A high order semi-Lagrangian discontinuous Galerkin method for Vlasov–Poisson simulations without operator splitting
•The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative, highly accurate, free of splitting error and allows for extra large time stepping size.•To the best of authors' knowledge, this is the fi...
Saved in:
Published in | Journal of computational physics Vol. 354; pp. 529 - 551 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Inc
01.02.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative, highly accurate, free of splitting error and allows for extra large time stepping size.•To the best of authors' knowledge, this is the first SLDG scheme for VP simulations that is able to attain all these properties.•The method is applied to classic benchmark VP test problems, with effectiveness and efficiency showcased.•Tremendous CPU savings are observed, when compared with those from the classical Runge–Kutta DG method.
In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge–Kutta DG method. |
---|---|
AbstractList | •The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative, highly accurate, free of splitting error and allows for extra large time stepping size.•To the best of authors' knowledge, this is the first SLDG scheme for VP simulations that is able to attain all these properties.•The method is applied to classic benchmark VP test problems, with effectiveness and efficiency showcased.•Tremendous CPU savings are observed, when compared with those from the classical Runge–Kutta DG method.
In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge–Kutta DG method. In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge–Kutta DG method. |
Author | Guo, Wei Qiu, Jing-Mei Cai, Xiaofeng |
Author_xml | – sequence: 1 givenname: Xiaofeng surname: Cai fullname: Cai, Xiaofeng email: xfcai89@gmail.com organization: Department of Mathematical Science, University of Delaware, Newark, DE, 19716, United States – sequence: 2 givenname: Wei surname: Guo fullname: Guo, Wei email: weimath.guo@ttu.edu organization: Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 70409, United States – sequence: 3 givenname: Jing-Mei surname: Qiu fullname: Qiu, Jing-Mei email: jingqiu@udel.edu organization: Department of Mathematical Science, University of Delaware, Newark, DE, 19716, United States |
BookMark | eNp9kE2O1DAQhS00SPQMHICdJdZp7Pw4tliNRjAgtQQLYGvZTqW7QtoOttMjdtyBG3IS3DQrFrMqVel9r_TeNbnywQMhLznbcsbF62k7uWVbM96Xfcta-YRsOFOsqnsursiGsZpXSin-jFynNDHGZNfKDTnd0gPuDzTEASJNcMRqZ_bR-D0aTwdMLviMfg1rovdmhvgNPT1CPoSBjiHSr7NJ4fT7569PAVMKniY8rrPJGHyiD1h0a6ZhgWhyUadlxlzs9s_J09HMCV78mzfky7u3n-_eV7uP9x_ubneVa4TMVTeowVnF2nY0YqyhMyM01ljJGWsaaXtXD0pK2Ttlne07O462E40V0FphnGluyKuL7xLD9xVS1lNYoy8vdc2E6jgToikqflG5GFKKMOol4tHEH5ozfa5XT7rUq8_1nk-l3sL0_zEO89_cORqcHyXfXEgowU8IUSeH4B0MGMFlPQR8hP4Dj9eb4Q |
CitedBy_id | crossref_primary_10_1007_s10915_018_0889_1 crossref_primary_10_1142_S0219876221500316 crossref_primary_10_1016_j_jcp_2024_113693 crossref_primary_10_1016_j_jcp_2025_113890 crossref_primary_10_1016_j_jcp_2018_10_012 crossref_primary_10_1016_j_cpc_2020_107400 crossref_primary_10_1137_20M1363273 crossref_primary_10_1016_j_jcp_2020_110036 crossref_primary_10_1007_s10915_018_0705_y crossref_primary_10_1016_j_jcp_2021_110632 crossref_primary_10_1016_j_jcp_2023_112412 crossref_primary_10_1007_s42967_020_00088_0 crossref_primary_10_1016_j_jcp_2022_111160 crossref_primary_10_1016_j_jcp_2024_113664 crossref_primary_10_1016_j_jcp_2025_113840 crossref_primary_10_1007_s10915_018_0892_6 crossref_primary_10_1016_j_jcp_2023_112232 crossref_primary_10_1016_j_jcp_2021_110392 crossref_primary_10_1007_s10915_024_02714_y crossref_primary_10_1016_j_cnsns_2021_105941 crossref_primary_10_1007_s10915_024_02520_6 crossref_primary_10_1016_j_cma_2022_114973 crossref_primary_10_1137_21M1456753 crossref_primary_10_1007_s40314_021_01683_4 crossref_primary_10_1103_PhysRevE_101_043307 |
Cites_doi | 10.1002/fld.4171 10.1016/j.jcp.2009.12.030 10.4208/cicp.180210.251110a 10.1137/S0036142997316712 10.1007/s10915-017-0554-0 10.1016/j.jcp.2014.05.033 10.1137/S0036142901384162 10.1016/j.jcp.2016.07.021 10.1006/jcph.1998.6148 10.1016/0021-9991(76)90053-X 10.1137/130915091 10.1006/jcph.2001.6818 10.1175/MWR-D-13-00048.1 10.1016/j.jcp.2009.10.036 10.1007/s00211-016-0816-z 10.1137/S0036142900371003 10.1016/j.jcp.2012.09.014 10.1137/050644549 10.1006/jcph.2002.7098 10.1016/j.jcp.2009.10.016 10.1016/j.jcp.2013.09.013 10.1007/s10915-016-0305-7 10.1016/j.jcp.2011.09.020 10.1186/BF03352826 10.1016/j.jcp.2014.08.041 10.1016/j.jcp.2014.02.012 10.1016/S0010-4655(02)00694-X 10.1016/j.jcp.2011.07.018 10.1007/s10915-012-9680-x 10.1016/S0010-4655(99)00247-7 10.1016/j.jcp.2005.11.030 10.1016/j.jcp.2009.11.007 10.1016/j.jcp.2014.04.003 10.1016/j.jcp.2011.04.018 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright Elsevier Science Ltd. Feb 1, 2018 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Feb 1, 2018 |
DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.jcp.2017.10.048 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1090-2716 |
EndPage | 551 |
ExternalDocumentID | 10_1016_j_jcp_2017_10_048 S002199911730815X |
GrantInformation_xml | – fundername: Air Force Office of Scientific Computing grantid: FA9550-12-0318 – fundername: NSF grantid: NSF-DMS-1620047 funderid: https://doi.org/10.13039/100000001 – fundername: NSF grantid: NSF-DMS-1522777 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG SSH T9H UQL WUQ ZY4 7SC 7SP 7U5 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-5d9dcb9044fa6f2e5afe3bab8100338b7c2d98887c9bcb75bffb563b6e4b6aca3 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Fri Jul 25 04:47:41 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Tue Jul 01 01:54:37 EDT 2025 Fri Feb 23 02:49:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-splitting Discontinuous Galerkin Positivity-preserving Semi-Lagrangian Vlasov–Poisson Mass conservative |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-5d9dcb9044fa6f2e5afe3bab8100338b7c2d98887c9bcb75bffb563b6e4b6aca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1016/j.jcp.2017.10.048 |
PQID | 2069510663 |
PQPubID | 2047462 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2069510663 crossref_primary_10_1016_j_jcp_2017_10_048 crossref_citationtrail_10_1016_j_jcp_2017_10_048 elsevier_sciencedirect_doi_10_1016_j_jcp_2017_10_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of computational physics |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Qiu, Christlieb (br0280) 2010; 229 Rossmanith, Seal (br0330) 2011; 230 Guo, Qiu (br0240) 2013; 234 Sonnendruecker, Roche, Bertrand, Ghizzo (br0340) 1999; 149 Xiong, Russo, Qiu (br0370) 2016 Castillo, Cockburn, Perugia, Schötzau (br0080) 2000; 38 Cockburn, Karniadakis, Shu (br0150) 2000 Filbet, Sonnendrucker (br0180) 2003; 150 Zhang, Shu (br0380) 2010; 229 Qiu, Shu (br0300) 2011; 10 Arber, Vann (br0010) 2002; 180 Christlieb, Guo, Morton, Qiu (br0140) 2014; 267 Nakamura, Yabe (br0270) 1999; 120 Birdsall, Langdon (br0030) 2005 Cai, Qiu, Qiu (br0050) 2016; 323 Casas, Crouseilles, Faou, Mehrenberger (br0070) 2017; 135 Qiu, Shu (br0310) 2011; 230 Heath, Gamba, Morrison, Michler (br0250) 2012; 231 Xiong, Qiu, Xu, Christlieb (br0360) 2014; 273 Qiu, Russo (br0290) 2017; 71 Carrillo, Vecil (br0060) 2007; 29 Filbet, Sonnendrücker, Bertrand (br0190) 2001; 172 Restelli, Bonaventura, Sacco (br0320) 2006; 216 Cockburn, Shu (br0160) 1998; 35 Guo, Nair, Zhong (br0230) 2015; 81 Cheng, Christlieb, Zhong (br0110) 2014; 279 Cheng, Christlieb, Zhong (br0100) 2014; 256 Lauritzen, Nair, Ullrich (br0260) 2010; 229 Filbet, Sonnendrücker, Bertrand (br0200) 2001; 172 Cai, Guo, Qiu (br0040) 2017 Cheng, Gamba, Li, Morrison (br0120) 2014; 52 Crouseilles, Mehrenberger, Sonnendrücker (br0170) 2010; 229 Cheng, Knorr (br0090) 1976; 22 Cheng, Gamba, Morrison (br0130) 2013; 56 Güçlü, Christlieb, Hitchon (br0210) 2014; 270 Guo, Nair, Qiu (br0220) 2013; 142 Arnold, Brezzi, Cockburn, Marini (br0020) 2002; 39 Umeda (br0350) 2008; 60 Lauritzen (10.1016/j.jcp.2017.10.048_br0260) 2010; 229 Xiong (10.1016/j.jcp.2017.10.048_br0360) 2014; 273 Güçlü (10.1016/j.jcp.2017.10.048_br0210) 2014; 270 Heath (10.1016/j.jcp.2017.10.048_br0250) 2012; 231 Birdsall (10.1016/j.jcp.2017.10.048_br0030) 2005 Casas (10.1016/j.jcp.2017.10.048_br0070) 2017; 135 Restelli (10.1016/j.jcp.2017.10.048_br0320) 2006; 216 Cockburn (10.1016/j.jcp.2017.10.048_br0160) 1998; 35 Arber (10.1016/j.jcp.2017.10.048_br0010) 2002; 180 Christlieb (10.1016/j.jcp.2017.10.048_br0140) 2014; 267 Filbet (10.1016/j.jcp.2017.10.048_br0190) 2001; 172 Rossmanith (10.1016/j.jcp.2017.10.048_br0330) 2011; 230 Cai (10.1016/j.jcp.2017.10.048_br0040) 2017 Qiu (10.1016/j.jcp.2017.10.048_br0300) 2011; 10 Guo (10.1016/j.jcp.2017.10.048_br0240) 2013; 234 Carrillo (10.1016/j.jcp.2017.10.048_br0060) 2007; 29 Cockburn (10.1016/j.jcp.2017.10.048_br0150) 2000 Nakamura (10.1016/j.jcp.2017.10.048_br0270) 1999; 120 Arnold (10.1016/j.jcp.2017.10.048_br0020) 2002; 39 Umeda (10.1016/j.jcp.2017.10.048_br0350) 2008; 60 Filbet (10.1016/j.jcp.2017.10.048_br0180) 2003; 150 Cheng (10.1016/j.jcp.2017.10.048_br0120) 2014; 52 Filbet (10.1016/j.jcp.2017.10.048_br0200) 2001; 172 Castillo (10.1016/j.jcp.2017.10.048_br0080) 2000; 38 Zhang (10.1016/j.jcp.2017.10.048_br0380) 2010; 229 Cheng (10.1016/j.jcp.2017.10.048_br0130) 2013; 56 Crouseilles (10.1016/j.jcp.2017.10.048_br0170) 2010; 229 Qiu (10.1016/j.jcp.2017.10.048_br0310) 2011; 230 Cheng (10.1016/j.jcp.2017.10.048_br0090) 1976; 22 Guo (10.1016/j.jcp.2017.10.048_br0230) 2015; 81 Cheng (10.1016/j.jcp.2017.10.048_br0110) 2014; 279 Guo (10.1016/j.jcp.2017.10.048_br0220) 2013; 142 Cheng (10.1016/j.jcp.2017.10.048_br0100) 2014; 256 Qiu (10.1016/j.jcp.2017.10.048_br0280) 2010; 229 Xiong (10.1016/j.jcp.2017.10.048_br0370) Cai (10.1016/j.jcp.2017.10.048_br0050) 2016; 323 Sonnendruecker (10.1016/j.jcp.2017.10.048_br0340) 1999; 149 Qiu (10.1016/j.jcp.2017.10.048_br0290) 2017; 71 |
References_xml | – volume: 323 start-page: 95 year: 2016 end-page: 114 ident: br0050 article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation publication-title: J. Comput. Phys. – volume: 81 start-page: 3 year: 2015 end-page: 21 ident: br0230 article-title: An efficient WENO limiter for discontinuous Galerkin transport scheme on the cubed sphere publication-title: Int. J. Numer. Methods Fluids – volume: 273 start-page: 618 year: 2014 end-page: 639 ident: br0360 article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation publication-title: J. Comput. Phys. – volume: 22 start-page: 330 year: 1976 end-page: 351 ident: br0090 article-title: The integration of the Vlasov equation in configuration space publication-title: J. Comput. Phys. – volume: 172 start-page: 166 year: 2001 end-page: 187 ident: br0190 article-title: Conservative numerical schemes for the Vlasov equation publication-title: J. Comput. Phys. – volume: 60 start-page: 773 year: 2008 end-page: 779 ident: br0350 article-title: A conservative and non-oscillatory scheme for Vlasov code simulations publication-title: Earth Planets Space – year: 2000 ident: br0150 article-title: Discontinuous Galerkin Methods, Theory, Computation and Applications – volume: 29 start-page: 1179 year: 2007 end-page: 1206 ident: br0060 article-title: Nonoscillatory interpolation methods applied to Vlasov-based models publication-title: SIAM J. Sci. Comput. – volume: 71 start-page: 414 year: 2017 end-page: 434 ident: br0290 article-title: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system publication-title: J. Sci. Comput. – year: 2016 ident: br0370 article-title: Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations – volume: 229 start-page: 3091 year: 2010 end-page: 3120 ident: br0380 article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws publication-title: J. Comput. Phys. – year: 2017 ident: br0040 article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations publication-title: J. Sci. Comput. – volume: 149 start-page: 201 year: 1999 end-page: 220 ident: br0340 article-title: The semi-Lagrangian method for the numerical resolution of the Vlasov equation publication-title: J. Comput. Phys. – volume: 52 start-page: 1017 year: 2014 end-page: 1049 ident: br0120 article-title: Discontinuous Galerkin methods for the Vlasov–Maxwell equations publication-title: SIAM J. Numer. Anal. – volume: 39 start-page: 1749 year: 2002 end-page: 1779 ident: br0020 article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems publication-title: SIAM J. Numer. Anal. – volume: 267 start-page: 7 year: 2014 end-page: 27 ident: br0140 article-title: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations publication-title: J. Comput. Phys. – volume: 229 start-page: 1130 year: 2010 end-page: 1149 ident: br0280 article-title: A conservative high order semi-Lagrangian WENO method for the Vlasov equation publication-title: J. Comput. Phys. – volume: 270 start-page: 711 year: 2014 end-page: 752 ident: br0210 article-title: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system publication-title: J. Comput. Phys. – volume: 279 start-page: 145 year: 2014 end-page: 173 ident: br0110 article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Maxwell system publication-title: J. Comput. Phys. – volume: 38 start-page: 1676 year: 2000 end-page: 1706 ident: br0080 article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems publication-title: SIAM J. Numer. Anal. – volume: 229 start-page: 1401 year: 2010 end-page: 1424 ident: br0260 article-title: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid publication-title: J. Comput. Phys. – volume: 229 start-page: 1927 year: 2010 end-page: 1953 ident: br0170 article-title: Conservative semi-Lagrangian schemes for Vlasov equations publication-title: J. Comput. Phys. – volume: 256 start-page: 630 year: 2014 end-page: 655 ident: br0100 article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system publication-title: J. Comput. Phys. – volume: 231 start-page: 1140 year: 2012 end-page: 1174 ident: br0250 article-title: A discontinuous Galerkin method for the Vlasov–Poisson system publication-title: J. Comput. Phys. – year: 2005 ident: br0030 article-title: Plasma Physics via Computer Simulation – volume: 135 start-page: 769 year: 2017 end-page: 801 ident: br0070 article-title: High-order Hamiltonian splitting for the Vlasov–Poisson equations publication-title: Numer. Math. – volume: 234 start-page: 108 year: 2013 end-page: 132 ident: br0240 article-title: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation publication-title: J. Comput. Phys. – volume: 230 start-page: 6203 year: 2011 end-page: 6232 ident: br0330 article-title: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations publication-title: J. Comput. Phys. – volume: 172 start-page: 166 year: 2001 end-page: 187 ident: br0200 article-title: Conservative numerical schemes for the Vlasov equation publication-title: J. Comput. Phys. – volume: 216 start-page: 195 year: 2006 end-page: 215 ident: br0320 article-title: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows publication-title: J. Comput. Phys. – volume: 180 start-page: 339 year: 2002 end-page: 357 ident: br0010 article-title: A critical comparison of Eulerian-grid-based Vlasov solvers publication-title: J. Comput. Phys. – volume: 56 start-page: 319 year: 2013 end-page: 349 ident: br0130 article-title: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems publication-title: J. Sci. Comput. – volume: 142 start-page: 457 year: 2013 end-page: 475 ident: br0220 article-title: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere publication-title: Mon. Weather Rev. – volume: 120 start-page: 122 year: 1999 end-page: 154 ident: br0270 article-title: Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov–Poisson equation in phase space publication-title: Comput. Phys. Commun. – volume: 35 start-page: 2440 year: 1998 end-page: 2463 ident: br0160 article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems publication-title: SIAM J. Numer. Anal. – volume: 230 start-page: 8386 year: 2011 end-page: 8409 ident: br0310 article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system publication-title: J. Comput. Phys. – volume: 150 start-page: 247 year: 2003 end-page: 266 ident: br0180 article-title: Comparison of Eulerian Vlasov solvers publication-title: Comput. Phys. Commun. – volume: 10 start-page: 979 year: 2011 ident: br0300 article-title: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation publication-title: Commun. Comput. Phys. – volume: 81 start-page: 3 year: 2015 ident: 10.1016/j.jcp.2017.10.048_br0230 article-title: An efficient WENO limiter for discontinuous Galerkin transport scheme on the cubed sphere publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4171 – volume: 229 start-page: 3091 year: 2010 ident: 10.1016/j.jcp.2017.10.048_br0380 article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.12.030 – volume: 10 start-page: 979 issue: 4 year: 2011 ident: 10.1016/j.jcp.2017.10.048_br0300 article-title: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.180210.251110a – year: 2005 ident: 10.1016/j.jcp.2017.10.048_br0030 – volume: 35 start-page: 2440 issue: 6 year: 1998 ident: 10.1016/j.jcp.2017.10.048_br0160 article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142997316712 – year: 2017 ident: 10.1016/j.jcp.2017.10.048_br0040 article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0554-0 – volume: 273 start-page: 618 year: 2014 ident: 10.1016/j.jcp.2017.10.048_br0360 article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.05.033 – volume: 39 start-page: 1749 issue: 5 year: 2002 ident: 10.1016/j.jcp.2017.10.048_br0020 article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901384162 – volume: 323 start-page: 95 year: 2016 ident: 10.1016/j.jcp.2017.10.048_br0050 article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.021 – volume: 149 start-page: 201 issue: 2 year: 1999 ident: 10.1016/j.jcp.2017.10.048_br0340 article-title: The semi-Lagrangian method for the numerical resolution of the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6148 – volume: 22 start-page: 330 issue: 3 year: 1976 ident: 10.1016/j.jcp.2017.10.048_br0090 article-title: The integration of the Vlasov equation in configuration space publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(76)90053-X – volume: 52 start-page: 1017 issue: 2 year: 2014 ident: 10.1016/j.jcp.2017.10.048_br0120 article-title: Discontinuous Galerkin methods for the Vlasov–Maxwell equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/130915091 – ident: 10.1016/j.jcp.2017.10.048_br0370 – volume: 172 start-page: 166 issue: 1 year: 2001 ident: 10.1016/j.jcp.2017.10.048_br0200 article-title: Conservative numerical schemes for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6818 – volume: 142 start-page: 457 issue: 1 year: 2013 ident: 10.1016/j.jcp.2017.10.048_br0220 article-title: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-13-00048.1 – volume: 229 start-page: 1401 issue: 5 year: 2010 ident: 10.1016/j.jcp.2017.10.048_br0260 article-title: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.10.036 – volume: 135 start-page: 769 issue: 3 year: 2017 ident: 10.1016/j.jcp.2017.10.048_br0070 article-title: High-order Hamiltonian splitting for the Vlasov–Poisson equations publication-title: Numer. Math. doi: 10.1007/s00211-016-0816-z – volume: 38 start-page: 1676 issue: 5 year: 2000 ident: 10.1016/j.jcp.2017.10.048_br0080 article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900371003 – volume: 234 start-page: 108 year: 2013 ident: 10.1016/j.jcp.2017.10.048_br0240 article-title: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.09.014 – volume: 29 start-page: 1179 issue: 3 year: 2007 ident: 10.1016/j.jcp.2017.10.048_br0060 article-title: Nonoscillatory interpolation methods applied to Vlasov-based models publication-title: SIAM J. Sci. Comput. doi: 10.1137/050644549 – volume: 180 start-page: 339 issue: 1 year: 2002 ident: 10.1016/j.jcp.2017.10.048_br0010 article-title: A critical comparison of Eulerian-grid-based Vlasov solvers publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7098 – volume: 172 start-page: 166 issue: 1 year: 2001 ident: 10.1016/j.jcp.2017.10.048_br0190 article-title: Conservative numerical schemes for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6818 – volume: 229 start-page: 1130 year: 2010 ident: 10.1016/j.jcp.2017.10.048_br0280 article-title: A conservative high order semi-Lagrangian WENO method for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.10.016 – volume: 256 start-page: 630 year: 2014 ident: 10.1016/j.jcp.2017.10.048_br0100 article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.013 – year: 2000 ident: 10.1016/j.jcp.2017.10.048_br0150 – volume: 71 start-page: 414 issue: 1 year: 2017 ident: 10.1016/j.jcp.2017.10.048_br0290 article-title: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0305-7 – volume: 231 start-page: 1140 issue: 4 year: 2012 ident: 10.1016/j.jcp.2017.10.048_br0250 article-title: A discontinuous Galerkin method for the Vlasov–Poisson system publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.09.020 – volume: 60 start-page: 773 issue: 7 year: 2008 ident: 10.1016/j.jcp.2017.10.048_br0350 article-title: A conservative and non-oscillatory scheme for Vlasov code simulations publication-title: Earth Planets Space doi: 10.1186/BF03352826 – volume: 279 start-page: 145 year: 2014 ident: 10.1016/j.jcp.2017.10.048_br0110 article-title: Energy-conserving discontinuous Galerkin methods for the Vlasov–Maxwell system publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.041 – volume: 267 start-page: 7 year: 2014 ident: 10.1016/j.jcp.2017.10.048_br0140 article-title: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.02.012 – volume: 150 start-page: 247 issue: 3 year: 2003 ident: 10.1016/j.jcp.2017.10.048_br0180 article-title: Comparison of Eulerian Vlasov solvers publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(02)00694-X – volume: 230 start-page: 8386 issue: 23 year: 2011 ident: 10.1016/j.jcp.2017.10.048_br0310 article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.07.018 – volume: 56 start-page: 319 issue: 2 year: 2013 ident: 10.1016/j.jcp.2017.10.048_br0130 article-title: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems publication-title: J. Sci. Comput. doi: 10.1007/s10915-012-9680-x – volume: 120 start-page: 122 issue: 2 year: 1999 ident: 10.1016/j.jcp.2017.10.048_br0270 article-title: Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov–Poisson equation in phase space publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(99)00247-7 – volume: 216 start-page: 195 issue: 1 year: 2006 ident: 10.1016/j.jcp.2017.10.048_br0320 article-title: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.11.030 – volume: 229 start-page: 1927 issue: 6 year: 2010 ident: 10.1016/j.jcp.2017.10.048_br0170 article-title: Conservative semi-Lagrangian schemes for Vlasov equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.11.007 – volume: 270 start-page: 711 year: 2014 ident: 10.1016/j.jcp.2017.10.048_br0210 article-title: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.04.003 – volume: 230 start-page: 6203 issue: 16 year: 2011 ident: 10.1016/j.jcp.2017.10.048_br0330 article-title: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.04.018 |
SSID | ssj0008548 |
Score | 2.4205284 |
Snippet | •The semi-Lagrangian discontinuous Galerkin (SLDG) method for the Vlasov–Poisson (VP) system has several desired properties.•It is locally mass conservative,... In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov–Poisson (VP) simulations without operator... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 529 |
SubjectTerms | Computational physics Discontinuous Galerkin Galerkin method Landau damping Mass conservative Non-splitting Numerical analysis Positivity-preserving Probability distribution Runge-Kutta method Semi-Lagrangian Simulation Splitting Vlasov–Poisson |
Title | A high order semi-Lagrangian discontinuous Galerkin method for Vlasov–Poisson simulations without operator splitting |
URI | https://dx.doi.org/10.1016/j.jcp.2017.10.048 https://www.proquest.com/docview/2069510663 |
Volume | 354 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4Ix6l8sCElLZJnMQZq4pSXhUDRd0i27VREU0q0nZE_Af-Ib-Eu8QBgRADYxw7sXznu-_sexByAkpRSx4wQG6CO0xr5QAK9x3Dfa7Y2AtNkXj-ZhD2h-xyFIxqpFvFwqBbpZX9pUwvpLVtadnVbM0mE4zx9TCG3nWBSbkbjDCCnUXI5c2XLzcPmEcpjdEVAXpXN5uFj9ejwpSVbtREBy8sAfS7bvohpQvV09sk6xYz0k45rS1S0-k22bD4kdrdme-QZYdi9mFapNOkuZ5OnGvxAMroAXiAYvxthnUhFmDs03NQDHhMTssS0hSwK70HJJ0t31_fbjMgR5bSfDK11b1yige22WJOs5kubuZpDr8vnKZ3ybB3dtftO7augqP8kM-dYByPlYzbjBkRGk8HwmhfCsldrOzGZaS8cQyWcaRiqWQUSGMk0E-GmslQKOHvkZU0S_U-ocZDA864PI7azBgB-E1qo3zXF2DYtKMD0q5WNFE26TjWvnhKKu-yxwSIkCARsAmIcEBOP4fMyowbf3VmFZmSb2yTgEb4a1i9Imli92wO70OEmwDBDv_31SOyBk-89Omuk5X580IfA2SZy0bBkw2y2rm46g8-AEhk7qw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjXjjgQkp0CRO4owVAgqUigFQt8h27aoImoq0zPwH_iG_hLvEQQIhBlY7dizf-e47-x4Ah6gUjRIRR-QmhceN0R6i8NCzIhSa94PYlonnb7px-55f9aLeDJzWsTDkVulkfyXTS2ntWk7cbp6Mh0OK8Q0oht73kUmFH_VmYY6yU0UNmGtdXre7XwIZl1IJZPJGwAH142bp5vWoKWulnxyTjxdVAfpdPf0Q1KX2OV-GRQcbWata2QrMmNEqLDkIydwBLdbgtcUoATErM2qywjwPvY4coD4aIBswCsHNqTTEFO19doG6gW7KWVVFmiF8ZQ8IpvPXj7f32xwpko9YMXx2Bb4KRne2-XTC8rEpH-dZgb8v_abX4f787O607bnSCp4OYzHxon7a1yptcm5lbAMTSWtCJZXwqbibUIkO-ikax4lOlVZJpKxVSEIVG65iqWW4AY1RPjKbwGxANpz1RZo0ubUSIZwyVod-KNG2aSZb0Kx3NNMu7ziVv3jKagezxwyJkBERqAmJsAVHX0PGVdKNvz7mNZmyb5yToVL4a9huTdLMHdsC-2NCnIjCtv836wHMt-9uOlnnsnu9AwvYIyoX711oTF6mZg8RzETtOw79BHCQ8V0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+order+semi-Lagrangian+discontinuous+Galerkin+method+for+Vlasov%E2%80%93Poisson+simulations+without+operator+splitting&rft.jtitle=Journal+of+computational+physics&rft.au=Cai%2C+Xiaofeng&rft.au=Guo%2C+Wei&rft.au=Qiu%2C+Jing-Mei&rft.date=2018-02-01&rft.issn=0021-9991&rft.volume=354&rft.spage=529&rft.epage=551&rft_id=info:doi/10.1016%2Fj.jcp.2017.10.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2017_10_048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |