Supervised brain node and network construction under voxel-level functional imaging

Recent advancements in understanding the brain’s functional organization related to behavior have been pivotal, particularly in the development of predictive models based on brain connectivity. A major analytical strategy in this domain involves a two-step process by first constructing a connectivit...

Full description

Saved in:
Bibliographic Details
Published inImaging neuroscience (Cambridge, Mass.) Vol. 3
Main Authors Xu, Wanwan, Wang, Selena, Gao, Simiao, Tian, Xinyuan, Tan, Chichun, Shen, Xilin, Luo, Wenjing, Constable, Todd, Li, Tianxi, Zhao, Yize
Format Journal Article
LanguageEnglish
Published 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA MIT Press 26.06.2025
Subjects
Online AccessGet full text
ISSN2837-6056
2837-6056
DOI10.1162/IMAG.a.56

Cover

Loading…
Abstract Recent advancements in understanding the brain’s functional organization related to behavior have been pivotal, particularly in the development of predictive models based on brain connectivity. A major analytical strategy in this domain involves a two-step process by first constructing a connectivity matrix from predefined brain regions, and then linking these connections to behaviors or clinical outcomes. Although some advances considered subject-specific functionally homogeneous nodes without relying on predefined regions of interest (ROIs), all these approaches with unsupervised node partitions predict outcomes inefficiently with independently established connectivity. In this paper, we introduce the Supervised Brain Parcellation (SBP), a brain node parcellation scheme informed by the downstream predictive task. With voxel-level functional time courses generated under resting-state or cognitive tasks as input, our approach clusters voxels into nodes in a manner that maximizes the correlation between inter-node connections and the behavioral outcome, while also accommodating intra-node homogeneity. We rigorously evaluate the SBP approach using resting-state and task-based fMRI data from both the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP). Our analyses show that SBP significantly improves out-of-sample connectome-based predictive performance compared to conventional step-wise methods under various brain atlases. This advancement holds promise for enhancing our understanding of brain functional architectures with behavior and establishing more informative network neuromarkers for clinical applications.
AbstractList Recent advancements in understanding the brain’s functional organization related to behavior have been pivotal, particularly in the development of predictive models based on brain connectivity. A major analytical strategy in this domain involves a two-step process by first constructing a connectivity matrix from predefined brain regions, and then linking these connections to behaviors or clinical outcomes. Although some advances considered subject-specific functionally homogeneous nodes without relying on predefined regions of interest (ROIs), all these approaches with unsupervised node partitions predict outcomes inefficiently with independently established connectivity. In this paper, we introduce the Supervised Brain Parcellation (SBP), a brain node parcellation scheme informed by the downstream predictive task. With voxel-level functional time courses generated under resting-state or cognitive tasks as input, our approach clusters voxels into nodes in a manner that maximizes the correlation between inter-node connections and the behavioral outcome, while also accommodating intra-node homogeneity. We rigorously evaluate the SBP approach using resting-state and task-based fMRI data from both the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP). Our analyses show that SBP significantly improves out-of-sample connectome-based predictive performance compared to conventional step-wise methods under various brain atlases. This advancement holds promise for enhancing our understanding of brain functional architectures with behavior and establishing more informative network neuromarkers for clinical applications.
Recent advancements in understanding the brain's functional organization related to behavior have been pivotal, particularly in the development of predictive models based on brain connectivity. A major analytical strategy in this domain involves a two-step process by first constructing a connectivity matrix from predefined brain regions, and then linking these connections to behaviors or clinical outcomes. Although some advances considered subject-specific functionally homogeneous nodes without relying on predefined regions of interest (ROIs), all these approaches with unsupervised node partitions predict outcomes inefficiently with independently established connectivity. In this paper, we introduce the Supervised Brain Parcellation (SBP), a brain node parcellation scheme informed by the downstream predictive task. With voxel-level functional time courses generated under resting-state or cognitive tasks as input, our approach clusters voxels into nodes in a manner that maximizes the correlation between inter-node connections and the behavioral outcome, while also accommodating intra-node homogeneity. We rigorously evaluate the SBP approach using resting-state and task-based fMRI data from both the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP). Our analyses show that SBP significantly improves out-of-sample connectome-based predictive performance compared to conventional step-wise methods under various brain atlases. This advancement holds promise for enhancing our understanding of brain functional architectures with behavior and establishing more informative network neuromarkers for clinical applications.Recent advancements in understanding the brain's functional organization related to behavior have been pivotal, particularly in the development of predictive models based on brain connectivity. A major analytical strategy in this domain involves a two-step process by first constructing a connectivity matrix from predefined brain regions, and then linking these connections to behaviors or clinical outcomes. Although some advances considered subject-specific functionally homogeneous nodes without relying on predefined regions of interest (ROIs), all these approaches with unsupervised node partitions predict outcomes inefficiently with independently established connectivity. In this paper, we introduce the Supervised Brain Parcellation (SBP), a brain node parcellation scheme informed by the downstream predictive task. With voxel-level functional time courses generated under resting-state or cognitive tasks as input, our approach clusters voxels into nodes in a manner that maximizes the correlation between inter-node connections and the behavioral outcome, while also accommodating intra-node homogeneity. We rigorously evaluate the SBP approach using resting-state and task-based fMRI data from both the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP). Our analyses show that SBP significantly improves out-of-sample connectome-based predictive performance compared to conventional step-wise methods under various brain atlases. This advancement holds promise for enhancing our understanding of brain functional architectures with behavior and establishing more informative network neuromarkers for clinical applications.
Author Xu, Wanwan
Constable, Todd
Tian, Xinyuan
Li, Tianxi
Tan, Chichun
Luo, Wenjing
Wang, Selena
Gao, Simiao
Shen, Xilin
Zhao, Yize
AuthorAffiliation Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States
School of Statistics, University of Minnesota, Minneapolis, MN, United States
Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
Department of Biostatistics, School of Public Health, Brown University, Providence, RI, United States
AuthorAffiliation_xml – name: Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
– name: School of Statistics, University of Minnesota, Minneapolis, MN, United States
– name: Department of Biostatistics, School of Public Health, Brown University, Providence, RI, United States
– name: Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States
Author_xml – sequence: 1
  givenname: Wanwan
  surname: Xu
  fullname: Xu, Wanwan
  organization: Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
– sequence: 2
  givenname: Selena
  surname: Wang
  fullname: Wang, Selena
  organization: Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
– sequence: 3
  givenname: Simiao
  surname: Gao
  fullname: Gao, Simiao
  organization: Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
– sequence: 4
  givenname: Xinyuan
  surname: Tian
  fullname: Tian, Xinyuan
  organization: Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
– sequence: 5
  givenname: Chichun
  surname: Tan
  fullname: Tan, Chichun
  organization: Department of Biostatistics, School of Public Health, Brown University, Providence, RI, United States
– sequence: 6
  givenname: Xilin
  surname: Shen
  fullname: Shen, Xilin
  organization: Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States
– sequence: 7
  givenname: Wenjing
  surname: Luo
  fullname: Luo, Wenjing
  organization: Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States
– sequence: 8
  givenname: Todd
  surname: Constable
  fullname: Constable, Todd
  organization: Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States
– sequence: 9
  givenname: Tianxi
  surname: Li
  fullname: Li, Tianxi
  organization: School of Statistics, University of Minnesota, Minneapolis, MN, United States
– sequence: 10
  givenname: Yize
  orcidid: 0000-0001-6283-2302
  surname: Zhao
  fullname: Zhao, Yize
  email: yize.zhao@yale.edu
  organization: Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40800928$$D View this record in MEDLINE/PubMed
BookMark eNptkU9LAzEQxYMo_u3BLyC5CHrYmmQ3aXISEa2C4qF6DtnsbI1uk5rsVv32bq2KgqcZmB_vDe_toHUfPCC0T8mQUsFOrm_PxkMz5GINbTOZjzJBuFj_tW-hQUpPhBCmFJEjvom2CiIJUUxuo8mkm0NcuAQVLqNxHvtQATa-wh7a1xCfsQ0-tbGzrQsed76CiBfhDZqsgQU0uO7858k02M3M1PnpHtqoTZNg8DV30cPlxf35VXZzN74-P7vJbC5km3HDZE2EKCtbWsWBKWpozSurQAIBSUWlcoCCSzIqaxAjKZktakFLaQtmTL6LTle6866cQWXBt9E0eh77P-K7DsbpvxfvHvU0LDRlOVWqIL3C0ZdCDC8dpFbPXLLQNMZD6JLOWa4oo5TwHj34bfbj8h1lDxyvABtDShHqH4QSvWxKL5vSRnPRs4crduZa_RS62KeX_uE-AO11k-Q
Cites_doi 10.1016/j.neuroimage.2017.04.054
10.1177/197140091302600110
10.1016/j.neuroimage.2021.118332
10.1152/jn.00338.2011
10.1016/j.neuroimage.2009.10.016
10.1016/j.neuroimage.2015.02.018
10.1016/j.neuroimage.2019.116091
10.1093/cercor/bhw157
10.1016/j.neuroimage.2022.118986
10.1002/hbm.26472
10.1016/j.neuroimage.2009.09.005
10.1016/j.neuroimage.2021.118792
10.1162/netn_a_00168
10.1016/j.jneumeth.2013.10.003
10.1093/cercor/bhx179
10.1177/1073191112446655
10.1002/hbm.25303
10.1002/hbm.21333
10.1038/nature18933
10.1038/s41467-018-04920-3
10.1017/S1355617714000241
10.1016/j.neuroimage.2013.05.081
10.1080/01621459.2022.2054817
10.1016/j.neuroimage.2017.08.068
10.1093/cercor/bhab101
10.1007/s12021-010-9092-8
10.1038/s41531-022-00315-w
10.1016/j.dcn.2018.03.001
10.1093/cercor/bhac145
10.1093/cercor/bhaa407
10.20944/preprints202411.2377.v1
10.1038/nprot.2016.178
10.1109/TIT.1986.1057168
10.1038/nn.4135
10.1006/nimg.2001.0978
10.1038/s41467-022-29766-8
10.1001/jama.1940.02810350146034
10.1038/nn.4164
10.1006/nimg.2000.0593
10.1016/j.neuroimage.2019.116233
10.1093/cercor/bhu239
10.1016/j.dcn.2018.04.004
10.1016/j.neuroimage.2019.116189
10.1016/j.neuron.2015.12.001
10.1016/j.neuroimage.2013.04.127
10.1111/mono.12038
10.1016/j.neuroimage.2012.03.016
10.1016/j.neuroimage.2019.116366
10.1016/j.neuron.2014.05.014
ContentType Journal Article
Copyright 2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2025 The Authors.
Copyright_xml – notice: 2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
– notice: 2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2025 The Authors.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1162/IMAG.a.56
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2837-6056
ExternalDocumentID PMC12319940
40800928
10_1162_IMAG_a_56
imag.a.56.pdf
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: RF1AG081413, R01EB034720, and R01AG068191
– fundername: ;
  grantid: RF1AG081413, R01EB034720, and R01AG068191
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JMNJE
M~E
RPM
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c368t-5a28f066bdcbc95e291a1f5dc9e8e0e816d93ee45807bfe67882c4f61b8c42aa3
ISSN 2837-6056
IngestDate Thu Aug 21 18:28:21 EDT 2025
Sat Aug 23 12:16:03 EDT 2025
Sun Aug 17 02:21:45 EDT 2025
Thu Jul 03 08:44:42 EDT 2025
Fri Aug 29 16:26:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brain atlas
fMRI
functional connectivity
connectome-based predictive model
supervised learning
spectral clustering
Language English
License 2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/ .
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-5a28f066bdcbc95e291a1f5dc9e8e0e816d93ee45807bfe67882c4f61b8c42aa3
Notes 2025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6283-2302
OpenAccessLink https://direct.mit.edu/IMAG/article/doi/10.1162/IMAG.a.56
PMID 40800928
PQID 3239121105
PQPubID 23479
PageCount 19
ParticipantIDs pubmed_primary_40800928
crossref_primary_10_1162_IMAG_a_56
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12319940
mit_journals_10_1162_IMAG_a_56
proquest_miscellaneous_3239121105
PublicationCentury 2000
PublicationDate 2025-06-26
PublicationDateYYYYMMDD 2025-06-26
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-26
  day: 26
PublicationDecade 2020
PublicationPlace 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
PublicationPlace_xml – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
– name: United States
– name: One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu
PublicationTitle Imaging neuroscience (Cambridge, Mass.)
PublicationTitleAlternate Imaging Neurosci (Camb)
PublicationYear 2025
Publisher MIT Press
Publisher_xml – name: MIT Press
References Yeo (2025062619555121100_IMAG.a.56-b53) 2011; 106
Yeo (2025062619555121100_IMAG.a.56-b54) 2015; 111
Papademetris (2025062619555121100_IMAG.a.56-b36) 2006; 2006
Kim (2025062619555121100_IMAG.a.56-b26) 2010; 49
Shen (2025062619555121100_IMAG.a.56-b44) 2017; 12
Garavan (2025062619555121100_IMAG.a.56-b15) 2018; 32
Shiee (2025062619555121100_IMAG.a.56-b46) 2010; 49
Luo (2025062619555121100_IMAG.a.56-b31) 2022; 247
Nowinski (2025062619555121100_IMAG.a.56-b33) 2013; 26
Boukhdhir (2025062619555121100_IMAG.a.56-b4) 2021; 5
Fan (2025062619555121100_IMAG.a.56-b13) 2021; 42
Ji (2025062619555121100_IMAG.a.56-b24) 2009
Akshoomoff (2025062619555121100_IMAG.a.56-b1) 2013; 78
Cole (2025062619555121100_IMAG.a.56-b10) 2014; 83
Revell (2025062619555121100_IMAG.a.56-b37) 2022; 254
Fan (2025062619555121100_IMAG.a.56-b12) 2016; 26
Luo (2025062619555121100_IMAG.a.56-b32) 2021; 240
Logan (2025062619555121100_IMAG.a.56-b30) 1994; 20
Chen (2025062619555121100_IMAG.a.56-b7) 2022; 13
Hagler (2025062619555121100_IMAG.a.56-b20) 2019; 202
Haxby (2025062619555121100_IMAG.a.56-b21) 2012; 62
Amunts (2025062619555121100_IMAG.a.56-b2) 2015; 88
Wang (2025062619555121100_IMAG.a.56-b49) 2015; 18
Wu (2025062619555121100_IMAG.a.56-b52) 2023; 33
Schaefer (2025062619555121100_IMAG.a.56-b43) 2018; 28
Salehi (2025062619555121100_IMAG.a.56-b42) 2018; 170
Rolls (2025062619555121100_IMAG.a.56-b38) 2020; 206
Kong (2025062619555121100_IMAG.a.56-b28) 2021; 31
Tzourio-Mazoyer (2025062619555121100_IMAG.a.56-b48) 2002; 15
Ota (2025062619555121100_IMAG.a.56-b35) 2014; 221
Wang (2025062619555121100_IMAG.a.56-b51) 2021; 31
Glasser (2025062619555121100_IMAG.a.56-b16) 2016; 536
Craddock (2025062619555121100_IMAG.a.56-b11) 2012; 33
Knutson (2025062619555121100_IMAG.a.56-b27) 2000; 12
Cohen (2025062619555121100_IMAG.a.56-b9) 2016
Gordon (2025062619555121100_IMAG.a.56-b18) 2016; 26
Bilker (2025062619555121100_IMAG.a.56-b3) 2012; 19
Shen (2025062619555121100_IMAG.a.56-b45) 2013; 82
Iraji (2025062619555121100_IMAG.a.56-b23) 2023; 44
Joshi (2025062619555121100_IMAG.a.56-b25) 2011; 9
Greene (2025062619555121100_IMAG.a.56-b19) 2018; 9
2025062619555121100_IMAG.a.56-b34
Wang (2025062619555121100_IMAG.a.56-b50) 2022; 8
Salehi (2025062619555121100_IMAG.a.56-b40) 2020; 208
Casey (2025062619555121100_IMAG.a.56-b6) 2018; 32
Chong (2025062619555121100_IMAG.a.56-b8) 2017; 156
2025062619555121100_IMAG.a.56-b5
Heaton (2025062619555121100_IMAG.a.56-b22) 2014; 20
Finn (2025062619555121100_IMAG.a.56-b14) 2015; 18
Sabin (2025062619555121100_IMAG.a.56-b39) 1986; 32
Salehi (2025062619555121100_IMAG.a.56-b41) 2020; 206
Lei (2025062619555121100_IMAG.a.56-b29) 2022; 118
Glasser (2025062619555121100_IMAG.a.56-b17) 2013; 80
Thomas Yeo (2025062619555121100_IMAG.a.56-b47) 2011; 106
References_xml – volume: 156
  start-page: 87
  year: 2017
  ident: 2025062619555121100_IMAG.a.56-b8
  article-title: Individual parcellation of resting fMRI with a group functional connectivity prior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.054
– volume: 26
  start-page: 56
  issue: 1
  year: 2013
  ident: 2025062619555121100_IMAG.a.56-b33
  article-title: Stroke atlas: A 3D interactive tool correlating cerebrovascular pathology with underlying neuroanatomy and resulting neurological deficits
  publication-title: The Neuroradiology Journal
  doi: 10.1177/197140091302600110
– volume: 20
  start-page: 1015
  issue: 5
  year: 1994
  ident: 2025062619555121100_IMAG.a.56-b30
  article-title: Spatial attention and the apprehension of spatial relations
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
– volume: 240
  start-page: 118332
  year: 2021
  ident: 2025062619555121100_IMAG.a.56-b32
  article-title: Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118332
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  ident: 2025062619555121100_IMAG.a.56-b53
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00338.2011
– volume: 49
  start-page: 2375
  issue: 3
  year: 2010
  ident: 2025062619555121100_IMAG.a.56-b26
  article-title: Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: Functional connectivity-based parcellation method
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.016
– volume: 111
  start-page: 147
  year: 2015
  ident: 2025062619555121100_IMAG.a.56-b54
  article-title: Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.018
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  ident: 2025062619555121100_IMAG.a.56-b47
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00338.2011
– volume: 202
  start-page: 116091
  year: 2019
  ident: 2025062619555121100_IMAG.a.56-b20
  article-title: Image processing and analysis methods for the adolescent brain cognitive development study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116091
– volume: 26
  start-page: 3508
  issue: 8
  year: 2016
  ident: 2025062619555121100_IMAG.a.56-b12
  article-title: The human brainnetome atlas: A new brain atlas based on connectional architecture
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhw157
– volume: 254
  start-page: 118986
  year: 2022
  ident: 2025062619555121100_IMAG.a.56-b37
  article-title: A framework for brain atlases: Lessons from seizure dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118986
– volume: 44
  start-page: 5729
  issue: 17
  year: 2023
  ident: 2025062619555121100_IMAG.a.56-b23
  article-title: Identifying canonical and replicable multi-scale intrinsic connectivity networks in 100k+ resting-state fMRI datasets
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.26472
– volume: 49
  start-page: 1524
  issue: 2
  year: 2010
  ident: 2025062619555121100_IMAG.a.56-b46
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.09.005
– volume: 247
  start-page: 118792
  year: 2022
  ident: 2025062619555121100_IMAG.a.56-b31
  article-title: Inside information: Systematic within-node functional connectivity changes observed across tasks or groups
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118792
– volume: 5
  start-page: 28
  issue: 1
  year: 2021
  ident: 2025062619555121100_IMAG.a.56-b4
  article-title: Unraveling reproducible dynamic states of individual brain functional parcellation
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00168
– volume: 221
  start-page: 139
  year: 2014
  ident: 2025062619555121100_IMAG.a.56-b35
  article-title: A comparison of three brain atlases for MCI prediction
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2013.10.003
– volume: 28
  start-page: 3095
  issue: 9
  year: 2018
  ident: 2025062619555121100_IMAG.a.56-b43
  article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
  doi: 10.1093/cercor/bhx179
– volume: 19
  start-page: 354
  issue: 3
  year: 2012
  ident: 2025062619555121100_IMAG.a.56-b3
  article-title: Development of abbreviated nine-item forms of the raven’s standard progressive matrices test
  publication-title: Assessment
  doi: 10.1177/1073191112446655
– volume: 42
  start-page: 1416
  issue: 5
  year: 2021
  ident: 2025062619555121100_IMAG.a.56-b13
  article-title: Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.25303
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  ident: 2025062619555121100_IMAG.a.56-b11
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.21333
– volume: 2006
  start-page: 209
  year: 2006
  ident: 2025062619555121100_IMAG.a.56-b36
  article-title: Bioimage suite: An integrated medical image analysis suite: An update
  publication-title: The Insight Journal
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  ident: 2025062619555121100_IMAG.a.56-b16
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 9
  start-page: 2807
  issue: 1
  year: 2018
  ident: 2025062619555121100_IMAG.a.56-b19
  article-title: Task-induced brain state manipulation improves prediction of individual traits
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-04920-3
– volume: 20
  start-page: 588
  issue: 6
  year: 2014
  ident: 2025062619555121100_IMAG.a.56-b22
  article-title: Reliability and validity of composite scores from the NIH toolbox cognition battery in adults
  publication-title: Journal of the International Neuropsychological Society
  doi: 10.1017/S1355617714000241
– volume: 82
  start-page: 403
  year: 2013
  ident: 2025062619555121100_IMAG.a.56-b45
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 118
  start-page: 2433
  issue: 544
  year: 2022
  ident: 2025062619555121100_IMAG.a.56-b29
  article-title: Bias-adjusted spectral clustering in multi-layer stochastic block models
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2022.2054817
– volume: 170
  start-page: 54
  year: 2018
  ident: 2025062619555121100_IMAG.a.56-b42
  article-title: An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.068
– volume: 31
  start-page: 4477
  issue: 10
  year: 2021
  ident: 2025062619555121100_IMAG.a.56-b28
  article-title: Individual-specific areal-level parcellations improve functional connectivity prediction of behavior
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhab101
– start-page: 984
  volume-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009: 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part I 12
  year: 2009
  ident: 2025062619555121100_IMAG.a.56-b24
  article-title: Parcellation of fMRI datasets with ICA and PLS—A data driven approach
– volume: 9
  start-page: 69
  year: 2011
  ident: 2025062619555121100_IMAG.a.56-b25
  article-title: Unified framework for development, deployment and robust testing of neuroimaging algorithms
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-010-9092-8
– volume: 8
  start-page: 49
  issue: 1
  year: 2022
  ident: 2025062619555121100_IMAG.a.56-b50
  article-title: Antagonistic network signature of motor function in Parkinson’s disease revealed by connectome-based predictive modeling
  publication-title: NPJ Parkinson’s Disease
  doi: 10.1038/s41531-022-00315-w
– volume: 32
  start-page: 43
  year: 2018
  ident: 2025062619555121100_IMAG.a.56-b6
  article-title: The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites
  publication-title: Developmental Cognitive Neuroscience
  doi: 10.1016/j.dcn.2018.03.001
– volume: 33
  start-page: 1412
  issue: 4
  year: 2023
  ident: 2025062619555121100_IMAG.a.56-b52
  article-title: Connectome-based predictive modeling of compulsion in obsessive–compulsive disorder
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhac145
– volume: 31
  start-page: 3006
  issue: 6
  year: 2021
  ident: 2025062619555121100_IMAG.a.56-b51
  article-title: Connectome-based predictive modeling of individual anxiety
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhaa407
– ident: 2025062619555121100_IMAG.a.56-b34
  doi: 10.20944/preprints202411.2377.v1
– volume-title: Proceedings of the Society for Neuroscience
  year: 2016
  ident: 2025062619555121100_IMAG.a.56-b9
  article-title: The impact of emotional cues on short-term and long-term memory during adolescence
– volume: 12
  start-page: 506
  issue: 3
  year: 2017
  ident: 2025062619555121100_IMAG.a.56-b44
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2016.178
– volume: 32
  start-page: 148
  issue: 2
  year: 1986
  ident: 2025062619555121100_IMAG.a.56-b39
  article-title: Global convergence and empirical consistency of the generalized Lloyd algorithm
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1986.1057168
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 2025062619555121100_IMAG.a.56-b14
  article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4135
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 2025062619555121100_IMAG.a.56-b48
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 13
  start-page: 2217
  issue: 1
  year: 2022
  ident: 2025062619555121100_IMAG.a.56-b7
  article-title: Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29766-8
– ident: 2025062619555121100_IMAG.a.56-b5
  doi: 10.1001/jama.1940.02810350146034
– volume: 18
  start-page: 1853
  issue: 12
  year: 2015
  ident: 2025062619555121100_IMAG.a.56-b49
  article-title: Parcellating cortical functional networks in individuals
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4164
– volume: 12
  start-page: 20
  issue: 1
  year: 2000
  ident: 2025062619555121100_IMAG.a.56-b27
  article-title: fMRI visualization of brain activity during a monetary incentive delay task
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0593
– volume: 206
  start-page: 116233
  year: 2020
  ident: 2025062619555121100_IMAG.a.56-b41
  article-title: Individualized functional networks reconfigure with cognitive state
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116233
– volume: 26
  start-page: 288
  issue: 1
  year: 2016
  ident: 2025062619555121100_IMAG.a.56-b18
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhu239
– volume: 32
  start-page: 16
  year: 2018
  ident: 2025062619555121100_IMAG.a.56-b15
  article-title: Recruiting the ABCD sample: Design considerations and procedures
  publication-title: Developmental Cognitive Neuroscience
  doi: 10.1016/j.dcn.2018.04.004
– volume: 206
  start-page: 116189
  year: 2020
  ident: 2025062619555121100_IMAG.a.56-b38
  article-title: Automated anatomical labelling atlas 3
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116189
– volume: 88
  start-page: 1086
  issue: 6
  year: 2015
  ident: 2025062619555121100_IMAG.a.56-b2
  article-title: Architectonic mapping of the human brain beyond brodmann
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.12.001
– volume: 80
  start-page: 105
  year: 2013
  ident: 2025062619555121100_IMAG.a.56-b17
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 78
  start-page: 119
  issue: 4
  year: 2013
  ident: 2025062619555121100_IMAG.a.56-b1
  article-title: Viii. NIH toolbox cognition battery (cb): Composite scores of crystallized, fluid, and overall cognition
  publication-title: Monographs of the Society for Research in Child Development
  doi: 10.1111/mono.12038
– volume: 62
  start-page: 852
  issue: 2
  year: 2012
  ident: 2025062619555121100_IMAG.a.56-b21
  article-title: Multivariate pattern analysis of fMRI: The early beginnings
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.016
– volume: 208
  start-page: 116366
  year: 2020
  ident: 2025062619555121100_IMAG.a.56-b40
  article-title: There is no single functional atlas even for a single individual: Functional parcel definitions change with task
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116366
– volume: 83
  start-page: 238
  issue: 1
  year: 2014
  ident: 2025062619555121100_IMAG.a.56-b10
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
SSID ssj0002990875
Score 2.295744
Snippet Recent advancements in understanding the brain’s functional organization related to behavior have been pivotal, particularly in the development of predictive...
Recent advancements in understanding the brain's functional organization related to behavior have been pivotal, particularly in the development of predictive...
SourceID pubmedcentral
proquest
pubmed
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms brain atlas
connectome-based predictive model
fMRI
functional connectivity
spectral clustering
supervised learning
Title Supervised brain node and network construction under voxel-level functional imaging
URI https://direct.mit.edu/IMAG/article/doi/10.1162/IMAG.a.56
https://www.ncbi.nlm.nih.gov/pubmed/40800928
https://www.proquest.com/docview/3239121105
https://pubmed.ncbi.nlm.nih.gov/PMC12319940
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYkBAXxDcdUBnErUppnMR1jhOCbUjl0k30FtmxIyKtyURaBvz1vGe7STpyGPQQVU7iRH6_-H34vZ8JeccLDd4xl4FhaRHEOtWByrUJFC_gp5RkdgV_8YWfXsSfV8mqS2u21SUbNc1_D9aV_I9UoQ3kilWy_yDZtlNogP8gXziChOF4Kxkvt1f4qTdoReJWD5Oq1m45oHLZ3ZhU3jLE2i1vv09-1D_NZXCJyUIT1Go-GFiu7X5FfWP1zDVNepyX1iJt67xcsU_TTHvxhNXWpu3J6rrD3dddUBp1XKsHTqQN0y7LdSnrNoJQuojsqqx-bX0PPijBEkyecpXvbu5CTp0APCXPcj3Q5iffaHga50gLe7Y4PpnKaTJAlX1DhbWJhdal4SzDWzOZJfyA3GXgQIS9OA7qaFTCwrIwt2_laafg7vftg_eMlYN1uRnyQ26m0_bsk_OH5IF3LOixQ8kjcsdUj8m9hU-deEKWHVioBQtFsFAAC_VgoX2wUAsW2gML7cBCPViekotPH88_nAZ-R40gj7jYBIlkogAjU-lc5WkC32cowyLReWqEmRkRcp1GxsSJmM1VYcCQESyPCx4qkcdMyugZOazqyrwglCc6ZjpioUTqZ8aEnhsD3WgZz9ScmxF5uxu67MoRp2R_SWdExjComf-kmqEL3uzGO4N5DxezZGXqbZNFLEqRnnCWjMhzN_7tc2J0g1ImRkTsSaa9ADnV989U5TfLrQ6GHLJlz45u8_ovyf0O_K_IIYjIvAYbdaPGNrYztqD7AxZKl5Q
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BkYALYqcsxSCuLokTu86xQkAppCeQuFl2PBGVIEEUEJ-PnYRCERK52omt52XGnsl7ACcit-50LDRFluQ0tomlJrNIjcjdY4xmVQQ_HYnBXTy85_c_pL7qjbz7NK6zaK7S_uVpg-GUbCAUrCro6i4X87AgnBEKWrAwTEfD7wsWv886Z7xhE5p5Z8YGzbu2_nIvf2dJ_jA7F6uw0viLpF93bg3msFiHxbSJiG-Al-X0y32Clhgv90CK0iLRhSVFneFNsvKbJZb4f8ZeyHv5gY_00ScMEW_Z6gtBMn6qNIs24e7i_PZsQBuhBJpFQr5SrpnMne9gbGayhDvYQx3m3GYJSgxQhsImEWLMZdAzOTr7JFkW5yI0MouZ1tEWtIqywB0ggtuY2YiF2jP6MiZtD9F9xuo4MD2BbTj-gk4913wYqjpHCKY8vkorLtrQcaCqZjVM_qpw9IW3ctPZxyh0geXbREUsSjzrXMDbsF3jP20n9t5twmQb5MzITCt4quzZkmL8UFFmO_vsSZCD3f96dghLg9v0Rt1cja73YJl5td9AUCb2oeWGCg-cC_JqOs1k-wQ4G9xM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+brain+node+and+network+construction+under+voxel-level+functional+imaging&rft.jtitle=Imaging+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Xu%2C+Wanwan&rft.au=Wang%2C+Selena&rft.au=Gao%2C+Simiao&rft.au=Tian%2C+Xinyuan&rft.date=2025-06-26&rft.issn=2837-6056&rft.eissn=2837-6056&rft.volume=3&rft_id=info:doi/10.1162%2FIMAG.a.56&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_IMAG_a_56
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-6056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-6056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-6056&client=summon