Aging effect on head motion: A Machine Learning study on resting state fMRI data
•Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations (phi,theta,psi).•Normal aging produces significant increase in head motion and signal distortion.•In elderly, most important altered parameters were psi,...
Saved in:
Published in | Journal of neuroscience methods Vol. 352; p. 109084 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2021.109084 |
Cover
Abstract | •Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations (phi,theta,psi).•Normal aging produces significant increase in head motion and signal distortion.•In elderly, most important altered parameters were psi, z and y.•A better control of these signals is fundamental to avoid possible unreliable result.
Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals.
For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects’aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head’s movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance.
Statistical analyses showed significant association between the aging and some motion’s parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %.
The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging.
Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects. |
---|---|
AbstractList | Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals.
For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects'aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head's movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance.
Statistical analyses showed significant association between the aging and some motion's parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %.
The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging.
Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects. Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals.BACKGROUNDResting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals.For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects'aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head's movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance.NEW METHODFor the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects'aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head's movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance.Statistical analyses showed significant association between the aging and some motion's parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %.RESULTSStatistical analyses showed significant association between the aging and some motion's parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %.The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging.COMPARISON TO EXISTING METHODSThe proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging.Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects.CONCLUSIONSOur results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects. •Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations (phi,theta,psi).•Normal aging produces significant increase in head motion and signal distortion.•In elderly, most important altered parameters were psi, z and y.•A better control of these signals is fundamental to avoid possible unreliable result. Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals. For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects’aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head’s movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance. Statistical analyses showed significant association between the aging and some motion’s parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %. The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging. Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects. |
ArticleNumber | 109084 |
Author | Saccà, Valeria Rocca, Federico Quattrone, Aldo Novellino, Fabiana Sarica, Alessia Quattrone, Andrea |
Author_xml | – sequence: 1 givenname: Valeria surname: Saccà fullname: Saccà, Valeria organization: Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Italy – sequence: 2 givenname: Alessia surname: Sarica fullname: Sarica, Alessia organization: Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Italy – sequence: 3 givenname: Andrea surname: Quattrone fullname: Quattrone, Andrea organization: Institute of Neurology, University Magna Graecia of Catanzaro, Italy – sequence: 4 givenname: Federico surname: Rocca fullname: Rocca, Federico organization: Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy – sequence: 5 givenname: Aldo surname: Quattrone fullname: Quattrone, Aldo organization: Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy – sequence: 6 givenname: Fabiana orcidid: 0000-0002-5898-938X surname: Novellino fullname: Novellino, Fabiana email: fabiana.novellino@cnr.it organization: Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33508406$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFqGzEQhkVxaWy3rxB0zGXd0WpXK5ccakKSGhxaSgO5CUWajWW8WlfSBvL2ldn40otPA8P3z4w-zcjE9x4JuWSwYMDE191i53HoMG0XJZQsN5cgqw9kymRTFqKRTxMyzWBdQNnABZnFuAOAagniE7ngvM40iCn5tXpx_oVi26JJtPd0i9rSrk-u99_oij5os3Ue6QZ18EcypsG-HcGAMY0NnZC2D7_X1OqkP5OPrd5H_PJe5-Tx7vbPzY9i8_N-fbPaFIYLmYpaSC1RIgJfLq15ZhosorGs1CZfVyHUotaiktDwCrnQvJWiZNxiy0rWAJ-Tq3HuIfR_h3yL6lw0uN9rj_0QVVlJLjMq64xevqPDc4dWHYLrdHhTJwsZuB4BE_oYA7bKuPyqrCAF7faKgTpKVzt1kq6O0tUoPcfFf_HThrPB72MQs6hXh0FF49AbtC7k71C2d-dG_APLPp4o |
CitedBy_id | crossref_primary_10_1002_hbm_26035 crossref_primary_10_1007_s11357_023_01008_9 crossref_primary_10_3389_fnins_2022_1017211 crossref_primary_10_1002_jts_22778 crossref_primary_10_3389_fnins_2023_1096232 crossref_primary_10_3389_fnins_2024_1223230 crossref_primary_10_1002_mrm_29132 crossref_primary_10_1007_s00429_023_02625_y crossref_primary_10_1162_imag_a_00151 crossref_primary_10_3389_fnins_2022_1006056 crossref_primary_10_1093_texcom_tgab050 crossref_primary_10_3389_fnagi_2023_1170879 crossref_primary_10_1016_j_neurobiolaging_2024_11_010 crossref_primary_10_1002_hbm_26777 crossref_primary_10_1002_hbm_25759 crossref_primary_10_1007_s10072_022_06400_5 |
Cites_doi | 10.1016/j.neuroimage.2011.10.018 10.1006/nimg.1999.0444 10.1016/j.neurobiolaging.2014.04.007 10.1016/j.neurobiolaging.2012.11.002 10.1016/j.neuroimage.2016.08.051 10.1007/s11682-015-9448-7 10.1073/pnas.0601417103 10.1016/0278-5846(93)90075-4 10.1007/s11682-018-9926-9 10.1016/j.neuroimage.2016.12.027 10.1016/j.neuroimage.2014.12.006 10.1007/s00221-005-0059-1 10.1002/(SICI)1522-2594(199905)41:5<1039::AID-MRM24>3.0.CO;2-N 10.1016/j.neuroimage.2015.02.064 10.1016/j.neuroimage.2011.07.044 10.1073/pnas.0905267106 10.1016/j.lfs.2006.02.017 10.1002/hbm.20219 10.1016/j.mri.2008.06.002 10.1016/j.neuroimage.2017.07.038 10.1023/A:1012487302797 10.1016/j.neurobiolaging.2004.07.001 10.1016/j.neuroimage.2007.11.059 10.1016/j.neuroimage.2005.02.050 10.1007/BF00994018 10.1038/nrn1323 10.1038/nn.3423 10.1152/jn.90777.2008 10.1016/S0730-725X(01)00418-0 10.1136/pgmj.2005.036665 10.1016/j.neulet.2007.06.011 10.1034/j.1600-0404.107.s179.5.x 10.1016/j.neurobiolaging.2012.08.018 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R 10.1111/j.1471-4159.1984.tb06098.x 10.1006/nimg.2002.1132 10.1016/j.jneumeth.2018.03.011 10.1016/j.tins.2004.07.013 10.1016/j.neuroimage.2012.01.090 10.1016/j.neubiorev.2013.01.017 10.1007/s11065-014-9249-6 10.1016/S0197-4580(00)00149-4 10.3389/fnins.2019.00825 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier B.V. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jneumeth.2021.109084 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 33508406 10_1016_j_jneumeth_2021_109084 S0165027021000194 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c368t-568a8e8ee0399dcb1a0deecd12ac3354e0565a6480734e36a3f86213def121703 |
IEDL.DBID | AIKHN |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Sep 05 11:57:35 EDT 2025 Thu Apr 03 06:56:37 EDT 2025 Tue Jul 01 02:57:14 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Fri Feb 23 02:45:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Head motions correction rs-fMRI ROC Resting state fMRI SVM Support vector machine AUC rfe fMRI tSNR Aging BOLD Temporal Signal to noise ratio |
Language | English |
License | Copyright © 2021. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-568a8e8ee0399dcb1a0deecd12ac3354e0565a6480734e36a3f86213def121703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5898-938X |
PMID | 33508406 |
PQID | 2483812185 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2483812185 pubmed_primary_33508406 crossref_citationtrail_10_1016_j_jneumeth_2021_109084 crossref_primary_10_1016_j_jneumeth_2021_109084 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2021_109084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-15 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Patriat, Reynolds, Birn (bib0155) 2017; 144 Ardekani, Bachman, Helpern (bib0005) 2001; 19 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib0045) 2006; 103 Reuter, Tisdall, Qureshi, Buckner, Van der Kouwe, Fischl (bib0175) 2015; 107 Dennis, Thompson (bib0055) 2014; 24 Cortes, Vapnik (bib0035) 1995; 20 Saccà, Sarica, Novellino, Barone, Tallarico, Filippelli, Granata, Chiriaco, Bossio, Valentino, Quattrone (bib0200) 2019; 13 Johnstone, Ores Walsh, Greischar, Alexander, Fox, Davidson (bib0105) 2006; 27 Marcusson, Oreland, Winblad (bib0130) 1984; 43 Messaritaki, Koelewijn, Dima, Williams, Perry, Singh (bib0135) 2017; 159 Guyon, Weston, Barnhill, Vapnik (bib0080) 2002; 46 Buckner, Krienen, Yeo (bib0025) 2013; 16 Pruim, Mennes, Van Rooij, Llera, Buitelaar, Beckmann (bib0170) 2015; 112 Saccà, Sarica, Novellino, Barone, Valentino, Quattrone (bib0195) 2019 Hof, Morrison (bib0090) 2004; 27 Fox, Zhang, Snyder, Raichle (bib0065) 2009; 101 Team, R. C (bib0225) 2000 Yoo, Choi, Juh, Pae, Lee (bib0255) 2005 Guyon, Elisseeff (bib0075) 2003; 3 Ferreira, Busatto (bib0060) 2013; 37 Ota, Yasuno, Ito, Seki, Nozaki, Asada (bib0150) 2006; 79 Bright, Tench, Murphy (bib0020) 2017; 154 Saccá, Campolo, Mirarchi, Gambardella, Veltri, Morabito (bib0190) 2018 Mevel, Landeau, Fouquet, La Joie, Villain, Mézenge (bib0140) 2013; 34 Birn, Smith, Jones, Bandettini (bib0010) 2008; 40 Peters (bib0160) 2006; 82 Yang, Ross, Zhang, Stein, Yang (bib0250) 2005; 27 Thulborn (bib0235) 1999; 41 Hedden, Gabrieli (bib0085) 2004; 5 Maknojia, Churchill, Schweizer, Graham (bib0125) 2019; 13 Wu, Zang, Wang, Long, Hallett, Chen (bib0245) 2007; 422 De Luca, Smith, De Stefano, Federico, Matthews (bib0050) 2005; 167 Khazaee, Ebrahimzadeh, Babajani-Feremi (bib0120) 2016; 10 Gauthier, Madjar, Desjardins-Crépeau, Bellec, Bherer, Hoge (bib0070) 2013; 34 Kaasinen, Vilkman, Hietala, Någren, Helenius, Olsson (bib0110) 2000; 21 D’Esposito, Zarahn, Aguirre, Rypma (bib0040) 1999; 10 Sala-Llonch, Junqué, Arenaza-Urquijo, Vidal-Piñeiro, Valls-Pedret, Palacios (bib0205) 2014; 35 Jenkinson, Bannister, Brady, Smith (bib0100) 2002; 17 Saccà, Sarica, Novellino, Barone, Filippelli, Granata, Demonte, Nisticò, Valentino, Quattrone (bib0185) 2018 Sarraf, Tofighi (bib0215) 2016 Chang, Jiang, Ernst (bib0030) 2009; 27 Iyo, Yamasaki (bib0095) 1993; 17 Nilsson (bib0145) 2003; 107 Saccà, Sarica, Novellino, Barone, Tallarico, Filippelli, Granata, Valentino, Quattrone (bib0180) 2018; 12 Van Dijk, Sabuncu, Buckner (bib0240) 2012; 59 Thesen, Heid, Mueller, Schad (bib0230) 2000; 44 Smith, Fox, Miller, Glahn, Fox, Mackay (bib0220) 2009; 106 Kaiser, Schuff, Cashdollar, Weiner (bib0115) 2005; 26 Sarica, Cerasa, Quattrone, Calhoun (bib0210) 2018; 302 Power, Barnes, Snyder, Schlaggar, Petersen (bib0165) 2012; 59 Biswal (bib0015) 2012; 62 Mevel (10.1016/j.jneumeth.2021.109084_bib0140) 2013; 34 Sarica (10.1016/j.jneumeth.2021.109084_bib0210) 2018; 302 Kaiser (10.1016/j.jneumeth.2021.109084_bib0115) 2005; 26 Reuter (10.1016/j.jneumeth.2021.109084_bib0175) 2015; 107 Guyon (10.1016/j.jneumeth.2021.109084_bib0075) 2003; 3 Thesen (10.1016/j.jneumeth.2021.109084_bib0230) 2000; 44 D’Esposito (10.1016/j.jneumeth.2021.109084_bib0040) 1999; 10 Cortes (10.1016/j.jneumeth.2021.109084_bib0035) 1995; 20 Gauthier (10.1016/j.jneumeth.2021.109084_bib0070) 2013; 34 Yang (10.1016/j.jneumeth.2021.109084_bib0250) 2005; 27 Ota (10.1016/j.jneumeth.2021.109084_bib0150) 2006; 79 Saccá (10.1016/j.jneumeth.2021.109084_bib0190) 2018 Saccà (10.1016/j.jneumeth.2021.109084_bib0195) 2019 Van Dijk (10.1016/j.jneumeth.2021.109084_bib0240) 2012; 59 Messaritaki (10.1016/j.jneumeth.2021.109084_bib0135) 2017; 159 Birn (10.1016/j.jneumeth.2021.109084_bib0010) 2008; 40 Biswal (10.1016/j.jneumeth.2021.109084_bib0015) 2012; 62 Thulborn (10.1016/j.jneumeth.2021.109084_bib0235) 1999; 41 Johnstone (10.1016/j.jneumeth.2021.109084_bib0105) 2006; 27 Iyo (10.1016/j.jneumeth.2021.109084_bib0095) 1993; 17 Chang (10.1016/j.jneumeth.2021.109084_bib0030) 2009; 27 Hedden (10.1016/j.jneumeth.2021.109084_bib0085) 2004; 5 Smith (10.1016/j.jneumeth.2021.109084_bib0220) 2009; 106 Ferreira (10.1016/j.jneumeth.2021.109084_bib0060) 2013; 37 Wu (10.1016/j.jneumeth.2021.109084_bib0245) 2007; 422 De Luca (10.1016/j.jneumeth.2021.109084_bib0050) 2005; 167 Nilsson (10.1016/j.jneumeth.2021.109084_bib0145) 2003; 107 Team, R. C (10.1016/j.jneumeth.2021.109084_bib0225) 2000 Khazaee (10.1016/j.jneumeth.2021.109084_bib0120) 2016; 10 Sarraf (10.1016/j.jneumeth.2021.109084_bib0215) 2016 Ardekani (10.1016/j.jneumeth.2021.109084_bib0005) 2001; 19 Patriat (10.1016/j.jneumeth.2021.109084_bib0155) 2017; 144 Pruim (10.1016/j.jneumeth.2021.109084_bib0170) 2015; 112 Fox (10.1016/j.jneumeth.2021.109084_bib0065) 2009; 101 Jenkinson (10.1016/j.jneumeth.2021.109084_bib0100) 2002; 17 Damoiseaux (10.1016/j.jneumeth.2021.109084_bib0045) 2006; 103 Buckner (10.1016/j.jneumeth.2021.109084_bib0025) 2013; 16 Saccà (10.1016/j.jneumeth.2021.109084_bib0185) 2018 Saccà (10.1016/j.jneumeth.2021.109084_bib0200) 2019; 13 Bright (10.1016/j.jneumeth.2021.109084_bib0020) 2017; 154 Hof (10.1016/j.jneumeth.2021.109084_bib0090) 2004; 27 Power (10.1016/j.jneumeth.2021.109084_bib0165) 2012; 59 Guyon (10.1016/j.jneumeth.2021.109084_bib0080) 2002; 46 Peters (10.1016/j.jneumeth.2021.109084_bib0160) 2006; 82 Maknojia (10.1016/j.jneumeth.2021.109084_bib0125) 2019; 13 Saccà (10.1016/j.jneumeth.2021.109084_bib0180) 2018; 12 Kaasinen (10.1016/j.jneumeth.2021.109084_bib0110) 2000; 21 Yoo (10.1016/j.jneumeth.2021.109084_bib0255) 2005 Dennis (10.1016/j.jneumeth.2021.109084_bib0055) 2014; 24 Marcusson (10.1016/j.jneumeth.2021.109084_bib0130) 1984; 43 Sala-Llonch (10.1016/j.jneumeth.2021.109084_bib0205) 2014; 35 |
References_xml | – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib0165 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 101 start-page: 3270 year: 2009 end-page: 3283 ident: bib0065 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J. Neurophysiol. – volume: 34 start-page: 1469 year: 2013 end-page: 1485 ident: bib0070 article-title: Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging publication-title: Neurobiol. Aging – volume: 37 start-page: 384 year: 2013 end-page: 400 ident: bib0060 article-title: Resting-state functional connectivity in normal brain aging publication-title: Neurosci. Biobehav. Rev. – volume: 10 start-page: 799 year: 2016 end-page: 817 ident: bib0120 article-title: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease publication-title: Brain Imaging Behav. – volume: 167 start-page: 587 year: 2005 end-page: 594 ident: bib0050 article-title: Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system publication-title: Exp. Brain Res. – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: bib0045 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. – start-page: 816 year: 2016 end-page: 820 ident: bib0215 article-title: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data publication-title: 2016 Future Technologies Conference (FTC) – volume: 12 start-page: 882 year: 2018 ident: bib0180 article-title: Evaluation of the MCFLIRT correction algorithm in head motion from resting state fMRI data, world academy of science, engineering and technology, international science index publication-title: Biomed. Biol. Eng. – volume: 26 start-page: 665 year: 2005 end-page: 672 ident: bib0115 article-title: Age-related glutamate and glutamine concentration changes in normal human brain: 1 H MR spectroscopy study at 4 T publication-title: Neurobiol. Aging – volume: 43 start-page: 1699 year: 1984 end-page: 1705 ident: bib0130 article-title: Effect of age on human brain serotonin (S‐1) binding sites publication-title: J. Neurochem. – volume: 107 start-page: 107 year: 2015 end-page: 115 ident: bib0175 article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates publication-title: Neuroimage – year: 2019 ident: bib0195 article-title: Evaluation of the Subject Involuntary Head Motions in rs-fMRI Acquisition: Characterization of Early-MS Movements – volume: 79 start-page: 730 year: 2006 end-page: 736 ident: bib0150 article-title: Age-related decline of dopamine synthesis in the living human brain measured by positron emission tomography with L-[β-11 C] DOPA publication-title: Life Sci. – volume: 27 start-page: 607 year: 2004 end-page: 613 ident: bib0090 article-title: The aging brain: morphomolecular senescence of cortical circuits publication-title: Trends Neurosci. – volume: 44 start-page: 457 year: 2000 end-page: 465 ident: bib0230 article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI publication-title: Magn. Reson. Med. – volume: 21 start-page: 683 year: 2000 end-page: 688 ident: bib0110 article-title: Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain publication-title: Neurobiol. Aging – volume: 10 start-page: 6 year: 1999 end-page: 14 ident: bib0040 article-title: The effect of normal aging on the coupling of neural activity to the bold hemodynamic response publication-title: Neuroimage – volume: 13 start-page: 825 year: 2019 ident: bib0125 article-title: Resting state fMRI: going through the motions publication-title: Front. Neurosci. – volume: 41 start-page: 1039 year: 1999 end-page: 1043 ident: bib0235 article-title: Visual feedback to stabilize head position for fMRI publication-title: Magn. Reson. Med. – volume: 5 start-page: 87 year: 2004 end-page: 96 ident: bib0085 article-title: Insights into the ageing mind: a view from cognitive neuroscience publication-title: Nat. Rev. Neurosci. – volume: 35 start-page: 2193 year: 2014 end-page: 2202 ident: bib0205 article-title: Changes in whole-brain functional networks and memory performance in aging publication-title: Neurobiol. Aging – year: 2000 ident: bib0225 article-title: R Language Definition – volume: 154 start-page: 159 year: 2017 end-page: 168 ident: bib0020 article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression publication-title: NeuroImage – volume: 34 start-page: 1292 year: 2013 end-page: 1301 ident: bib0140 article-title: Age effect on the default mode network, inner thoughts, and cognitive abilities publication-title: Neurobiol. Aging – volume: 159 start-page: 302 year: 2017 end-page: 324 ident: bib0135 article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity publication-title: NeuroImage – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0075 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0100 article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib0220 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. – volume: 27 start-page: 153 year: 2005 end-page: 162 ident: bib0250 article-title: Head motion suppression using real-time feedback of motion information and its effects on task performance in fMRI publication-title: Neuroimage – volume: 17 start-page: 415 year: 1993 end-page: 421 ident: bib0095 article-title: The detection of age-related decrease of dopamine D1, D2 and serotonin 5-HT2 receptors in living human brain publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry – volume: 107 start-page: 7 year: 2003 end-page: 13 ident: bib0145 article-title: Memory function in normal aging publication-title: Acta Neurol. Scand. – year: 2018 ident: bib0185 article-title: Studying of Resting State fMRI head movements in Multiple Sclerosis and Essential Tremor Patients – volume: 16 start-page: 832 year: 2013 ident: bib0025 article-title: Opportunities and limitations of intrinsic functional connectivity MRI publication-title: Nat. Neurosci. – year: 2005 ident: bib0255 article-title: Head motion analysis during cognitive fMRI examination: application in patients with schizophrenia publication-title: Neuros – volume: 19 start-page: 959 year: 2001 end-page: 963 ident: bib0005 article-title: A quantitative comparison of motion detection algorithms in fMRI publication-title: Magn. Reson. Imaging – volume: 112 start-page: 267 year: 2015 end-page: 277 ident: bib0170 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: Neuroimage – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0035 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 24 start-page: 49 year: 2014 end-page: 62 ident: bib0055 article-title: Functional brain connectivity using fMRI in aging and Alzheimer’s disease publication-title: Neuropsychol. Rev. – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib0080 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 422 start-page: 164 year: 2007 end-page: 168 ident: bib0245 article-title: Aging influence on functional connectivity of the motor network in the resting state publication-title: Neurosci. Lett. – volume: 27 start-page: 142 year: 2009 end-page: 145 ident: bib0030 article-title: Effects of age and sex on brain glutamate and other metabolites publication-title: Magn. Reson. Imaging – volume: 59 start-page: 431 year: 2012 end-page: 438 ident: bib0240 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage – volume: 13 start-page: 1103 year: 2019 end-page: 1114 ident: bib0200 article-title: Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data publication-title: Brain Imaging Behav. – volume: 144 start-page: 74 year: 2017 end-page: 82 ident: bib0155 article-title: An improved model of motion-related signal changes in fMRI publication-title: NeuroImage – volume: 40 start-page: 644 year: 2008 end-page: 654 ident: bib0010 article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration publication-title: Neuroimage – volume: 27 start-page: 779 year: 2006 end-page: 788 ident: bib0105 article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis publication-title: Hum. Brain Mapp. – volume: 82 start-page: 84 year: 2006 end-page: 88 ident: bib0160 article-title: Ageing and the brain publication-title: Postgrad. Med. J. – volume: 62 start-page: 938 year: 2012 end-page: 944 ident: bib0015 article-title: Resting state fMRI: a personal history publication-title: Neuroimage – volume: 302 start-page: 1 year: 2018 ident: bib0210 article-title: Editorial on special issue: machine learning on MCI publication-title: J. Neurosci. Methods – start-page: 271 year: 2018 end-page: 278 ident: bib0190 article-title: On the classification of EEG signal by using an SVM based algorithm publication-title: Multidisciplinary Approaches to Neural Computing – volume: 59 start-page: 2142 issue: 3 year: 2012 ident: 10.1016/j.jneumeth.2021.109084_bib0165 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – year: 2018 ident: 10.1016/j.jneumeth.2021.109084_bib0185 – volume: 10 start-page: 6 issue: 1 year: 1999 ident: 10.1016/j.jneumeth.2021.109084_bib0040 article-title: The effect of normal aging on the coupling of neural activity to the bold hemodynamic response publication-title: Neuroimage doi: 10.1006/nimg.1999.0444 – volume: 35 start-page: 2193 issue: 10 year: 2014 ident: 10.1016/j.jneumeth.2021.109084_bib0205 article-title: Changes in whole-brain functional networks and memory performance in aging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.04.007 – volume: 34 start-page: 1469 issue: 5 year: 2013 ident: 10.1016/j.jneumeth.2021.109084_bib0070 article-title: Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.11.002 – volume: 144 start-page: 74 year: 2017 ident: 10.1016/j.jneumeth.2021.109084_bib0155 article-title: An improved model of motion-related signal changes in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.08.051 – volume: 10 start-page: 799 issue: 3 year: 2016 ident: 10.1016/j.jneumeth.2021.109084_bib0120 article-title: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9448-7 – volume: 103 start-page: 13848 issue: 37 year: 2006 ident: 10.1016/j.jneumeth.2021.109084_bib0045 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0601417103 – volume: 17 start-page: 415 issue: 3 year: 1993 ident: 10.1016/j.jneumeth.2021.109084_bib0095 article-title: The detection of age-related decrease of dopamine D1, D2 and serotonin 5-HT2 receptors in living human brain publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/0278-5846(93)90075-4 – volume: 13 start-page: 1103 issue: 4 year: 2019 ident: 10.1016/j.jneumeth.2021.109084_bib0200 article-title: Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data publication-title: Brain Imaging Behav. doi: 10.1007/s11682-018-9926-9 – volume: 154 start-page: 159 year: 2017 ident: 10.1016/j.jneumeth.2021.109084_bib0020 article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.12.027 – volume: 107 start-page: 107 year: 2015 ident: 10.1016/j.jneumeth.2021.109084_bib0175 article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.006 – volume: 12 start-page: 882 issue: 3 year: 2018 ident: 10.1016/j.jneumeth.2021.109084_bib0180 article-title: Evaluation of the MCFLIRT correction algorithm in head motion from resting state fMRI data, world academy of science, engineering and technology, international science index publication-title: Biomed. Biol. Eng. – volume: 167 start-page: 587 issue: 4 year: 2005 ident: 10.1016/j.jneumeth.2021.109084_bib0050 article-title: Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system publication-title: Exp. Brain Res. doi: 10.1007/s00221-005-0059-1 – volume: 41 start-page: 1039 issue: 5 year: 1999 ident: 10.1016/j.jneumeth.2021.109084_bib0235 article-title: Visual feedback to stabilize head position for fMRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199905)41:5<1039::AID-MRM24>3.0.CO;2-N – volume: 112 start-page: 267 year: 2015 ident: 10.1016/j.jneumeth.2021.109084_bib0170 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.064 – volume: 59 start-page: 431 issue: 1 year: 2012 ident: 10.1016/j.jneumeth.2021.109084_bib0240 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.044 – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.jneumeth.2021.109084_bib0220 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 79 start-page: 730 issue: 8 year: 2006 ident: 10.1016/j.jneumeth.2021.109084_bib0150 article-title: Age-related decline of dopamine synthesis in the living human brain measured by positron emission tomography with L-[β-11 C] DOPA publication-title: Life Sci. doi: 10.1016/j.lfs.2006.02.017 – start-page: 271 year: 2018 ident: 10.1016/j.jneumeth.2021.109084_bib0190 article-title: On the classification of EEG signal by using an SVM based algorithm – volume: 27 start-page: 779 issue: 10 year: 2006 ident: 10.1016/j.jneumeth.2021.109084_bib0105 article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20219 – volume: 27 start-page: 142 issue: 1 year: 2009 ident: 10.1016/j.jneumeth.2021.109084_bib0030 article-title: Effects of age and sex on brain glutamate and other metabolites publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.06.002 – volume: 159 start-page: 302 year: 2017 ident: 10.1016/j.jneumeth.2021.109084_bib0135 article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.038 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 10.1016/j.jneumeth.2021.109084_bib0080 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – year: 2019 ident: 10.1016/j.jneumeth.2021.109084_bib0195 – volume: 26 start-page: 665 issue: 5 year: 2005 ident: 10.1016/j.jneumeth.2021.109084_bib0115 article-title: Age-related glutamate and glutamine concentration changes in normal human brain: 1 H MR spectroscopy study at 4 T publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.07.001 – volume: 40 start-page: 644 year: 2008 ident: 10.1016/j.jneumeth.2021.109084_bib0010 article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.059 – start-page: 816 year: 2016 ident: 10.1016/j.jneumeth.2021.109084_bib0215 article-title: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data – volume: 3 start-page: 1157 issue: March year: 2003 ident: 10.1016/j.jneumeth.2021.109084_bib0075 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 27 start-page: 153 issue: 1 year: 2005 ident: 10.1016/j.jneumeth.2021.109084_bib0250 article-title: Head motion suppression using real-time feedback of motion information and its effects on task performance in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.050 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jneumeth.2021.109084_bib0035 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 5 start-page: 87 issue: 2 year: 2004 ident: 10.1016/j.jneumeth.2021.109084_bib0085 article-title: Insights into the ageing mind: a view from cognitive neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1323 – volume: 16 start-page: 832 issue: 7 year: 2013 ident: 10.1016/j.jneumeth.2021.109084_bib0025 article-title: Opportunities and limitations of intrinsic functional connectivity MRI publication-title: Nat. Neurosci. doi: 10.1038/nn.3423 – volume: 101 start-page: 3270 year: 2009 ident: 10.1016/j.jneumeth.2021.109084_bib0065 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J. Neurophysiol. doi: 10.1152/jn.90777.2008 – volume: 19 start-page: 959 issue: 7 year: 2001 ident: 10.1016/j.jneumeth.2021.109084_bib0005 article-title: A quantitative comparison of motion detection algorithms in fMRI publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(01)00418-0 – volume: 82 start-page: 84 issue: 964 year: 2006 ident: 10.1016/j.jneumeth.2021.109084_bib0160 article-title: Ageing and the brain publication-title: Postgrad. Med. J. doi: 10.1136/pgmj.2005.036665 – volume: 422 start-page: 164 issue: 3 year: 2007 ident: 10.1016/j.jneumeth.2021.109084_bib0245 article-title: Aging influence on functional connectivity of the motor network in the resting state publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2007.06.011 – volume: 107 start-page: 7 issue: s179 year: 2003 ident: 10.1016/j.jneumeth.2021.109084_bib0145 article-title: Memory function in normal aging publication-title: Acta Neurol. Scand. doi: 10.1034/j.1600-0404.107.s179.5.x – volume: 34 start-page: 1292 issue: 4 year: 2013 ident: 10.1016/j.jneumeth.2021.109084_bib0140 article-title: Age effect on the default mode network, inner thoughts, and cognitive abilities publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.08.018 – volume: 44 start-page: 457 issue: 3 year: 2000 ident: 10.1016/j.jneumeth.2021.109084_bib0230 article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R – volume: 43 start-page: 1699 issue: 6 year: 1984 ident: 10.1016/j.jneumeth.2021.109084_bib0130 article-title: Effect of age on human brain serotonin (S‐1) binding sites publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1984.tb06098.x – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.jneumeth.2021.109084_bib0100 article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 302 start-page: 1 year: 2018 ident: 10.1016/j.jneumeth.2021.109084_bib0210 article-title: Editorial on special issue: machine learning on MCI publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.03.011 – volume: 27 start-page: 607 issue: 10 year: 2004 ident: 10.1016/j.jneumeth.2021.109084_bib0090 article-title: The aging brain: morphomolecular senescence of cortical circuits publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.07.013 – year: 2000 ident: 10.1016/j.jneumeth.2021.109084_bib0225 – volume: 62 start-page: 938 issue: 2 year: 2012 ident: 10.1016/j.jneumeth.2021.109084_bib0015 article-title: Resting state fMRI: a personal history publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.090 – volume: 37 start-page: 384 issue: 3 year: 2013 ident: 10.1016/j.jneumeth.2021.109084_bib0060 article-title: Resting-state functional connectivity in normal brain aging publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2013.01.017 – volume: 24 start-page: 49 issue: 1 year: 2014 ident: 10.1016/j.jneumeth.2021.109084_bib0055 article-title: Functional brain connectivity using fMRI in aging and Alzheimer’s disease publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-014-9249-6 – volume: 21 start-page: 683 issue: 5 year: 2000 ident: 10.1016/j.jneumeth.2021.109084_bib0110 article-title: Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(00)00149-4 – year: 2005 ident: 10.1016/j.jneumeth.2021.109084_bib0255 article-title: Head motion analysis during cognitive fMRI examination: application in patients with schizophrenia publication-title: Neuros – volume: 13 start-page: 825 year: 2019 ident: 10.1016/j.jneumeth.2021.109084_bib0125 article-title: Resting state fMRI: going through the motions publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00825 |
SSID | ssj0004906 |
Score | 2.4277332 |
Snippet | •Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations... Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109084 |
SubjectTerms | Aging Head motions correction Resting state fMRI Support vector machine Temporal Signal to noise ratio |
Title | Aging effect on head motion: A Machine Learning study on resting state fMRI data |
URI | https://dx.doi.org/10.1016/j.jneumeth.2021.109084 https://www.ncbi.nlm.nih.gov/pubmed/33508406 https://www.proquest.com/docview/2483812185 |
Volume | 352 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3BIlW9IApt2X4gV0LcwtqxYxJuESpaWi2qoEjcLCceV6xKFtHdQy_97fU4Dm2lVhx6jOVRrLEzfpN5MwOw7_O28Uq6TOVWZ0rwNrO5xsx7WeZeYWs5JTjPzvX0Sn24Lq7X4GTIhSFaZbL9vU2P1jqNTJI2J3c3N5NLSsThlE4lIlBR67CRy0oXI9iozz5Oz3-lR1axxSbNp5Al_y1ReH4473BFzZqDq5gLKq4UC53-_Y76FwaNd9HpFmwmEMnqfp3PYA27bdipu-BA335nByzSOuP_8m14MkvR8x34VFNHItZTONiiY8EQO9b38TlmNZtFYiWyVHP1C4u1Z2kiNfDoBwI0ZX52ccaIWvocrk7ffz6ZZqmjQtZKXS6zQpe2xBKRB1zi2kZY7hBbJ3LbSlkoDHCosJrSzKVCqa30weMR0qEXwXfh8gWMukWHu8C8k0dKHaFsRKPQ-QBrlJeOK1WhrrQfQzHo0LSp3Dh1vfhqBl7Z3Ay6N6R70-t-DJMHubu-4MajEtWwReaPo2PCrfCo7LthT034rihYYjtcrL6ZXJUBzAQAVIzhZb_ZD-sJqgqyXL_6jze_hqf0RHQ2UbyB0fJ-hW8Dvlk2e7B--EPspVP8E9gV-Ho |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXBC2PpTyMhLila8cTb5bbqqLaQlMhaKXeLCceo67abAW7By789nqcpIAE6oGr41GssTP-JvPNDMCbkDd1QO0zzJ3JUMkmc7mhLARd5gGpcZITnKsjMz_BD6fF6QbsDbkwTKvsbX9n05O17kfGvTbHl2dn4y-ciCM5nUoloIK34DYWesK8vt2fv3geOE0NNnk2Byzlb2nCi91FS2tu1RwdxVxxaaVU5vTvN9S_EGi6ifYfwP0eQopZt8qHsEHtFmzP2ug-X_wQb0Uidaa_5Vtwp-pj59vwacb9iERH4BDLVkQz7EXXxeedmIkq0SpJ9BVXv4pUeZYncvuObiACUxGqzweCiaWP4GT__fHePOv7KWSNNuUqK0zpSiqJZEQlvqmVk56o8Sp3jdYFUgRDhTOcZK6RtHE6RH9HaU9BRc9F6sew2S5begoieD1BnJCuVY3kQwQ1GLSXiFMyUxNGUAw6tE1fbJx7XpzbgVW2sIPuLevedrofwfha7rIrt3GjxHTYIvvHwbHxTrhR9vWwpzZ-VRwqcS0t199tjmWEMhH-FCN40m329XqiqqKsNM_-482v4O78uDq0hwdHH3fgHj9hYpsqnsPm6tuaXkSks6pfppN8Be7s-UU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+effect+on+head+motion%3A+A+Machine+Learning+study+on+resting+state+fMRI+data&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Sacc%C3%A0%2C+Valeria&rft.au=Sarica%2C+Alessia&rft.au=Quattrone%2C+Andrea&rft.au=Rocca%2C+Federico&rft.date=2021-03-15&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=352&rft_id=info:doi/10.1016%2Fj.jneumeth.2021.109084&rft.externalDocID=S0165027021000194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |