comput.
– volume: 149
  start-page: 201
  year: 1999
  end-page: 220
  ident: br0340
  article-title: The semi-Lagrangian method for the numerical resolution of the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 52
  start-page: 1017
  year: 2014
  end-page: 1049
  ident: br0120
  article-title: Discontinuous Galerkin methods for the Vlasov–Maxwell equations
  publication-title: SIAM J. Numer. Anal.
– volume: 39
  start-page: 1749
  year: 2002
  end-page: 1779
  ident: br0020
  article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 267
  start-page: 7
  year: 2014
  end-page: 27
  ident: br0140
  article-title: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 1130
  year: 2010
  end-page: 1149
  ident: br0280
  article-title: A conservative high order semi-Lagrangian WENO method for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 270
  start-page: 711
  year: 2014
  end-page: 752
  ident: br0210
  article-title: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
– volume: 279
  start-page: 145
  year: 2014
  end-page: 173
  ident: br0110
  article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Maxwell system
  publication-title: J. Comput. Phys.
– volume: 38
  start-page: 1676
  year: 2000
  end-page: 1706
  ident: br0080
  article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 229
  start-page: 1401
  year: 2010
  end-page: 1424
  ident: br0260
  article-title: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 1927
  year: 2010
  end-page: 1953
  ident: br0170
  article-title: Conservative semi-Lagrangian schemes for Vlasov equations
  publication-title: J. Comput. Phys.
– volume: 256
  start-page: 630
  year: 2014
  end-page: 655
  ident: br0100
  article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system
  publication-title: J. Comput. Phys.
– volume: 231
  start-page: 1140
  year: 2012
  end-page: 1174
  ident: br0250
  article-title: A discontinuous Galerkin method for the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
– year: 2005
  ident: br0030
  article-title: Plasma Physics via Computer Simulation
– volume: 135
  start-page: 769
  year: 2017
  end-page: 801
  ident: br0070
  article-title: High-order Hamiltonian splitting for the Vlasov–Poisson equations
  publication-title: Numer. Math.
– volume: 234
  start-page: 108
  year: 2013
  end-page: 132
  ident: br0240
  article-title: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 230
  start-page: 6203
  year: 2011
  end-page: 6232
  ident: br0330
  article-title: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations
  publication-title: J. Comput. Phys.
– volume: 172
  start-page: 166
  year: 2001
  end-page: 187
  ident: br0200
  article-title: Conservative numerical schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 216
  start-page: 195
  year: 2006
  end-page: 215
  ident: br0320
  article-title: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows
  publication-title: J. Comput. Phys.
– volume: 180
  start-page: 339
  year: 2002
  end-page: 357
  ident: br0010
  article-title: A critical comparison of Eulerian-grid-based Vlasov solvers
  publication-title: J. Comput. Phys.
– volume: 56
  start-page: 319
  year: 2013
  end-page: 349
  ident: br0130
  article-title: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems
  publication-title: J. Sci. Comput.
– volume: 142
  start-page: 457
  year: 2013
  end-page: 475
  ident: br0220
  article-title: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere
  publication-title: Mon. Weather Rev.
– volume: 120
  start-page: 122
  year: 1999
  end-page: 154
  ident: br0270
  article-title: Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov–Poisson equation in phase space
  publication-title: Comput. Phys. Commun.
– volume: 35
  start-page: 2440
  year: 1998
  end-page: 2463
  ident: br0160
  article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems
  publication-title: SIAM J. Numer. Anal.
– volume: 230
  start-page: 8386
  year: 2011
  end-page: 8409
  ident: br0310
  article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
– volume: 150
  start-page: 247
  year: 2003
  end-page: 266
  ident: br0180
  article-title: Comparison of Eulerian Vlasov solvers
  publication-title: Comput. Phys. Commun.
– volume: 10
  start-page: 979
  year: 2011
  ident: br0300
  article-title: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation
  publication-title: Commun. Comput. Phys.
– volume: 81
  start-page: 3
  year: 2015
  ident: 10.1016/j.jcp.2017.10.048_br0230
  article-title: An efficient WENO limiter for discontinuous Galerkin transport scheme on the cubed sphere
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.4171
– volume: 229
  start-page: 3091
  year: 2010
  ident: 10.1016/j.jcp.2017.10.048_br0380
  article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.030
– volume: 10
  start-page: 979
  issue: 4
  year: 2011
  ident: 10.1016/j.jcp.2017.10.048_br0300
  article-title: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.180210.251110a
– year: 2005
  ident: 10.1016/j.jcp.2017.10.048_br0030
– volume: 35
  start-page: 2440
  issue: 6
  year: 1998
  ident: 10.1016/j.jcp.2017.10.048_br0160
  article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997316712
– year: 2017
  ident: 10.1016/j.jcp.2017.10.048_br0040
  article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0554-0
– volume: 273
  start-page: 618
  year: 2014
  ident: 10.1016/j.jcp.2017.10.048_br0360
  article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.05.033
– volume: 39
  start-page: 1749
  issue: 5
  year: 2002
  ident: 10.1016/j.jcp.2017.10.048_br0020
  article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901384162
– volume: 323
  start-page: 95
  year: 2016
  ident: 10.1016/j.jcp.2017.10.048_br0050
  article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.07.021
– volume: 149
  start-page: 201
  issue: 2
  year: 1999
  ident: 10.1016/j.jcp.2017.10.048_br0340
  article-title: The semi-Lagrangian method for the numerical resolution of the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.6148
– volume: 22
  start-page: 330
  issue: 3
  year: 1976
  ident: 10.1016/j.jcp.2017.10.048_br0090
  article-title: The integration of the Vlasov equation in configuration space
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(76)90053-X
– volume: 52
  start-page: 1017
  issue: 2
  year: 2014
  ident: 10.1016/j.jcp.2017.10.048_br0120
  article-title: Discontinuous Galerkin methods for the Vlasov–Maxwell equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130915091
– ident: 10.1016/j.jcp.2017.10.048_br0370
– volume: 172
  start-page: 166
  issue: 1
  year: 2001
  ident: 10.1016/j.jcp.2017.10.048_br0200
  article-title: Conservative numerical schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6818
– volume: 142
  start-page: 457
  issue: 1
  year: 2013
  ident: 10.1016/j.jcp.2017.10.048_br0220
  article-title: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-13-00048.1
– volume: 229
  start-page: 1401
  issue: 5
  year: 2010
  ident: 10.1016/j.jcp.2017.10.048_br0260
  article-title: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.10.036
– volume: 135
  start-page: 769
  issue: 3
  year: 2017
  ident: 10.1016/j.jcp.2017.10.048_br0070
  article-title: High-order Hamiltonian splitting for the Vlasov–Poisson equations
  publication-title: Numer. Math.
  doi: 10.1007/s00211-016-0816-z
– volume: 38
  start-page: 1676
  issue: 5
  year: 2000
  ident: 10.1016/j.jcp.2017.10.048_br0080
  article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900371003
– volume: 234
  start-page: 108
  year: 2013
  ident: 10.1016/j.jcp.2017.10.048_br0240
  article-title: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.09.014
– volume: 29
  start-page: 1179
  issue: 3
  year: 2007
  ident: 10.1016/j.jcp.2017.10.048_br0060
  article-title: Nonoscillatory interpolation methods applied to Vlasov-based models
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050644549
– volume: 180
  start-page: 339
  issue: 1
  year: 2002
  ident: 10.1016/j.jcp.2017.10.048_br0010
  article-title: A critical comparison of Eulerian-grid-based Vlasov solvers
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7098
– volume: 172
  start-page: 166
  issue: 1
  year: 2001
  ident: 10.1016/j.jcp.2017.10.048_br0190
  article-title: Conservative numerical schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6818
– volume: 229
  start-page: 1130
  year: 2010
  ident: 10.1016/j.jcp.2017.10.048_br0280
  article-title: A conservative high order semi-Lagrangian WENO method for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.10.016
– volume: 256
  start-page: 630
  year: 2014
  ident: 10.1016/j.jcp.2017.10.048_br0100
  article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.013
– year: 2000
  ident: 10.1016/j.jcp.2017.10.048_br0150
– volume: 71
  start-page: 414
  issue: 1
  year: 2017
  ident: 10.1016/j.jcp.2017.10.048_br0290
  article-title: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0305-7
– volume: 231
  start-page: 1140
  issue: 4
  year: 2012
  ident: 10.1016/j.jcp.2017.10.048_br0250
  article-title: A discontinuous Galerkin method for the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.09.020
– volume: 60
  start-page: 773
  issue: 7
  year: 2008
  ident: 10.1016/j.jcp.2017.10.048_br0350
  article-title: A conservative and non-oscillatory scheme for Vlasov code simulations
  publication-title: Earth Planets Space
  doi: 10.1186/BF03352826
– volume: 279
  start-page: 145
  year: 2014
  ident: 10.1016/j.jcp.2017.10.048_br0110
  article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Maxwell system
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.041
– volume: 267
  start-page: 7
  year: 2014
  ident: 10.1016/j.jcp.2017.10.048_br0140
  article-title: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.02.012
– volume: 150
  start-page: 247
  issue: 3
  year: 2003
  ident: 10.1016/j.jcp.2017.10.048_br0180
  article-title: Comparison of Eulerian Vlasov solvers
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(02)00694-X
– volume: 230
  start-page: 8386
  issue: 23
  year: 2011
  ident: 10.1016/j.jcp.2017.10.048_br0310
  article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.07.018
– volume: 56
  start-page: 319
  issue: 2
  year: 2013
  ident: 10.1016/j.jcp.2017.10.048_br0130
  article-title: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-012-9680-x
– volume: 120
  start-page: 122
  issue: 2
  year: 1999
  ident: 10.1016/j.jcp.2017.10.048_br0270
  article-title: Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov–Poisson equation in phase space
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(99)00247-7
– volume: 216
  start-page: 195
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2017.10.048_br0320
  article-title: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.11.030
– volume: 229
  start-page: 1927
  issue: 6
  year: 2010
  ident: 10.1016/j.jcp.2017.10.048_br0170
  article-title: Conservative semi-Lagrangian schemes for Vlasov equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.11.007
– volume: 270
  start-page: 711
  year: 2014
  ident: 10.1016/j.jcp.2017.10.048_br0210
  article-title: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.04.003
– volume: 230
  start-page: 6203
  issue: 16
  year: 2011
  ident: 10.1016/j.jcp.2017.10.048_br0330
  article-title: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.04.018
SSID ssj0008548
Score 2.4205284
Snippet •The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative,...
In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 529
SubjectTerms Computational physics
Discontinuous Galerkin
Galerkin method
Landau damping
Mass conservative
Non-splitting
Numerical analysis
Positivity-preserving
Probability distribution
Runge-Kutta method
Semi-Lagrangian
Simulation
Splitting
Vlasov–Poisson
Title A high order semi-Lagrangian discontinuous Galerkin method for Vlasov–Poisson simulations without operator splitting
URI https://dx.doi.org/10.1016/j.jcp.2017.10.048
https://www.proquest.com/docview/2069510663
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4Ix6l8sCElLZJnMQZq4pSXhUDRd0i27VREU0q0nZE_Af-Ib-Eu8QBgRADYxw7sXznu-_sexByAkpRSx4wQG6CO0xr5QAK9x3Dfa7Y2AtNkXj-ZhD2h-xyFIxqpFvFwqBbpZX9pUwvpLVtadnVbM0mE4zx9TCG3nWBSbkbjDCCnUXI5c2XLzcPmEcpjdEVAXpXN5uFj9ejwpSVbtREBy8sAfS7bvohpQvV09sk6xYz0k45rS1S0-k22bD4kdrdme-QZYdi9mFapNOkuZ5OnGvxAMroAXiAYvxthnUhFmDs03NQDHhMTssS0hSwK70HJJ0t31_fbjMgR5bSfDK11b1yige22WJOs5kubuZpDr8vnKZ3ybB3dtftO7augqP8kM-dYByPlYzbjBkRGk8HwmhfCsldrOzGZaS8cQyWcaRiqWQUSGMk0E-GmslQKOHvkZU0S_U-ocZDA864PI7azBgB-E1qo3zXF2DYtKMD0q5WNFE26TjWvnhKKu-yxwSIkCARsAmIcEBOP4fMyowbf3VmFZmSb2yTgEb4a1i9Imli92wO70OEmwDBDv_31SOyBk-89Omuk5X580IfA2SZy0bBkw2y2rm46g8-AEhk7qw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjXjjgQkp0CRO4owVAgqUigFQt8h27aoImoq0zPwH_iG_hLvEQQIhBlY7dizf-e47-x4Ah6gUjRIRR-QmhceN0R6i8NCzIhSa94PYlonnb7px-55f9aLeDJzWsTDkVulkfyXTS2ntWk7cbp6Mh0OK8Q0oht73kUmFH_VmYY6yU0UNmGtdXre7XwIZl1IJZPJGwAH142bp5vWoKWulnxyTjxdVAfpdPf0Q1KX2OV-GRQcbWata2QrMmNEqLDkIydwBLdbgtcUoATErM2qywjwPvY4coD4aIBswCsHNqTTEFO19doG6gW7KWVVFmiF8ZQ8IpvPXj7f32xwpko9YMXx2Bb4KRne2-XTC8rEpH-dZgb8v_abX4f787O607bnSCp4OYzHxon7a1yptcm5lbAMTSWtCJZXwqbibUIkO-ikax4lOlVZJpKxVSEIVG65iqWW4AY1RPjKbwGxANpz1RZo0ubUSIZwyVod-KNG2aSZb0Kx3NNMu7ziVv3jKagezxwyJkBERqAmJsAVHX0PGVdKNvz7mNZmyb5yToVL4a9huTdLMHdsC-2NCnIjCtv836wHMt-9uOlnnsnu9AwvYIyoX711oTF6mZg8RzETtOw79BHCQ8V0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+order+semi-Lagrangian+discontinuous+Galerkin+method+for+Vlasov%E2%80%93Poisson+simulations+without+operator+splitting&rft.jtitle=Journal+of+computational+physics&rft.au=Cai%2C+Xiaofeng&rft.au=Guo%2C+Wei&rft.au=Qiu%2C+Jing-Mei&rft.date=2018-02-01&rft.issn=0021-9991&rft.volume=354&rft.spage=529&rft.epage=551&rft_id=info:doi/10.1016%2Fj.jcp.2017.10.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2017_10_048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon