Effects of praseodymium doping on thermoelectric transport properties of CaMnO3 compound system

The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping rang...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 31; no. 9; pp. 885 - 890
Main Author 张飞鹏 牛保成 张坤书 张忻 路清梅 张久兴
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2013
Subjects
Online AccessGet full text
ISSN1002-0721
2509-4963
DOI10.1016/S1002-0721(12)60374-3

Cover

Abstract The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration;the absolute value of See-beck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric per-formance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.
AbstractList The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration;the absolute value of See-beck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric per-formance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.
The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited single phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration; the absolute value of Seebeck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m.K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric performance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.
The rare earth Pr doped Ca1−xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited single phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration; the absolute value of Seebeck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric performance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K. Pr doped Ca1−xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples are prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The thermoelectric performance is noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound is favorably optimized with the maximum value 0.16 at 873 K
Author 张飞鹏 牛保成 张坤书 张忻 路清梅 张久兴
AuthorAffiliation Institute of Physics, Henan University of Urban Construction, Pingdingshan 467036, China Key Laboratory of Advanced Functional Materials, Chinese Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Author_xml – sequence: 1
  fullname: 张飞鹏 牛保成 张坤书 张忻 路清梅 张久兴
BookMark eNqFkbtOHDEUQK0IpCyPT4g06Ugx4LdnlCKKVrwkEAVQW7P2NTiasQfbi7R_j9lFFGmo3JxzfXXuAdoLMQBCPwg-JZjIs3uCMW2xouSE0F8SM8Vb9g0tqMB9y3vJ9tDiE_mODnL-hyskerxA-tw5MCU30TVzGjJEu5n8empsnH14amJoyjOkKcJYseRNU9IQ8hxTqXycIRUPW3s53IY71pg4zXEdbJM3ucB0hPbdMGY4_ngP0ePF-cPyqr25u7xe_r1pDZNdaYXAgDmnXBEnhDOSmgEwoSsH3EqiupXpO2vwyhnTS2qdIIqDIrYXklnVsUN0sptbl3pZQy568tnAOA4B4jprImXfcSUEqajYoSbFnBM4PSc_DWmjCdbvQfU2qH6vpQnV26CaVe_3f57xZSg-hprEj1_af3Y21AqvHpLOxkMwYH2qZbWN_ssJPz_-f47h6aVe53NxrmgnFevYG39uneM
CitedBy_id crossref_primary_10_1007_s10854_017_6982_7
crossref_primary_10_1111_jace_14898
crossref_primary_10_1080_01411594_2021_1995606
crossref_primary_10_1007_s10853_023_09034_w
crossref_primary_10_1103_PhysRevB_96_064105
crossref_primary_10_1016_j_jmmm_2023_170750
crossref_primary_10_1016_j_jallcom_2019_07_188
crossref_primary_10_1016_S1002_0721_14_60498_1
crossref_primary_10_1016_j_matlet_2015_10_081
crossref_primary_10_1088_2053_1591_aaa802
crossref_primary_10_1016_j_jallcom_2024_175809
crossref_primary_10_1016_j_ijhydene_2015_09_017
crossref_primary_10_1016_j_jallcom_2020_154466
crossref_primary_10_3390_ma11101807
crossref_primary_10_1007_s11664_019_07386_1
crossref_primary_10_1016_j_jre_2018_06_011
crossref_primary_10_1590_1980_5373_mr_2020_0169
crossref_primary_10_1016_j_cej_2020_127364
Cites_doi 10.1016/j.ssc.2012.06.027
10.1016/j.jallcom.2011.01.032
10.1063/1.3475719
10.1016/j.materresbull.2010.01.023
10.1016/j.jeurceramsoc.2011.10.007
10.1126/science.1156446
10.1016/j.jallcom.2012.01.093
10.1016/j.tsf.2012.02.022
10.1016/j.solidstatesciences.2007.10.022
10.1063/1.3003065
10.1038/asiamat.2010.138
10.1016/S1002-0721(10)60504-2
10.1016/j.jallcom.2010.09.102
10.1016/S1002-0721(12)60072-6
10.1007/s00339-010-6081-6
10.1063/1.2920210
10.1016/j.physb.2012.01.083
ContentType Journal Article
Copyright 2013 The Chinese Society of Rare Earths
Copyright_xml – notice: 2013 The Chinese Society of Rare Earths
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/S1002-0721(12)60374-3
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Effects of praseodymium doping on thermoelectric transport properties of CaMnO3 compound system
EISSN 2509-4963
EndPage 890
ExternalDocumentID 10_1016_S1002_0721_12_60374_3
S1002072112603743
47286738
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  grantid: 2112007
– fundername: Basic and Advanced Technology Research Project of Henan Province
  grantid: 132300410071
– fundername: National Natural Science Foundation of China
  grantid: 50801002
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92H
92I
92L
92R
93N
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HZ~
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
SDC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSZ
T5K
TCJ
TGT
W92
~02
~G-
~WA
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c368t-550e0442471f55fc62cae012bfe4d6178bc98dc0bfcc962df5174e71d9563d783
IEDL.DBID AIKHN
ISSN 1002-0721
IngestDate Fri Sep 05 04:35:48 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
Thu Apr 24 22:58:01 EDT 2025
Fri Feb 23 02:30:58 EST 2024
Wed Feb 14 10:39:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords CaMnO3 compound
thermoelectric properties
Pr doping
rare earths
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-550e0442471f55fc62cae012bfe4d6178bc98dc0bfcc962df5174e71d9563d783
Notes 11-2788/TF
ZHANG Feipeng , NIU Baocheng , ZHANG Kunshu , ZHANG Xin , LU Qingmei, ZHANG Jiuxing (1. Institute of Physics, Henan University of Urban Construction, Pingdingshan 467036, China; 2. Key Laboratory of Advanced Functional Materials, Chinese Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China)
CaMnO3 compound; Pr doping; thermoelectric properties; rare earths
The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration;the absolute value of See-beck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric per-formance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669847551
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1669847551
crossref_primary_10_1016_S1002_0721_12_60374_3
crossref_citationtrail_10_1016_S1002_0721_12_60374_3
elsevier_sciencedirect_doi_10_1016_S1002_0721_12_60374_3
chongqing_primary_47286738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of rare earths
PublicationTitleAlternate Journal of Rare Earths
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mott, Davis (bib19) 1971
Zhang, Hu, Guo, Wang (bib10) 2012; 407
Peng, Liu, Fu, Xu, Liu, Yang (bib9) 2012; 521
Zhu, Xiao, Yu, Shen, Yang, Zhou, Zhao, He (bib7) 2010; 108
Wang, Sui, Wang, Su (bib12) 2011; 104
Shi, Hong, Li, Uher, Yang, Salvador, Wang, Chen, Zhang (bib21) 2008; 92
Lu, Zhang, Zhang, Zhang (bib16) 2010; 28
Li, Liu, Zhao, Zhou (bib1) 2010; 2
Wang, Sui, Su (bib17) 2008; 104
Zhao, Zhang, Li, Zhang, Liu (bib18) 2008; 10
Liu, Zhao, Zhu, Gu (bib2) 2012; 30
Liu, Gao, Gu, Zhao (bib3) 2011; 29
Zhang, Zhang, Lu, Zhang, Liu (bib14) 2011; 509
Zhang, Zhang, Lu, Zhang, Liu (bib15) 2011
Zhang, Lu, Zhang, Zhang (bib13) 2011; 509
Saiga, Suekuni, Du, Takabatake (bib8) 2012; 152
Hauser, Savelli, Plissonnier, Montès, Simon (bib6) 2012; 520
Sanmathi, Takahashi, Sawaki, Klein, Retoux, Terasaki, Noudem (bib11) 2010; 45
Schatz (bib20) 1963
Fergus (bib4) 2012; 32
Poudel, Hao, Ma, Lan, Minnich, Yu, Yan, Wang, Muto, Vashaee, Chen, Liu, Dresselhaus, Chen, Ren (bib5) 2008; 320
Zhao (10.1016/S1002-0721(12)60374-3_bib18) 2008; 10
Mott (10.1016/S1002-0721(12)60374-3_bib19) 1971
Zhang (10.1016/S1002-0721(12)60374-3_bib14) 2011; 509
Zhu (10.1016/S1002-0721(12)60374-3_bib7) 2010; 108
Fergus (10.1016/S1002-0721(12)60374-3_bib4) 2012; 32
Saiga (10.1016/S1002-0721(12)60374-3_bib8) 2012; 152
Zhang (10.1016/S1002-0721(12)60374-3_bib15) 2011
Liu (10.1016/S1002-0721(12)60374-3_bib3) 2011; 29
Liu (10.1016/S1002-0721(12)60374-3_bib2) 2012; 30
Peng (10.1016/S1002-0721(12)60374-3_bib9) 2012; 521
Lu (10.1016/S1002-0721(12)60374-3_bib16) 2010; 28
Wang (10.1016/S1002-0721(12)60374-3_bib17) 2008; 104
Sanmathi (10.1016/S1002-0721(12)60374-3_bib11) 2010; 45
Poudel (10.1016/S1002-0721(12)60374-3_bib5) 2008; 320
Hauser (10.1016/S1002-0721(12)60374-3_bib6) 2012; 520
Wang (10.1016/S1002-0721(12)60374-3_bib12) 2011; 104
Schatz (10.1016/S1002-0721(12)60374-3_bib20) 1963
Shi (10.1016/S1002-0721(12)60374-3_bib21) 2008; 92
Li (10.1016/S1002-0721(12)60374-3_bib1) 2010; 2
Zhang (10.1016/S1002-0721(12)60374-3_bib13) 2011; 509
Zhang (10.1016/S1002-0721(12)60374-3_bib10) 2012; 407
References_xml – volume: 2
  start-page: 152
  year: 2010
  ident: bib1
  article-title: High-performance nanostructured thermoelectric materials
  publication-title: NPG Asia Mater.
– volume: 320
  start-page: 634
  year: 2008
  ident: bib5
  article-title: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
  publication-title: Science
– volume: 10
  start-page: 651
  year: 2008
  ident: bib18
  article-title: Enhanced thermoelectric and mechanical properties in textured n-type Bi
  publication-title: Solid State Sci.
– volume: 152
  start-page: 1902
  year: 2012
  ident: bib8
  article-title: Thermoelectric properties and structural instability of type-I clathrate Ba
  publication-title: Solid State Commun.
– volume: 108
  start-page: 044903
  year: 2010
  ident: bib7
  article-title: Effects of yttrium doping on the thermoelectric properties of Hf
  publication-title: J. Appl. Phys.
– volume: 32
  start-page: 525
  year: 2012
  ident: bib4
  article-title: Oxide materials for high temperature thermoelectric energy conversion
  publication-title: J. Eur. Ceram. Soc.
– volume: 521
  start-page: 141
  year: 2012
  ident: bib9
  article-title: Synthesis and thermoelectric properties of In
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 596
  year: 2011
  ident: bib3
  article-title: Effect of Y-filling on thermoelectric properties of CoSb
  publication-title: J. Rare Earths
– volume: 520
  start-page: 4259
  year: 2012
  ident: bib6
  article-title: Growth of heavily doped monocrystalline and polycrystalline SiGe-based quantum dot superlattices
  publication-title: Thin Solid Films
– year: 1971
  ident: bib19
  publication-title: Electronic Processes in Non-crystalline Materials
– volume: 509
  start-page: 4171
  year: 2011
  ident: bib14
  article-title: Electronic structure and thermal properties of doped CaMnO
  publication-title: J. Alloys Compd.
– year: 1963
  ident: bib20
  publication-title: Transition Metal Compounds
– volume: 92
  start-page: 182101
  year: 2008
  ident: bib21
  article-title: Low thermal conductivity and high thermoelectric figure of merit in n-type Ba
  publication-title: Appl. Phys. Lett.
– volume: 509
  start-page: 542
  year: 2011
  ident: bib13
  article-title: First principle investigation of electronic structure of CaMnO
  publication-title: J. Alloys Compd.
– volume: 28
  start-page: 471
  year: 2010
  ident: bib16
  article-title: Rietveld refinement and thermoelectric properties of ytterbium doped Ca
  publication-title: J. Chin. Soc. Rare Earths
– volume: 104
  start-page: 093703
  year: 2008
  ident: bib17
  article-title: High temperature thermoelectric characteristics of Ca
  publication-title: J. Appl. Phys.
– volume: 30
  start-page: 456
  year: 2012
  ident: bib2
  article-title: Thermoelectric properties of Yb
  publication-title: J. Rare Earths
– volume: 407
  start-page: 1114
  year: 2012
  ident: bib10
  article-title: Thermoelectric transport coefficients of n-doped CaTiO
  publication-title: Phys. B
– volume: 104
  start-page: 135
  year: 2011
  ident: bib12
  article-title: Seebeck coefficient of Ln
  publication-title: Appl. Phys. A
– volume: 45
  start-page: 558
  year: 2010
  ident: bib11
  article-title: Microstructure control on thermoelectric properties of Ca
  publication-title: Mater. Res. Bull.
– year: 2011
  ident: bib15
  publication-title: Preparation, characterization and high temperature transport properties of Fe doped Ca
– year: 2011
  ident: 10.1016/S1002-0721(12)60374-3_bib15
– volume: 152
  start-page: 1902
  year: 2012
  ident: 10.1016/S1002-0721(12)60374-3_bib8
  article-title: Thermoelectric properties and structural instability of type-I clathrate Ba8Ga16Sn30 at high temperatures
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2012.06.027
– volume: 509
  start-page: 4171
  year: 2011
  ident: 10.1016/S1002-0721(12)60374-3_bib14
  article-title: Electronic structure and thermal properties of doped CaMnO3 system
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.01.032
– volume: 108
  start-page: 044903
  year: 2010
  ident: 10.1016/S1002-0721(12)60374-3_bib7
  article-title: Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-Heusler alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3475719
– volume: 45
  start-page: 558
  year: 2010
  ident: 10.1016/S1002-0721(12)60374-3_bib11
  article-title: Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesized by co-precipitation technique
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2010.01.023
– volume: 32
  start-page: 525
  year: 2012
  ident: 10.1016/S1002-0721(12)60374-3_bib4
  article-title: Oxide materials for high temperature thermoelectric energy conversion
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2011.10.007
– volume: 320
  start-page: 634
  year: 2008
  ident: 10.1016/S1002-0721(12)60374-3_bib5
  article-title: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
  publication-title: Science
  doi: 10.1126/science.1156446
– year: 1971
  ident: 10.1016/S1002-0721(12)60374-3_bib19
– volume: 521
  start-page: 141
  year: 2012
  ident: 10.1016/S1002-0721(12)60374-3_bib9
  article-title: Synthesis and thermoelectric properties of In0.2+xCo4Sb12+x composite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.01.093
– volume: 520
  start-page: 4259
  year: 2012
  ident: 10.1016/S1002-0721(12)60374-3_bib6
  article-title: Growth of heavily doped monocrystalline and polycrystalline SiGe-based quantum dot superlattices
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.02.022
– volume: 28
  start-page: 471
  year: 2010
  ident: 10.1016/S1002-0721(12)60374-3_bib16
  article-title: Rietveld refinement and thermoelectric properties of ytterbium doped Ca1–xYbxMnO3 (x=0–0.2) compounds
  publication-title: J. Chin. Soc. Rare Earths
– volume: 10
  start-page: 651
  year: 2008
  ident: 10.1016/S1002-0721(12)60374-3_bib18
  article-title: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2007.10.022
– volume: 104
  start-page: 093703
  year: 2008
  ident: 10.1016/S1002-0721(12)60374-3_bib17
  article-title: High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La, Pr, …, Yb)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3003065
– volume: 2
  start-page: 152
  year: 2010
  ident: 10.1016/S1002-0721(12)60374-3_bib1
  article-title: High-performance nanostructured thermoelectric materials
  publication-title: NPG Asia Mater.
  doi: 10.1038/asiamat.2010.138
– year: 1963
  ident: 10.1016/S1002-0721(12)60374-3_bib20
– volume: 29
  start-page: 596
  year: 2011
  ident: 10.1016/S1002-0721(12)60374-3_bib3
  article-title: Effect of Y-filling on thermoelectric properties of CoSb3
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(10)60504-2
– volume: 509
  start-page: 542
  year: 2011
  ident: 10.1016/S1002-0721(12)60374-3_bib13
  article-title: First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxides
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.09.102
– volume: 30
  start-page: 456
  year: 2012
  ident: 10.1016/S1002-0721(12)60374-3_bib2
  article-title: Thermoelectric properties of YbxCo4Sb12 system
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(12)60072-6
– volume: 104
  start-page: 135
  year: 2011
  ident: 10.1016/S1002-0721(12)60374-3_bib12
  article-title: Seebeck coefficient of LnxCa1–xMnO3 perovskites in paramagnetic state
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-010-6081-6
– volume: 92
  start-page: 182101
  year: 2008
  ident: 10.1016/S1002-0721(12)60374-3_bib21
  article-title: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYby Co4Sb12 double-filled skutterudites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2920210
– volume: 407
  start-page: 1114
  year: 2012
  ident: 10.1016/S1002-0721(12)60374-3_bib10
  article-title: Thermoelectric transport coefficients of n-doped CaTiO3, SrTiO3 and BaTiO3: A theoretical study
  publication-title: Phys. B
  doi: 10.1016/j.physb.2012.01.083
SSID ssj0037590
Score 2.0711377
Snippet The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on...
The rare earth Pr doped Ca1−xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on...
The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 885
SubjectTerms Bulk sampling
CaMnO3 compound
Carrier density
Coefficients
Doping
Electrical resistivity
Pr doping
Rare earth metals
rare earths
Seebeck系数
thermoelectric properties
Thermoelectricity
Transport properties
复合系统
学习效果
微观结构
样品准备
电输运性质
载流子浓度
镨掺杂
Title Effects of praseodymium doping on thermoelectric transport properties of CaMnO3 compound system
URI http://lib.cqvip.com/qk/84120X/201309/47286738.html
https://dx.doi.org/10.1016/S1002-0721(12)60374-3
https://www.proquest.com/docview/1669847551
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1BOLQXVKBVAy1apB7ag4m9X7GPKCoKoNJDQeK2svejjUTsAMmBS397Z9Z2qlZCSFxXntFqZzVvVn7zBuATryQnjk3CfUgTKX2a5DqIxBIVoHR4o6vItrjU02t5fqNuNmDS98IQrbLL_W1Oj9m6Wxl1pzlazGajHyQeSupeGZbkAoFwE7a4KLQawNbJ2cX0sk_IYqyKVpSAyLZo8LeRp3USFz9n_Ev0kwiSWfjV1D_vEDyegqv_EndEo9M3sN2Vkeyk3ekObPh6F15N-ulte2BaWeIH1gS2uEeoatzjfLaaMxc7pFhTMyr95k07B2dm2bKXOcfvmwXRrX20npTf6u-CEfecRjCxVvv5LVyffr2aTJNumEJihc6XCb5EfColRzAKSgWruS09olMVvHTUJ1jZInc2rYK1heYukIS1H2cOH1DCjXPxDgZ1U_v3wFKsGQslpKUuOR1UbrlyssxKgS9tpewQ9tfnZxataIaRY57ThNEhyP5Aje1kyGkaxq1Z880oJoZiYjJuYkyMGMLx2qx3-YxB3kfL_HOhDGLFc6ZHfXQNRo3-oJS1b1YPJtO6QDjHKnP_5e4P4DWPMzWIqPYBBsv7lf-Ilc2yOoTN49_ZYXd__wDQ4vDG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6l4UAvqPShBlpYJA7twY29D8c-RhEoFEgPBYnbyt4HjdTYAZID_74zaztVKyEkrpZnZO2s5puRv_kG4JiXkhPHJuLOx5GULo6y1IvIEBWgsHijy8C2mKXTa_n9Rt30YNLNwhCtss39TU4P2bp9MmxPc7icz4c_STyU1L0SLMkFAuEr2JIKu70-bI3PzqezLiGLkcobUQIi26LB30Gexkl4-CXhX4OfSJDMwq-6ur1D8HgKrv5L3AGNTt_ATltGsnHzpbvQc9Vb2J5029vegW5kiR9Y7dnyHqGqto-L-XrBbJiQYnXFqPRb1M0enLlhq07mHN-vl0S3dsF6UlxWPwQj7jmtYGKN9vN7uD49uZpMo3aZQmREmq0i7ERcLCVHMPJKeZNyUzhEp9I7aWlOsDR5Zk1cemPylFtPEtZulFhsoIQdZeID9Ku6ch-BxVgz5kpIQ1NyqVeZ4crKIikEdtpKmQHsbc5PLxvRDC1HPKMNowOQ3YFq08qQ0zaM33rDN6OYaIqJTrgOMdFiAN82Zp3LZwyyLlr6nwulESueMz3qoqsxavQHpahcvX7QSZrmCOdYZe693P0hbE-vLi_0xdnsfB9e87Bfg0hrn6C_ul-7z1jlrMqD9hb_AZck8rU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+praseodymium+doping+on+thermoelectric+transport+properties+of+CaMnO3+compound+system&rft.jtitle=Journal+of+rare+earths&rft.au=ZHANG%2C+Feipeng&rft.au=NIU%2C+Baocheng&rft.au=ZHANG%2C+Kunshu&rft.au=ZHANG%2C+Xin&rft.date=2013-09-01&rft.pub=Elsevier+B.V&rft.issn=1002-0721&rft.eissn=2509-4963&rft.volume=31&rft.issue=9&rft.spage=885&rft.epage=890&rft_id=info:doi/10.1016%2FS1002-0721%2812%2960374-3&rft.externalDocID=S1002072112603743
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84120X%2F84120X.jpg