Effects of praseodymium doping on thermoelectric transport properties of CaMnO3 compound system
The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping rang...
Saved in:
Published in | Journal of rare earths Vol. 31; no. 9; pp. 885 - 890 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-0721 2509-4963 |
DOI | 10.1016/S1002-0721(12)60374-3 |
Cover
Abstract | The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration;the absolute value of See-beck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric per-formance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K. |
---|---|
AbstractList | The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration;the absolute value of See-beck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric per-formance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K. The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited single phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration; the absolute value of Seebeck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m.K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric performance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K. The rare earth Pr doped Ca1−xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited single phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration; the absolute value of Seebeck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric performance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K. Pr doped Ca1−xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples are prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The thermoelectric performance is noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound is favorably optimized with the maximum value 0.16 at 873 K |
Author | 张飞鹏 牛保成 张坤书 张忻 路清梅 张久兴 |
AuthorAffiliation | Institute of Physics, Henan University of Urban Construction, Pingdingshan 467036, China Key Laboratory of Advanced Functional Materials, Chinese Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
Author_xml | – sequence: 1 fullname: 张飞鹏 牛保成 张坤书 张忻 路清梅 张久兴 |
BookMark | eNqFkbtOHDEUQK0IpCyPT4g06Ugx4LdnlCKKVrwkEAVQW7P2NTiasQfbi7R_j9lFFGmo3JxzfXXuAdoLMQBCPwg-JZjIs3uCMW2xouSE0F8SM8Vb9g0tqMB9y3vJ9tDiE_mODnL-hyskerxA-tw5MCU30TVzGjJEu5n8empsnH14amJoyjOkKcJYseRNU9IQ8hxTqXycIRUPW3s53IY71pg4zXEdbJM3ucB0hPbdMGY4_ngP0ePF-cPyqr25u7xe_r1pDZNdaYXAgDmnXBEnhDOSmgEwoSsH3EqiupXpO2vwyhnTS2qdIIqDIrYXklnVsUN0sptbl3pZQy568tnAOA4B4jprImXfcSUEqajYoSbFnBM4PSc_DWmjCdbvQfU2qH6vpQnV26CaVe_3f57xZSg-hprEj1_af3Y21AqvHpLOxkMwYH2qZbWN_ssJPz_-f47h6aVe53NxrmgnFevYG39uneM |
CitedBy_id | crossref_primary_10_1007_s10854_017_6982_7 crossref_primary_10_1111_jace_14898 crossref_primary_10_1080_01411594_2021_1995606 crossref_primary_10_1007_s10853_023_09034_w crossref_primary_10_1103_PhysRevB_96_064105 crossref_primary_10_1016_j_jmmm_2023_170750 crossref_primary_10_1016_j_jallcom_2019_07_188 crossref_primary_10_1016_S1002_0721_14_60498_1 crossref_primary_10_1016_j_matlet_2015_10_081 crossref_primary_10_1088_2053_1591_aaa802 crossref_primary_10_1016_j_jallcom_2024_175809 crossref_primary_10_1016_j_ijhydene_2015_09_017 crossref_primary_10_1016_j_jallcom_2020_154466 crossref_primary_10_3390_ma11101807 crossref_primary_10_1007_s11664_019_07386_1 crossref_primary_10_1016_j_jre_2018_06_011 crossref_primary_10_1590_1980_5373_mr_2020_0169 crossref_primary_10_1016_j_cej_2020_127364 |
Cites_doi | 10.1016/j.ssc.2012.06.027 10.1016/j.jallcom.2011.01.032 10.1063/1.3475719 10.1016/j.materresbull.2010.01.023 10.1016/j.jeurceramsoc.2011.10.007 10.1126/science.1156446 10.1016/j.jallcom.2012.01.093 10.1016/j.tsf.2012.02.022 10.1016/j.solidstatesciences.2007.10.022 10.1063/1.3003065 10.1038/asiamat.2010.138 10.1016/S1002-0721(10)60504-2 10.1016/j.jallcom.2010.09.102 10.1016/S1002-0721(12)60072-6 10.1007/s00339-010-6081-6 10.1063/1.2920210 10.1016/j.physb.2012.01.083 |
ContentType | Journal Article |
Copyright | 2013 The Chinese Society of Rare Earths |
Copyright_xml | – notice: 2013 The Chinese Society of Rare Earths |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/S1002-0721(12)60374-3 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Effects of praseodymium doping on thermoelectric transport properties of CaMnO3 compound system |
EISSN | 2509-4963 |
EndPage | 890 |
ExternalDocumentID | 10_1016_S1002_0721_12_60374_3 S1002072112603743 47286738 |
GrantInformation_xml | – fundername: Beijing Municipal Natural Science Foundation grantid: 2112007 – fundername: Basic and Advanced Technology Research Project of Henan Province grantid: 132300410071 – fundername: National Natural Science Foundation of China grantid: 50801002 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92H 92I 92L 92R 93N AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CQIGP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FIRID FLBIZ FNPLU FYGXN GBLVA HZ~ J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL SDC SDF SDG SES SPC SPCBC SSK SSM SSZ T5K TCJ TGT W92 ~02 ~G- ~WA -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c368t-550e0442471f55fc62cae012bfe4d6178bc98dc0bfcc962df5174e71d9563d783 |
IEDL.DBID | AIKHN |
ISSN | 1002-0721 |
IngestDate | Fri Sep 05 04:35:48 EDT 2025 Tue Jul 01 01:03:24 EDT 2025 Thu Apr 24 22:58:01 EDT 2025 Fri Feb 23 02:30:58 EST 2024 Wed Feb 14 10:39:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | CaMnO3 compound thermoelectric properties Pr doping rare earths |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-550e0442471f55fc62cae012bfe4d6178bc98dc0bfcc962df5174e71d9563d783 |
Notes | 11-2788/TF ZHANG Feipeng , NIU Baocheng , ZHANG Kunshu , ZHANG Xin , LU Qingmei, ZHANG Jiuxing (1. Institute of Physics, Henan University of Urban Construction, Pingdingshan 467036, China; 2. Key Laboratory of Advanced Functional Materials, Chinese Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China) CaMnO3 compound; Pr doping; thermoelectric properties; rare earths The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration;the absolute value of See-beck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric per-formance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669847551 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1669847551 crossref_primary_10_1016_S1002_0721_12_60374_3 crossref_citationtrail_10_1016_S1002_0721_12_60374_3 elsevier_sciencedirect_doi_10_1016_S1002_0721_12_60374_3 chongqing_primary_47286738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of rare earths |
PublicationTitleAlternate | Journal of Rare Earths |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mott, Davis (bib19) 1971 Zhang, Hu, Guo, Wang (bib10) 2012; 407 Peng, Liu, Fu, Xu, Liu, Yang (bib9) 2012; 521 Zhu, Xiao, Yu, Shen, Yang, Zhou, Zhao, He (bib7) 2010; 108 Wang, Sui, Wang, Su (bib12) 2011; 104 Shi, Hong, Li, Uher, Yang, Salvador, Wang, Chen, Zhang (bib21) 2008; 92 Lu, Zhang, Zhang, Zhang (bib16) 2010; 28 Li, Liu, Zhao, Zhou (bib1) 2010; 2 Wang, Sui, Su (bib17) 2008; 104 Zhao, Zhang, Li, Zhang, Liu (bib18) 2008; 10 Liu, Zhao, Zhu, Gu (bib2) 2012; 30 Liu, Gao, Gu, Zhao (bib3) 2011; 29 Zhang, Zhang, Lu, Zhang, Liu (bib14) 2011; 509 Zhang, Zhang, Lu, Zhang, Liu (bib15) 2011 Zhang, Lu, Zhang, Zhang (bib13) 2011; 509 Saiga, Suekuni, Du, Takabatake (bib8) 2012; 152 Hauser, Savelli, Plissonnier, Montès, Simon (bib6) 2012; 520 Sanmathi, Takahashi, Sawaki, Klein, Retoux, Terasaki, Noudem (bib11) 2010; 45 Schatz (bib20) 1963 Fergus (bib4) 2012; 32 Poudel, Hao, Ma, Lan, Minnich, Yu, Yan, Wang, Muto, Vashaee, Chen, Liu, Dresselhaus, Chen, Ren (bib5) 2008; 320 Zhao (10.1016/S1002-0721(12)60374-3_bib18) 2008; 10 Mott (10.1016/S1002-0721(12)60374-3_bib19) 1971 Zhang (10.1016/S1002-0721(12)60374-3_bib14) 2011; 509 Zhu (10.1016/S1002-0721(12)60374-3_bib7) 2010; 108 Fergus (10.1016/S1002-0721(12)60374-3_bib4) 2012; 32 Saiga (10.1016/S1002-0721(12)60374-3_bib8) 2012; 152 Zhang (10.1016/S1002-0721(12)60374-3_bib15) 2011 Liu (10.1016/S1002-0721(12)60374-3_bib3) 2011; 29 Liu (10.1016/S1002-0721(12)60374-3_bib2) 2012; 30 Peng (10.1016/S1002-0721(12)60374-3_bib9) 2012; 521 Lu (10.1016/S1002-0721(12)60374-3_bib16) 2010; 28 Wang (10.1016/S1002-0721(12)60374-3_bib17) 2008; 104 Sanmathi (10.1016/S1002-0721(12)60374-3_bib11) 2010; 45 Poudel (10.1016/S1002-0721(12)60374-3_bib5) 2008; 320 Hauser (10.1016/S1002-0721(12)60374-3_bib6) 2012; 520 Wang (10.1016/S1002-0721(12)60374-3_bib12) 2011; 104 Schatz (10.1016/S1002-0721(12)60374-3_bib20) 1963 Shi (10.1016/S1002-0721(12)60374-3_bib21) 2008; 92 Li (10.1016/S1002-0721(12)60374-3_bib1) 2010; 2 Zhang (10.1016/S1002-0721(12)60374-3_bib13) 2011; 509 Zhang (10.1016/S1002-0721(12)60374-3_bib10) 2012; 407 |
References_xml | – volume: 2 start-page: 152 year: 2010 ident: bib1 article-title: High-performance nanostructured thermoelectric materials publication-title: NPG Asia Mater. – volume: 320 start-page: 634 year: 2008 ident: bib5 article-title: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys publication-title: Science – volume: 10 start-page: 651 year: 2008 ident: bib18 article-title: Enhanced thermoelectric and mechanical properties in textured n-type Bi publication-title: Solid State Sci. – volume: 152 start-page: 1902 year: 2012 ident: bib8 article-title: Thermoelectric properties and structural instability of type-I clathrate Ba publication-title: Solid State Commun. – volume: 108 start-page: 044903 year: 2010 ident: bib7 article-title: Effects of yttrium doping on the thermoelectric properties of Hf publication-title: J. Appl. Phys. – volume: 32 start-page: 525 year: 2012 ident: bib4 article-title: Oxide materials for high temperature thermoelectric energy conversion publication-title: J. Eur. Ceram. Soc. – volume: 521 start-page: 141 year: 2012 ident: bib9 article-title: Synthesis and thermoelectric properties of In publication-title: J. Alloys Compd. – volume: 29 start-page: 596 year: 2011 ident: bib3 article-title: Effect of Y-filling on thermoelectric properties of CoSb publication-title: J. Rare Earths – volume: 520 start-page: 4259 year: 2012 ident: bib6 article-title: Growth of heavily doped monocrystalline and polycrystalline SiGe-based quantum dot superlattices publication-title: Thin Solid Films – year: 1971 ident: bib19 publication-title: Electronic Processes in Non-crystalline Materials – volume: 509 start-page: 4171 year: 2011 ident: bib14 article-title: Electronic structure and thermal properties of doped CaMnO publication-title: J. Alloys Compd. – year: 1963 ident: bib20 publication-title: Transition Metal Compounds – volume: 92 start-page: 182101 year: 2008 ident: bib21 article-title: Low thermal conductivity and high thermoelectric figure of merit in n-type Ba publication-title: Appl. Phys. Lett. – volume: 509 start-page: 542 year: 2011 ident: bib13 article-title: First principle investigation of electronic structure of CaMnO publication-title: J. Alloys Compd. – volume: 28 start-page: 471 year: 2010 ident: bib16 article-title: Rietveld refinement and thermoelectric properties of ytterbium doped Ca publication-title: J. Chin. Soc. Rare Earths – volume: 104 start-page: 093703 year: 2008 ident: bib17 article-title: High temperature thermoelectric characteristics of Ca publication-title: J. Appl. Phys. – volume: 30 start-page: 456 year: 2012 ident: bib2 article-title: Thermoelectric properties of Yb publication-title: J. Rare Earths – volume: 407 start-page: 1114 year: 2012 ident: bib10 article-title: Thermoelectric transport coefficients of n-doped CaTiO publication-title: Phys. B – volume: 104 start-page: 135 year: 2011 ident: bib12 article-title: Seebeck coefficient of Ln publication-title: Appl. Phys. A – volume: 45 start-page: 558 year: 2010 ident: bib11 article-title: Microstructure control on thermoelectric properties of Ca publication-title: Mater. Res. Bull. – year: 2011 ident: bib15 publication-title: Preparation, characterization and high temperature transport properties of Fe doped Ca – year: 2011 ident: 10.1016/S1002-0721(12)60374-3_bib15 – volume: 152 start-page: 1902 year: 2012 ident: 10.1016/S1002-0721(12)60374-3_bib8 article-title: Thermoelectric properties and structural instability of type-I clathrate Ba8Ga16Sn30 at high temperatures publication-title: Solid State Commun. doi: 10.1016/j.ssc.2012.06.027 – volume: 509 start-page: 4171 year: 2011 ident: 10.1016/S1002-0721(12)60374-3_bib14 article-title: Electronic structure and thermal properties of doped CaMnO3 system publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.01.032 – volume: 108 start-page: 044903 year: 2010 ident: 10.1016/S1002-0721(12)60374-3_bib7 article-title: Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-Heusler alloys publication-title: J. Appl. Phys. doi: 10.1063/1.3475719 – volume: 45 start-page: 558 year: 2010 ident: 10.1016/S1002-0721(12)60374-3_bib11 article-title: Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesized by co-precipitation technique publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2010.01.023 – volume: 32 start-page: 525 year: 2012 ident: 10.1016/S1002-0721(12)60374-3_bib4 article-title: Oxide materials for high temperature thermoelectric energy conversion publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.10.007 – volume: 320 start-page: 634 year: 2008 ident: 10.1016/S1002-0721(12)60374-3_bib5 article-title: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys publication-title: Science doi: 10.1126/science.1156446 – year: 1971 ident: 10.1016/S1002-0721(12)60374-3_bib19 – volume: 521 start-page: 141 year: 2012 ident: 10.1016/S1002-0721(12)60374-3_bib9 article-title: Synthesis and thermoelectric properties of In0.2+xCo4Sb12+x composite publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.01.093 – volume: 520 start-page: 4259 year: 2012 ident: 10.1016/S1002-0721(12)60374-3_bib6 article-title: Growth of heavily doped monocrystalline and polycrystalline SiGe-based quantum dot superlattices publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.02.022 – volume: 28 start-page: 471 year: 2010 ident: 10.1016/S1002-0721(12)60374-3_bib16 article-title: Rietveld refinement and thermoelectric properties of ytterbium doped Ca1–xYbxMnO3 (x=0–0.2) compounds publication-title: J. Chin. Soc. Rare Earths – volume: 10 start-page: 651 year: 2008 ident: 10.1016/S1002-0721(12)60374-3_bib18 article-title: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2007.10.022 – volume: 104 start-page: 093703 year: 2008 ident: 10.1016/S1002-0721(12)60374-3_bib17 article-title: High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La, Pr, …, Yb) publication-title: J. Appl. Phys. doi: 10.1063/1.3003065 – volume: 2 start-page: 152 year: 2010 ident: 10.1016/S1002-0721(12)60374-3_bib1 article-title: High-performance nanostructured thermoelectric materials publication-title: NPG Asia Mater. doi: 10.1038/asiamat.2010.138 – year: 1963 ident: 10.1016/S1002-0721(12)60374-3_bib20 – volume: 29 start-page: 596 year: 2011 ident: 10.1016/S1002-0721(12)60374-3_bib3 article-title: Effect of Y-filling on thermoelectric properties of CoSb3 publication-title: J. Rare Earths doi: 10.1016/S1002-0721(10)60504-2 – volume: 509 start-page: 542 year: 2011 ident: 10.1016/S1002-0721(12)60374-3_bib13 article-title: First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxides publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.09.102 – volume: 30 start-page: 456 year: 2012 ident: 10.1016/S1002-0721(12)60374-3_bib2 article-title: Thermoelectric properties of YbxCo4Sb12 system publication-title: J. Rare Earths doi: 10.1016/S1002-0721(12)60072-6 – volume: 104 start-page: 135 year: 2011 ident: 10.1016/S1002-0721(12)60374-3_bib12 article-title: Seebeck coefficient of LnxCa1–xMnO3 perovskites in paramagnetic state publication-title: Appl. Phys. A doi: 10.1007/s00339-010-6081-6 – volume: 92 start-page: 182101 year: 2008 ident: 10.1016/S1002-0721(12)60374-3_bib21 article-title: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYby Co4Sb12 double-filled skutterudites publication-title: Appl. Phys. Lett. doi: 10.1063/1.2920210 – volume: 407 start-page: 1114 year: 2012 ident: 10.1016/S1002-0721(12)60374-3_bib10 article-title: Thermoelectric transport coefficients of n-doped CaTiO3, SrTiO3 and BaTiO3: A theoretical study publication-title: Phys. B doi: 10.1016/j.physb.2012.01.083 |
SSID | ssj0037590 |
Score | 2.0711377 |
Snippet | The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on... The rare earth Pr doped Ca1−xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on... The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on... |
SourceID | proquest crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 885 |
SubjectTerms | Bulk sampling CaMnO3 compound Carrier density Coefficients Doping Electrical resistivity Pr doping Rare earth metals rare earths Seebeck系数 thermoelectric properties Thermoelectricity Transport properties 复合系统 学习效果 微观结构 样品准备 电输运性质 载流子浓度 镨掺杂 |
Title | Effects of praseodymium doping on thermoelectric transport properties of CaMnO3 compound system |
URI | http://lib.cqvip.com/qk/84120X/201309/47286738.html https://dx.doi.org/10.1016/S1002-0721(12)60374-3 https://www.proquest.com/docview/1669847551 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1BOLQXVKBVAy1apB7ag4m9X7GPKCoKoNJDQeK2svejjUTsAMmBS397Z9Z2qlZCSFxXntFqZzVvVn7zBuATryQnjk3CfUgTKX2a5DqIxBIVoHR4o6vItrjU02t5fqNuNmDS98IQrbLL_W1Oj9m6Wxl1pzlazGajHyQeSupeGZbkAoFwE7a4KLQawNbJ2cX0sk_IYqyKVpSAyLZo8LeRp3USFz9n_Ev0kwiSWfjV1D_vEDyegqv_EndEo9M3sN2Vkeyk3ekObPh6F15N-ulte2BaWeIH1gS2uEeoatzjfLaaMxc7pFhTMyr95k07B2dm2bKXOcfvmwXRrX20npTf6u-CEfecRjCxVvv5LVyffr2aTJNumEJihc6XCb5EfColRzAKSgWruS09olMVvHTUJ1jZInc2rYK1heYukIS1H2cOH1DCjXPxDgZ1U_v3wFKsGQslpKUuOR1UbrlyssxKgS9tpewQ9tfnZxataIaRY57ThNEhyP5Aje1kyGkaxq1Z880oJoZiYjJuYkyMGMLx2qx3-YxB3kfL_HOhDGLFc6ZHfXQNRo3-oJS1b1YPJtO6QDjHKnP_5e4P4DWPMzWIqPYBBsv7lf-Ilc2yOoTN49_ZYXd__wDQ4vDG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6l4UAvqPShBlpYJA7twY29D8c-RhEoFEgPBYnbyt4HjdTYAZID_74zaztVKyEkrpZnZO2s5puRv_kG4JiXkhPHJuLOx5GULo6y1IvIEBWgsHijy8C2mKXTa_n9Rt30YNLNwhCtss39TU4P2bp9MmxPc7icz4c_STyU1L0SLMkFAuEr2JIKu70-bI3PzqezLiGLkcobUQIi26LB30Gexkl4-CXhX4OfSJDMwq-6ur1D8HgKrv5L3AGNTt_ATltGsnHzpbvQc9Vb2J5029vegW5kiR9Y7dnyHqGqto-L-XrBbJiQYnXFqPRb1M0enLlhq07mHN-vl0S3dsF6UlxWPwQj7jmtYGKN9vN7uD49uZpMo3aZQmREmq0i7ERcLCVHMPJKeZNyUzhEp9I7aWlOsDR5Zk1cemPylFtPEtZulFhsoIQdZeID9Ku6ch-BxVgz5kpIQ1NyqVeZ4crKIikEdtpKmQHsbc5PLxvRDC1HPKMNowOQ3YFq08qQ0zaM33rDN6OYaIqJTrgOMdFiAN82Zp3LZwyyLlr6nwulESueMz3qoqsxavQHpahcvX7QSZrmCOdYZe693P0hbE-vLi_0xdnsfB9e87Bfg0hrn6C_ul-7z1jlrMqD9hb_AZck8rU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+praseodymium+doping+on+thermoelectric+transport+properties+of+CaMnO3+compound+system&rft.jtitle=Journal+of+rare+earths&rft.au=ZHANG%2C+Feipeng&rft.au=NIU%2C+Baocheng&rft.au=ZHANG%2C+Kunshu&rft.au=ZHANG%2C+Xin&rft.date=2013-09-01&rft.pub=Elsevier+B.V&rft.issn=1002-0721&rft.eissn=2509-4963&rft.volume=31&rft.issue=9&rft.spage=885&rft.epage=890&rft_id=info:doi/10.1016%2FS1002-0721%2812%2960374-3&rft.externalDocID=S1002072112603743 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84120X%2F84120X.jpg |