Aging effect on head motion: A Machine Learning study on resting state fMRI data

•Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations (phi,theta,psi).•Normal aging produces significant increase in head motion and signal distortion.•In elderly, most important altered parameters were psi,...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 352; p. 109084
Main Authors Saccà, Valeria, Sarica, Alessia, Quattrone, Andrea, Rocca, Federico, Quattrone, Aldo, Novellino, Fabiana
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.03.2021
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2021.109084

Cover

Abstract •Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations (phi,theta,psi).•Normal aging produces significant increase in head motion and signal distortion.•In elderly, most important altered parameters were psi, z and y.•A better control of these signals is fundamental to avoid possible unreliable result. Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals. For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects’aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head’s movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance. Statistical analyses showed significant association between the aging and some motion’s parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %. The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging. Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects.
AbstractList Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals. For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects'aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head's movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance. Statistical analyses showed significant association between the aging and some motion's parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %. The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging. Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects.
Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals.BACKGROUNDResting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals.For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects'aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head's movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance.NEW METHODFor the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects'aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head's movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance.Statistical analyses showed significant association between the aging and some motion's parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %.RESULTSStatistical analyses showed significant association between the aging and some motion's parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %.The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging.COMPARISON TO EXISTING METHODSThe proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging.Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects.CONCLUSIONSOur results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects.
•Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations (phi,theta,psi).•Normal aging produces significant increase in head motion and signal distortion.•In elderly, most important altered parameters were psi, z and y.•A better control of these signals is fundamental to avoid possible unreliable result. Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness of Resting-state-fMRI analysis is negatively affected by physiological noise caused by subject head motion. The aim of our study was to provide new knowledge about the effect of normal aging on the head motion signals. For the first time, we proposed a method for evaluating the most sensitive head motion parameters linked to subjects’aging. We enrolled 14-young(9females; mean-age = 28 ± 4.07) and 14-elderly(9females; mean-age = 66 ± 5.19) subjects. Along three axes(X,Y,Z), we extracted six motions parameters which reflected the head’s movements to characterize translations(x,y,z) and rotations(angles phi,theta,psi). We performed:1)univariate analysis for comparing the groups and correlation to investigate the relationship between age and movement parameters; 2)Support-Vector-Machine, using bootstrap and calculating the feature importance. Statistical analyses showed significant association between the aging and some motion’s parameters(rotation psi; translations y and z). These results were also confirmed by multivariate analysis with Support-Vector-Machine that presented an AUC of 90 %. The proposed method shows that normal aging produces significant increase in head motion parameters, highlighting the critical effect of motion on resting data analyses in particular considering psi, y and z movements. To our knowledge and at the present, this represents the first study investigating the accurate characterization of motion parameters in aging. Our results have a high impact to improve healthy control recruitment and appropriately decreasing the risk of signal distortion, according to the age of enrolled subjects.
ArticleNumber 109084
Author Saccà, Valeria
Rocca, Federico
Quattrone, Aldo
Novellino, Fabiana
Sarica, Alessia
Quattrone, Andrea
Author_xml – sequence: 1
  givenname: Valeria
  surname: Saccà
  fullname: Saccà, Valeria
  organization: Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Italy
– sequence: 2
  givenname: Alessia
  surname: Sarica
  fullname: Sarica, Alessia
  organization: Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Italy
– sequence: 3
  givenname: Andrea
  surname: Quattrone
  fullname: Quattrone, Andrea
  organization: Institute of Neurology, University Magna Graecia of Catanzaro, Italy
– sequence: 4
  givenname: Federico
  surname: Rocca
  fullname: Rocca, Federico
  organization: Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
– sequence: 5
  givenname: Aldo
  surname: Quattrone
  fullname: Quattrone, Aldo
  organization: Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
– sequence: 6
  givenname: Fabiana
  orcidid: 0000-0002-5898-938X
  surname: Novellino
  fullname: Novellino, Fabiana
  email: fabiana.novellino@cnr.it
  organization: Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33508406$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFqGzEQhkVxaWy3rxB0zGXd0WpXK5ccakKSGhxaSgO5CUWajWW8WlfSBvL2ldn40otPA8P3z4w-zcjE9x4JuWSwYMDE191i53HoMG0XJZQsN5cgqw9kymRTFqKRTxMyzWBdQNnABZnFuAOAagniE7ngvM40iCn5tXpx_oVi26JJtPd0i9rSrk-u99_oij5os3Ue6QZ18EcypsG-HcGAMY0NnZC2D7_X1OqkP5OPrd5H_PJe5-Tx7vbPzY9i8_N-fbPaFIYLmYpaSC1RIgJfLq15ZhosorGs1CZfVyHUotaiktDwCrnQvJWiZNxiy0rWAJ-Tq3HuIfR_h3yL6lw0uN9rj_0QVVlJLjMq64xevqPDc4dWHYLrdHhTJwsZuB4BE_oYA7bKuPyqrCAF7faKgTpKVzt1kq6O0tUoPcfFf_HThrPB72MQs6hXh0FF49AbtC7k71C2d-dG_APLPp4o
CitedBy_id crossref_primary_10_1002_hbm_26035
crossref_primary_10_1007_s11357_023_01008_9
crossref_primary_10_3389_fnins_2022_1017211
crossref_primary_10_1002_jts_22778
crossref_primary_10_3389_fnins_2023_1096232
crossref_primary_10_3389_fnins_2024_1223230
crossref_primary_10_1002_mrm_29132
crossref_primary_10_1007_s00429_023_02625_y
crossref_primary_10_1162_imag_a_00151
crossref_primary_10_3389_fnins_2022_1006056
crossref_primary_10_1093_texcom_tgab050
crossref_primary_10_3389_fnagi_2023_1170879
crossref_primary_10_1016_j_neurobiolaging_2024_11_010
crossref_primary_10_1002_hbm_26777
crossref_primary_10_1002_hbm_25759
crossref_primary_10_1007_s10072_022_06400_5
Cites_doi 10.1016/j.neuroimage.2011.10.018
10.1006/nimg.1999.0444
10.1016/j.neurobiolaging.2014.04.007
10.1016/j.neurobiolaging.2012.11.002
10.1016/j.neuroimage.2016.08.051
10.1007/s11682-015-9448-7
10.1073/pnas.0601417103
10.1016/0278-5846(93)90075-4
10.1007/s11682-018-9926-9
10.1016/j.neuroimage.2016.12.027
10.1016/j.neuroimage.2014.12.006
10.1007/s00221-005-0059-1
10.1002/(SICI)1522-2594(199905)41:5<1039::AID-MRM24>3.0.CO;2-N
10.1016/j.neuroimage.2015.02.064
10.1016/j.neuroimage.2011.07.044
10.1073/pnas.0905267106
10.1016/j.lfs.2006.02.017
10.1002/hbm.20219
10.1016/j.mri.2008.06.002
10.1016/j.neuroimage.2017.07.038
10.1023/A:1012487302797
10.1016/j.neurobiolaging.2004.07.001
10.1016/j.neuroimage.2007.11.059
10.1016/j.neuroimage.2005.02.050
10.1007/BF00994018
10.1038/nrn1323
10.1038/nn.3423
10.1152/jn.90777.2008
10.1016/S0730-725X(01)00418-0
10.1136/pgmj.2005.036665
10.1016/j.neulet.2007.06.011
10.1034/j.1600-0404.107.s179.5.x
10.1016/j.neurobiolaging.2012.08.018
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1111/j.1471-4159.1984.tb06098.x
10.1006/nimg.2002.1132
10.1016/j.jneumeth.2018.03.011
10.1016/j.tins.2004.07.013
10.1016/j.neuroimage.2012.01.090
10.1016/j.neubiorev.2013.01.017
10.1007/s11065-014-9249-6
10.1016/S0197-4580(00)00149-4
10.3389/fnins.2019.00825
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2021.109084
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 33508406
10_1016_j_jneumeth_2021_109084
S0165027021000194
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c368t-568a8e8ee0399dcb1a0deecd12ac3354e0565a6480734e36a3f86213def121703
IEDL.DBID AIKHN
ISSN 0165-0270
1872-678X
IngestDate Fri Sep 05 11:57:35 EDT 2025
Thu Apr 03 06:56:37 EDT 2025
Tue Jul 01 02:57:14 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Fri Feb 23 02:45:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Head motions correction
rs-fMRI
ROC
Resting state fMRI
SVM
Support vector machine
AUC
rfe
fMRI
tSNR
Aging
BOLD
Temporal Signal to noise ratio
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-568a8e8ee0399dcb1a0deecd12ac3354e0565a6480734e36a3f86213def121703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5898-938X
PMID 33508406
PQID 2483812185
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2483812185
pubmed_primary_33508406
crossref_citationtrail_10_1016_j_jneumeth_2021_109084
crossref_primary_10_1016_j_jneumeth_2021_109084
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2021_109084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patriat, Reynolds, Birn (bib0155) 2017; 144
Ardekani, Bachman, Helpern (bib0005) 2001; 19
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib0045) 2006; 103
Reuter, Tisdall, Qureshi, Buckner, Van der Kouwe, Fischl (bib0175) 2015; 107
Dennis, Thompson (bib0055) 2014; 24
Cortes, Vapnik (bib0035) 1995; 20
Saccà, Sarica, Novellino, Barone, Tallarico, Filippelli, Granata, Chiriaco, Bossio, Valentino, Quattrone (bib0200) 2019; 13
Johnstone, Ores Walsh, Greischar, Alexander, Fox, Davidson (bib0105) 2006; 27
Marcusson, Oreland, Winblad (bib0130) 1984; 43
Messaritaki, Koelewijn, Dima, Williams, Perry, Singh (bib0135) 2017; 159
Guyon, Weston, Barnhill, Vapnik (bib0080) 2002; 46
Buckner, Krienen, Yeo (bib0025) 2013; 16
Pruim, Mennes, Van Rooij, Llera, Buitelaar, Beckmann (bib0170) 2015; 112
Saccà, Sarica, Novellino, Barone, Valentino, Quattrone (bib0195) 2019
Hof, Morrison (bib0090) 2004; 27
Fox, Zhang, Snyder, Raichle (bib0065) 2009; 101
Team, R. C (bib0225) 2000
Yoo, Choi, Juh, Pae, Lee (bib0255) 2005
Guyon, Elisseeff (bib0075) 2003; 3
Ferreira, Busatto (bib0060) 2013; 37
Ota, Yasuno, Ito, Seki, Nozaki, Asada (bib0150) 2006; 79
Bright, Tench, Murphy (bib0020) 2017; 154
Saccá, Campolo, Mirarchi, Gambardella, Veltri, Morabito (bib0190) 2018
Mevel, Landeau, Fouquet, La Joie, Villain, Mézenge (bib0140) 2013; 34
Birn, Smith, Jones, Bandettini (bib0010) 2008; 40
Peters (bib0160) 2006; 82
Yang, Ross, Zhang, Stein, Yang (bib0250) 2005; 27
Thulborn (bib0235) 1999; 41
Hedden, Gabrieli (bib0085) 2004; 5
Maknojia, Churchill, Schweizer, Graham (bib0125) 2019; 13
Wu, Zang, Wang, Long, Hallett, Chen (bib0245) 2007; 422
De Luca, Smith, De Stefano, Federico, Matthews (bib0050) 2005; 167
Khazaee, Ebrahimzadeh, Babajani-Feremi (bib0120) 2016; 10
Gauthier, Madjar, Desjardins-Crépeau, Bellec, Bherer, Hoge (bib0070) 2013; 34
Kaasinen, Vilkman, Hietala, Någren, Helenius, Olsson (bib0110) 2000; 21
D’Esposito, Zarahn, Aguirre, Rypma (bib0040) 1999; 10
Sala-Llonch, Junqué, Arenaza-Urquijo, Vidal-Piñeiro, Valls-Pedret, Palacios (bib0205) 2014; 35
Jenkinson, Bannister, Brady, Smith (bib0100) 2002; 17
Saccà, Sarica, Novellino, Barone, Filippelli, Granata, Demonte, Nisticò, Valentino, Quattrone (bib0185) 2018
Sarraf, Tofighi (bib0215) 2016
Chang, Jiang, Ernst (bib0030) 2009; 27
Iyo, Yamasaki (bib0095) 1993; 17
Nilsson (bib0145) 2003; 107
Saccà, Sarica, Novellino, Barone, Tallarico, Filippelli, Granata, Valentino, Quattrone (bib0180) 2018; 12
Van Dijk, Sabuncu, Buckner (bib0240) 2012; 59
Thesen, Heid, Mueller, Schad (bib0230) 2000; 44
Smith, Fox, Miller, Glahn, Fox, Mackay (bib0220) 2009; 106
Kaiser, Schuff, Cashdollar, Weiner (bib0115) 2005; 26
Sarica, Cerasa, Quattrone, Calhoun (bib0210) 2018; 302
Power, Barnes, Snyder, Schlaggar, Petersen (bib0165) 2012; 59
Biswal (bib0015) 2012; 62
Mevel (10.1016/j.jneumeth.2021.109084_bib0140) 2013; 34
Sarica (10.1016/j.jneumeth.2021.109084_bib0210) 2018; 302
Kaiser (10.1016/j.jneumeth.2021.109084_bib0115) 2005; 26
Reuter (10.1016/j.jneumeth.2021.109084_bib0175) 2015; 107
Guyon (10.1016/j.jneumeth.2021.109084_bib0075) 2003; 3
Thesen (10.1016/j.jneumeth.2021.109084_bib0230) 2000; 44
D’Esposito (10.1016/j.jneumeth.2021.109084_bib0040) 1999; 10
Cortes (10.1016/j.jneumeth.2021.109084_bib0035) 1995; 20
Gauthier (10.1016/j.jneumeth.2021.109084_bib0070) 2013; 34
Yang (10.1016/j.jneumeth.2021.109084_bib0250) 2005; 27
Ota (10.1016/j.jneumeth.2021.109084_bib0150) 2006; 79
Saccá (10.1016/j.jneumeth.2021.109084_bib0190) 2018
Saccà (10.1016/j.jneumeth.2021.109084_bib0195) 2019
Van Dijk (10.1016/j.jneumeth.2021.109084_bib0240) 2012; 59
Messaritaki (10.1016/j.jneumeth.2021.109084_bib0135) 2017; 159
Birn (10.1016/j.jneumeth.2021.109084_bib0010) 2008; 40
Biswal (10.1016/j.jneumeth.2021.109084_bib0015) 2012; 62
Thulborn (10.1016/j.jneumeth.2021.109084_bib0235) 1999; 41
Johnstone (10.1016/j.jneumeth.2021.109084_bib0105) 2006; 27
Iyo (10.1016/j.jneumeth.2021.109084_bib0095) 1993; 17
Chang (10.1016/j.jneumeth.2021.109084_bib0030) 2009; 27
Hedden (10.1016/j.jneumeth.2021.109084_bib0085) 2004; 5
Smith (10.1016/j.jneumeth.2021.109084_bib0220) 2009; 106
Ferreira (10.1016/j.jneumeth.2021.109084_bib0060) 2013; 37
Wu (10.1016/j.jneumeth.2021.109084_bib0245) 2007; 422
De Luca (10.1016/j.jneumeth.2021.109084_bib0050) 2005; 167
Nilsson (10.1016/j.jneumeth.2021.109084_bib0145) 2003; 107
Team, R. C (10.1016/j.jneumeth.2021.109084_bib0225) 2000
Khazaee (10.1016/j.jneumeth.2021.109084_bib0120) 2016; 10
Sarraf (10.1016/j.jneumeth.2021.109084_bib0215) 2016
Ardekani (10.1016/j.jneumeth.2021.109084_bib0005) 2001; 19
Patriat (10.1016/j.jneumeth.2021.109084_bib0155) 2017; 144
Pruim (10.1016/j.jneumeth.2021.109084_bib0170) 2015; 112
Fox (10.1016/j.jneumeth.2021.109084_bib0065) 2009; 101
Jenkinson (10.1016/j.jneumeth.2021.109084_bib0100) 2002; 17
Damoiseaux (10.1016/j.jneumeth.2021.109084_bib0045) 2006; 103
Buckner (10.1016/j.jneumeth.2021.109084_bib0025) 2013; 16
Saccà (10.1016/j.jneumeth.2021.109084_bib0185) 2018
Saccà (10.1016/j.jneumeth.2021.109084_bib0200) 2019; 13
Bright (10.1016/j.jneumeth.2021.109084_bib0020) 2017; 154
Hof (10.1016/j.jneumeth.2021.109084_bib0090) 2004; 27
Power (10.1016/j.jneumeth.2021.109084_bib0165) 2012; 59
Guyon (10.1016/j.jneumeth.2021.109084_bib0080) 2002; 46
Peters (10.1016/j.jneumeth.2021.109084_bib0160) 2006; 82
Maknojia (10.1016/j.jneumeth.2021.109084_bib0125) 2019; 13
Saccà (10.1016/j.jneumeth.2021.109084_bib0180) 2018; 12
Kaasinen (10.1016/j.jneumeth.2021.109084_bib0110) 2000; 21
Yoo (10.1016/j.jneumeth.2021.109084_bib0255) 2005
Dennis (10.1016/j.jneumeth.2021.109084_bib0055) 2014; 24
Marcusson (10.1016/j.jneumeth.2021.109084_bib0130) 1984; 43
Sala-Llonch (10.1016/j.jneumeth.2021.109084_bib0205) 2014; 35
References_xml – volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib0165
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 101
  start-page: 3270
  year: 2009
  end-page: 3283
  ident: bib0065
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J. Neurophysiol.
– volume: 34
  start-page: 1469
  year: 2013
  end-page: 1485
  ident: bib0070
  article-title: Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging
  publication-title: Neurobiol. Aging
– volume: 37
  start-page: 384
  year: 2013
  end-page: 400
  ident: bib0060
  article-title: Resting-state functional connectivity in normal brain aging
  publication-title: Neurosci. Biobehav. Rev.
– volume: 10
  start-page: 799
  year: 2016
  end-page: 817
  ident: bib0120
  article-title: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease
  publication-title: Brain Imaging Behav.
– volume: 167
  start-page: 587
  year: 2005
  end-page: 594
  ident: bib0050
  article-title: Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system
  publication-title: Exp. Brain Res.
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bib0045
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 816
  year: 2016
  end-page: 820
  ident: bib0215
  article-title: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data
  publication-title: 2016 Future Technologies Conference (FTC)
– volume: 12
  start-page: 882
  year: 2018
  ident: bib0180
  article-title: Evaluation of the MCFLIRT correction algorithm in head motion from resting state fMRI data, world academy of science, engineering and technology, international science index
  publication-title: Biomed. Biol. Eng.
– volume: 26
  start-page: 665
  year: 2005
  end-page: 672
  ident: bib0115
  article-title: Age-related glutamate and glutamine concentration changes in normal human brain: 1 H MR spectroscopy study at 4 T
  publication-title: Neurobiol. Aging
– volume: 43
  start-page: 1699
  year: 1984
  end-page: 1705
  ident: bib0130
  article-title: Effect of age on human brain serotonin (S‐1) binding sites
  publication-title: J. Neurochem.
– volume: 107
  start-page: 107
  year: 2015
  end-page: 115
  ident: bib0175
  article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates
  publication-title: Neuroimage
– year: 2019
  ident: bib0195
  article-title: Evaluation of the Subject Involuntary Head Motions in rs-fMRI Acquisition: Characterization of Early-MS Movements
– volume: 79
  start-page: 730
  year: 2006
  end-page: 736
  ident: bib0150
  article-title: Age-related decline of dopamine synthesis in the living human brain measured by positron emission tomography with L-[β-11 C] DOPA
  publication-title: Life Sci.
– volume: 27
  start-page: 607
  year: 2004
  end-page: 613
  ident: bib0090
  article-title: The aging brain: morphomolecular senescence of cortical circuits
  publication-title: Trends Neurosci.
– volume: 44
  start-page: 457
  year: 2000
  end-page: 465
  ident: bib0230
  article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI
  publication-title: Magn. Reson. Med.
– volume: 21
  start-page: 683
  year: 2000
  end-page: 688
  ident: bib0110
  article-title: Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain
  publication-title: Neurobiol. Aging
– volume: 10
  start-page: 6
  year: 1999
  end-page: 14
  ident: bib0040
  article-title: The effect of normal aging on the coupling of neural activity to the bold hemodynamic response
  publication-title: Neuroimage
– volume: 13
  start-page: 825
  year: 2019
  ident: bib0125
  article-title: Resting state fMRI: going through the motions
  publication-title: Front. Neurosci.
– volume: 41
  start-page: 1039
  year: 1999
  end-page: 1043
  ident: bib0235
  article-title: Visual feedback to stabilize head position for fMRI
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 87
  year: 2004
  end-page: 96
  ident: bib0085
  article-title: Insights into the ageing mind: a view from cognitive neuroscience
  publication-title: Nat. Rev. Neurosci.
– volume: 35
  start-page: 2193
  year: 2014
  end-page: 2202
  ident: bib0205
  article-title: Changes in whole-brain functional networks and memory performance in aging
  publication-title: Neurobiol. Aging
– year: 2000
  ident: bib0225
  article-title: R Language Definition
– volume: 154
  start-page: 159
  year: 2017
  end-page: 168
  ident: bib0020
  article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression
  publication-title: NeuroImage
– volume: 34
  start-page: 1292
  year: 2013
  end-page: 1301
  ident: bib0140
  article-title: Age effect on the default mode network, inner thoughts, and cognitive abilities
  publication-title: Neurobiol. Aging
– volume: 159
  start-page: 302
  year: 2017
  end-page: 324
  ident: bib0135
  article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity
  publication-title: NeuroImage
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0075
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0100
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0220
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
– volume: 27
  start-page: 153
  year: 2005
  end-page: 162
  ident: bib0250
  article-title: Head motion suppression using real-time feedback of motion information and its effects on task performance in fMRI
  publication-title: Neuroimage
– volume: 17
  start-page: 415
  year: 1993
  end-page: 421
  ident: bib0095
  article-title: The detection of age-related decrease of dopamine D1, D2 and serotonin 5-HT2 receptors in living human brain
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 107
  start-page: 7
  year: 2003
  end-page: 13
  ident: bib0145
  article-title: Memory function in normal aging
  publication-title: Acta Neurol. Scand.
– year: 2018
  ident: bib0185
  article-title: Studying of Resting State fMRI head movements in Multiple Sclerosis and Essential Tremor Patients
– volume: 16
  start-page: 832
  year: 2013
  ident: bib0025
  article-title: Opportunities and limitations of intrinsic functional connectivity MRI
  publication-title: Nat. Neurosci.
– year: 2005
  ident: bib0255
  article-title: Head motion analysis during cognitive fMRI examination: application in patients with schizophrenia
  publication-title: Neuros
– volume: 19
  start-page: 959
  year: 2001
  end-page: 963
  ident: bib0005
  article-title: A quantitative comparison of motion detection algorithms in fMRI
  publication-title: Magn. Reson. Imaging
– volume: 112
  start-page: 267
  year: 2015
  end-page: 277
  ident: bib0170
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: Neuroimage
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0035
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 24
  start-page: 49
  year: 2014
  end-page: 62
  ident: bib0055
  article-title: Functional brain connectivity using fMRI in aging and Alzheimer’s disease
  publication-title: Neuropsychol. Rev.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib0080
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 422
  start-page: 164
  year: 2007
  end-page: 168
  ident: bib0245
  article-title: Aging influence on functional connectivity of the motor network in the resting state
  publication-title: Neurosci. Lett.
– volume: 27
  start-page: 142
  year: 2009
  end-page: 145
  ident: bib0030
  article-title: Effects of age and sex on brain glutamate and other metabolites
  publication-title: Magn. Reson. Imaging
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  ident: bib0240
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
– volume: 13
  start-page: 1103
  year: 2019
  end-page: 1114
  ident: bib0200
  article-title: Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data
  publication-title: Brain Imaging Behav.
– volume: 144
  start-page: 74
  year: 2017
  end-page: 82
  ident: bib0155
  article-title: An improved model of motion-related signal changes in fMRI
  publication-title: NeuroImage
– volume: 40
  start-page: 644
  year: 2008
  end-page: 654
  ident: bib0010
  article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration
  publication-title: Neuroimage
– volume: 27
  start-page: 779
  year: 2006
  end-page: 788
  ident: bib0105
  article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis
  publication-title: Hum. Brain Mapp.
– volume: 82
  start-page: 84
  year: 2006
  end-page: 88
  ident: bib0160
  article-title: Ageing and the brain
  publication-title: Postgrad. Med. J.
– volume: 62
  start-page: 938
  year: 2012
  end-page: 944
  ident: bib0015
  article-title: Resting state fMRI: a personal history
  publication-title: Neuroimage
– volume: 302
  start-page: 1
  year: 2018
  ident: bib0210
  article-title: Editorial on special issue: machine learning on MCI
  publication-title: J. Neurosci. Methods
– start-page: 271
  year: 2018
  end-page: 278
  ident: bib0190
  article-title: On the classification of EEG signal by using an SVM based algorithm
  publication-title: Multidisciplinary Approaches to Neural Computing
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 10.1016/j.jneumeth.2021.109084_bib0165
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– year: 2018
  ident: 10.1016/j.jneumeth.2021.109084_bib0185
– volume: 10
  start-page: 6
  issue: 1
  year: 1999
  ident: 10.1016/j.jneumeth.2021.109084_bib0040
  article-title: The effect of normal aging on the coupling of neural activity to the bold hemodynamic response
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0444
– volume: 35
  start-page: 2193
  issue: 10
  year: 2014
  ident: 10.1016/j.jneumeth.2021.109084_bib0205
  article-title: Changes in whole-brain functional networks and memory performance in aging
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.04.007
– volume: 34
  start-page: 1469
  issue: 5
  year: 2013
  ident: 10.1016/j.jneumeth.2021.109084_bib0070
  article-title: Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.11.002
– volume: 144
  start-page: 74
  year: 2017
  ident: 10.1016/j.jneumeth.2021.109084_bib0155
  article-title: An improved model of motion-related signal changes in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.08.051
– volume: 10
  start-page: 799
  issue: 3
  year: 2016
  ident: 10.1016/j.jneumeth.2021.109084_bib0120
  article-title: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9448-7
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 10.1016/j.jneumeth.2021.109084_bib0045
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0601417103
– volume: 17
  start-page: 415
  issue: 3
  year: 1993
  ident: 10.1016/j.jneumeth.2021.109084_bib0095
  article-title: The detection of age-related decrease of dopamine D1, D2 and serotonin 5-HT2 receptors in living human brain
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/0278-5846(93)90075-4
– volume: 13
  start-page: 1103
  issue: 4
  year: 2019
  ident: 10.1016/j.jneumeth.2021.109084_bib0200
  article-title: Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-018-9926-9
– volume: 154
  start-page: 159
  year: 2017
  ident: 10.1016/j.jneumeth.2021.109084_bib0020
  article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.027
– volume: 107
  start-page: 107
  year: 2015
  ident: 10.1016/j.jneumeth.2021.109084_bib0175
  article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.006
– volume: 12
  start-page: 882
  issue: 3
  year: 2018
  ident: 10.1016/j.jneumeth.2021.109084_bib0180
  article-title: Evaluation of the MCFLIRT correction algorithm in head motion from resting state fMRI data, world academy of science, engineering and technology, international science index
  publication-title: Biomed. Biol. Eng.
– volume: 167
  start-page: 587
  issue: 4
  year: 2005
  ident: 10.1016/j.jneumeth.2021.109084_bib0050
  article-title: Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-005-0059-1
– volume: 41
  start-page: 1039
  issue: 5
  year: 1999
  ident: 10.1016/j.jneumeth.2021.109084_bib0235
  article-title: Visual feedback to stabilize head position for fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199905)41:5<1039::AID-MRM24>3.0.CO;2-N
– volume: 112
  start-page: 267
  year: 2015
  ident: 10.1016/j.jneumeth.2021.109084_bib0170
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.064
– volume: 59
  start-page: 431
  issue: 1
  year: 2012
  ident: 10.1016/j.jneumeth.2021.109084_bib0240
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.044
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.jneumeth.2021.109084_bib0220
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 79
  start-page: 730
  issue: 8
  year: 2006
  ident: 10.1016/j.jneumeth.2021.109084_bib0150
  article-title: Age-related decline of dopamine synthesis in the living human brain measured by positron emission tomography with L-[β-11 C] DOPA
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2006.02.017
– start-page: 271
  year: 2018
  ident: 10.1016/j.jneumeth.2021.109084_bib0190
  article-title: On the classification of EEG signal by using an SVM based algorithm
– volume: 27
  start-page: 779
  issue: 10
  year: 2006
  ident: 10.1016/j.jneumeth.2021.109084_bib0105
  article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20219
– volume: 27
  start-page: 142
  issue: 1
  year: 2009
  ident: 10.1016/j.jneumeth.2021.109084_bib0030
  article-title: Effects of age and sex on brain glutamate and other metabolites
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.06.002
– volume: 159
  start-page: 302
  year: 2017
  ident: 10.1016/j.jneumeth.2021.109084_bib0135
  article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.038
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 10.1016/j.jneumeth.2021.109084_bib0080
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– year: 2019
  ident: 10.1016/j.jneumeth.2021.109084_bib0195
– volume: 26
  start-page: 665
  issue: 5
  year: 2005
  ident: 10.1016/j.jneumeth.2021.109084_bib0115
  article-title: Age-related glutamate and glutamine concentration changes in normal human brain: 1 H MR spectroscopy study at 4 T
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2004.07.001
– volume: 40
  start-page: 644
  year: 2008
  ident: 10.1016/j.jneumeth.2021.109084_bib0010
  article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.059
– start-page: 816
  year: 2016
  ident: 10.1016/j.jneumeth.2021.109084_bib0215
  article-title: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data
– volume: 3
  start-page: 1157
  issue: March
  year: 2003
  ident: 10.1016/j.jneumeth.2021.109084_bib0075
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 153
  issue: 1
  year: 2005
  ident: 10.1016/j.jneumeth.2021.109084_bib0250
  article-title: Head motion suppression using real-time feedback of motion information and its effects on task performance in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.050
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jneumeth.2021.109084_bib0035
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 5
  start-page: 87
  issue: 2
  year: 2004
  ident: 10.1016/j.jneumeth.2021.109084_bib0085
  article-title: Insights into the ageing mind: a view from cognitive neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1323
– volume: 16
  start-page: 832
  issue: 7
  year: 2013
  ident: 10.1016/j.jneumeth.2021.109084_bib0025
  article-title: Opportunities and limitations of intrinsic functional connectivity MRI
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3423
– volume: 101
  start-page: 3270
  year: 2009
  ident: 10.1016/j.jneumeth.2021.109084_bib0065
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90777.2008
– volume: 19
  start-page: 959
  issue: 7
  year: 2001
  ident: 10.1016/j.jneumeth.2021.109084_bib0005
  article-title: A quantitative comparison of motion detection algorithms in fMRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(01)00418-0
– volume: 82
  start-page: 84
  issue: 964
  year: 2006
  ident: 10.1016/j.jneumeth.2021.109084_bib0160
  article-title: Ageing and the brain
  publication-title: Postgrad. Med. J.
  doi: 10.1136/pgmj.2005.036665
– volume: 422
  start-page: 164
  issue: 3
  year: 2007
  ident: 10.1016/j.jneumeth.2021.109084_bib0245
  article-title: Aging influence on functional connectivity of the motor network in the resting state
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2007.06.011
– volume: 107
  start-page: 7
  issue: s179
  year: 2003
  ident: 10.1016/j.jneumeth.2021.109084_bib0145
  article-title: Memory function in normal aging
  publication-title: Acta Neurol. Scand.
  doi: 10.1034/j.1600-0404.107.s179.5.x
– volume: 34
  start-page: 1292
  issue: 4
  year: 2013
  ident: 10.1016/j.jneumeth.2021.109084_bib0140
  article-title: Age effect on the default mode network, inner thoughts, and cognitive abilities
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.08.018
– volume: 44
  start-page: 457
  issue: 3
  year: 2000
  ident: 10.1016/j.jneumeth.2021.109084_bib0230
  article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– volume: 43
  start-page: 1699
  issue: 6
  year: 1984
  ident: 10.1016/j.jneumeth.2021.109084_bib0130
  article-title: Effect of age on human brain serotonin (S‐1) binding sites
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1984.tb06098.x
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.jneumeth.2021.109084_bib0100
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 302
  start-page: 1
  year: 2018
  ident: 10.1016/j.jneumeth.2021.109084_bib0210
  article-title: Editorial on special issue: machine learning on MCI
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.03.011
– volume: 27
  start-page: 607
  issue: 10
  year: 2004
  ident: 10.1016/j.jneumeth.2021.109084_bib0090
  article-title: The aging brain: morphomolecular senescence of cortical circuits
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.07.013
– year: 2000
  ident: 10.1016/j.jneumeth.2021.109084_bib0225
– volume: 62
  start-page: 938
  issue: 2
  year: 2012
  ident: 10.1016/j.jneumeth.2021.109084_bib0015
  article-title: Resting state fMRI: a personal history
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.090
– volume: 37
  start-page: 384
  issue: 3
  year: 2013
  ident: 10.1016/j.jneumeth.2021.109084_bib0060
  article-title: Resting-state functional connectivity in normal brain aging
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2013.01.017
– volume: 24
  start-page: 49
  issue: 1
  year: 2014
  ident: 10.1016/j.jneumeth.2021.109084_bib0055
  article-title: Functional brain connectivity using fMRI in aging and Alzheimer’s disease
  publication-title: Neuropsychol. Rev.
  doi: 10.1007/s11065-014-9249-6
– volume: 21
  start-page: 683
  issue: 5
  year: 2000
  ident: 10.1016/j.jneumeth.2021.109084_bib0110
  article-title: Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(00)00149-4
– year: 2005
  ident: 10.1016/j.jneumeth.2021.109084_bib0255
  article-title: Head motion analysis during cognitive fMRI examination: application in patients with schizophrenia
  publication-title: Neuros
– volume: 13
  start-page: 825
  year: 2019
  ident: 10.1016/j.jneumeth.2021.109084_bib0125
  article-title: Resting state fMRI: going through the motions
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00825
SSID ssj0004906
Score 2.4277332
Snippet •Subject head motion represents the first noise source in resting-state fMRI.•Along axes (X,Y,Z), we extracted translations (x,y,z) and rotations...
Resting-state-fMRI is a technique used to explore the functional brain architecture in term of brain networks and their interactions. However, the robustness...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109084
SubjectTerms Aging
Head motions correction
Resting state fMRI
Support vector machine
Temporal Signal to noise ratio
Title Aging effect on head motion: A Machine Learning study on resting state fMRI data
URI https://dx.doi.org/10.1016/j.jneumeth.2021.109084
https://www.ncbi.nlm.nih.gov/pubmed/33508406
https://www.proquest.com/docview/2483812185
Volume 352
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3BIlW9IApt2X4gV0LcwtqxYxJuESpaWi2qoEjcLCceV6xKFtHdQy_97fU4Dm2lVhx6jOVRrLEzfpN5MwOw7_O28Uq6TOVWZ0rwNrO5xsx7WeZeYWs5JTjPzvX0Sn24Lq7X4GTIhSFaZbL9vU2P1jqNTJI2J3c3N5NLSsThlE4lIlBR67CRy0oXI9iozz5Oz3-lR1axxSbNp5Al_y1ReH4473BFzZqDq5gLKq4UC53-_Y76FwaNd9HpFmwmEMnqfp3PYA27bdipu-BA335nByzSOuP_8m14MkvR8x34VFNHItZTONiiY8EQO9b38TlmNZtFYiWyVHP1C4u1Z2kiNfDoBwI0ZX52ccaIWvocrk7ffz6ZZqmjQtZKXS6zQpe2xBKRB1zi2kZY7hBbJ3LbSlkoDHCosJrSzKVCqa30weMR0qEXwXfh8gWMukWHu8C8k0dKHaFsRKPQ-QBrlJeOK1WhrrQfQzHo0LSp3Dh1vfhqBl7Z3Ay6N6R70-t-DJMHubu-4MajEtWwReaPo2PCrfCo7LthT034rihYYjtcrL6ZXJUBzAQAVIzhZb_ZD-sJqgqyXL_6jze_hqf0RHQ2UbyB0fJ-hW8Dvlk2e7B--EPspVP8E9gV-Ho
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXBC2PpTyMhLila8cTb5bbqqLaQlMhaKXeLCceo67abAW7By789nqcpIAE6oGr41GssTP-JvPNDMCbkDd1QO0zzJ3JUMkmc7mhLARd5gGpcZITnKsjMz_BD6fF6QbsDbkwTKvsbX9n05O17kfGvTbHl2dn4y-ciCM5nUoloIK34DYWesK8vt2fv3geOE0NNnk2Byzlb2nCi91FS2tu1RwdxVxxaaVU5vTvN9S_EGi6ifYfwP0eQopZt8qHsEHtFmzP2ug-X_wQb0Uidaa_5Vtwp-pj59vwacb9iERH4BDLVkQz7EXXxeedmIkq0SpJ9BVXv4pUeZYncvuObiACUxGqzweCiaWP4GT__fHePOv7KWSNNuUqK0zpSiqJZEQlvqmVk56o8Sp3jdYFUgRDhTOcZK6RtHE6RH9HaU9BRc9F6sew2S5begoieD1BnJCuVY3kQwQ1GLSXiFMyUxNGUAw6tE1fbJx7XpzbgVW2sIPuLevedrofwfha7rIrt3GjxHTYIvvHwbHxTrhR9vWwpzZ-VRwqcS0t199tjmWEMhH-FCN40m329XqiqqKsNM_-482v4O78uDq0hwdHH3fgHj9hYpsqnsPm6tuaXkSks6pfppN8Be7s-UU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+effect+on+head+motion%3A+A+Machine+Learning+study+on+resting+state+fMRI+data&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Sacc%C3%A0%2C+Valeria&rft.au=Sarica%2C+Alessia&rft.au=Quattrone%2C+Andrea&rft.au=Rocca%2C+Federico&rft.date=2021-03-15&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=352&rft_id=info:doi/10.1016%2Fj.jneumeth.2021.109084&rft.externalDocID=S0165027021000194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon