LFP-Net: A deep learning framework to recognize human behavioral activities using brain STN-LFP signals
•Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for analysis of STN-LFP signals.•Evaluated the performance of the proposed classification method on human subjects with Parkinson’s disease. Rec...
Saved in:
Published in | Journal of neuroscience methods Vol. 335; p. 108621 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for analysis of STN-LFP signals.•Evaluated the performance of the proposed classification method on human subjects with Parkinson’s disease.
Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson’s disease (PD) when medication cannot effectively tackle patients’ motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients’ activities may optimize therapy while reducing the stimulation side effects and improving the battery life.
STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification.
Our experiments on ten PD patients performing three behavioral tasks including “button press”, “target reaching”, and “speech” show that the proposed approach obtains an average classification accuracy of ∼88 %.
Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters.
CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems. |
---|---|
AbstractList | Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson's disease (PD) when medication cannot effectively tackle patients' motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients' activities may optimize therapy while reducing the stimulation side effects and improving the battery life.BACKGROUNDRecognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson's disease (PD) when medication cannot effectively tackle patients' motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients' activities may optimize therapy while reducing the stimulation side effects and improving the battery life.STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification.METHODSTN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification.Our experiments on ten PD patients performing three behavioral tasks including "button press", "target reaching", and "speech" show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters.RESULTSOur experiments on ten PD patients performing three behavioral tasks including "button press", "target reaching", and "speech" show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters.CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems.CONCLUSIONSCNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems. •Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for analysis of STN-LFP signals.•Evaluated the performance of the proposed classification method on human subjects with Parkinson’s disease. Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson’s disease (PD) when medication cannot effectively tackle patients’ motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients’ activities may optimize therapy while reducing the stimulation side effects and improving the battery life. STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification. Our experiments on ten PD patients performing three behavioral tasks including “button press”, “target reaching”, and “speech” show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters. CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems. Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson's disease (PD) when medication cannot effectively tackle patients' motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients' activities may optimize therapy while reducing the stimulation side effects and improving the battery life. STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification. Our experiments on ten PD patients performing three behavioral tasks including "button press", "target reaching", and "speech" show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters. CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems. |
ArticleNumber | 108621 |
Author | Hebb, Adam O. Golshan, Hosein M. Mahoor, Mohammad H. |
Author_xml | – sequence: 1 givenname: Hosein M. surname: Golshan fullname: Golshan, Hosein M. email: hosein.golshanmojdehi@du.edu organization: ECE Department, University of Denver, Denver, CO, USA – sequence: 2 givenname: Adam O. orcidid: 0000-0002-9572-3847 surname: Hebb fullname: Hebb, Adam O. email: adam.hebb@aoh.md organization: Kaiser Hospital, Denver, CO, USA – sequence: 3 givenname: Mohammad H. orcidid: 0000-0001-8923-4660 surname: Mahoor fullname: Mahoor, Mohammad H. email: mmahoor@du.edu organization: ECE Department, University of Denver, Denver, CO, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32027889$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAURUVISSZp_0LQshtPJNmW5dBFQ8gXDGmhKXQnZOl5RhNbmkrylObXR8MkXXQTEDwQ59zFvSfo0HkHCJ1RMqeE8vP1fO1gGiGt5oyw3afgjB6gGRUNK3gjfh2iWQbrgrCGHKOTGNeEkKol_Agdl9lphGhnaLm4-V48QLrAl9gAbPAAKjjrlrgPaoQ_Pjzh5HEA7ZfOPgNeTaNyuIOV2lof1ICVTnZrk4WIp7gTu6Cswz8eH4qcjaNdOjXEj-hDnw98er2n6OfN9ePVXbH4dnt_dbkodMlFKmrSlIyRtqdKc1P1qiQ1mKYSwnRdS2velrVQtTBMc9EoUVHRU1YzI3Sj8ytP0ed97ib43xPEJEcbNQyDcuCnKFlZM17lIJHRs1d06kYwchPsqMJf-VZOBvge0MHHGKD_h1AidyvItXxbQe5WkPsVsvjlP1HbpJL1LuVuhvf1r3sdclFbC0FGbcFpMDbvkKTx9r2IF77vptA |
CitedBy_id | crossref_primary_10_1038_s41551_024_01280_w crossref_primary_10_3390_brainsci10110809 crossref_primary_10_3389_fpsyt_2023_1080260 crossref_primary_10_1016_j_nbd_2021_105372 crossref_primary_10_1109_TMRB_2021_3095361 crossref_primary_10_1016_j_neunet_2021_07_025 crossref_primary_10_1016_j_ipm_2022_102909 crossref_primary_10_1016_j_bspc_2021_102501 crossref_primary_10_3389_fnetp_2024_1356653 crossref_primary_10_1016_j_aei_2024_102893 crossref_primary_10_1016_j_jneumeth_2025_110431 crossref_primary_10_1093_bib_bbaa355 crossref_primary_10_1109_TBME_2021_3115799 crossref_primary_10_3389_fnhum_2023_1134599 crossref_primary_10_1002_mds_28513 crossref_primary_10_1016_j_clinph_2023_10_018 crossref_primary_10_3389_fnhum_2023_1111590 crossref_primary_10_1007_s00415_023_11873_1 crossref_primary_10_1007_s11571_024_10210_0 crossref_primary_10_3389_fnins_2021_637274 crossref_primary_10_1080_17434440_2024_2438309 crossref_primary_10_1371_journal_pcbi_1012247 crossref_primary_10_3233_JPD_225053 crossref_primary_10_1088_1741_2552_ac5d69 crossref_primary_10_1016_j_expneurol_2022_113993 crossref_primary_10_1152_jn_00055_2023 crossref_primary_10_1016_j_artmed_2021_102198 |
Cites_doi | 10.1016/j.jneumeth.2017.10.001 10.1016/j.patrec.2008.01.030 10.1002/ana.23951 10.1109/TNSRE.2010.2081377 10.1016/j.expneurol.2012.06.012 10.1088/1741-2560/8/3/036015 10.1007/978-3-319-09330-7_25 10.1016/j.neuroimage.2010.06.048 10.1016/j.brs.2014.09.017 10.1088/1741-2560/10/5/056005 10.1016/S1388-2457(02)00057-3 10.3390/brainsci6040057 10.1038/nn.3997 10.1088/1741-2560/4/2/R01 10.1109/TBME.2004.827086 10.1016/j.conb.2014.05.004 10.1111/j.1749-6632.2012.06650.x 10.1016/j.expneurol.2012.09.008 10.1109/TNSRE.2012.2183617 10.1109/TNSRE.2017.2754879 10.1093/brain/awf156 10.1227/NEU.0b013e3182676b91 10.1016/j.tins.2007.05.004 10.1109/TBME.2004.826698 10.1159/000098526 10.1109/TBME.2004.826702 10.1007/s00415-015-7790-8 10.1212/WNL.0b013e318203e7d0 10.1109/TBME.2010.2047015 10.1016/j.jneumeth.2004.02.017 10.1056/NEJMoa0907083 10.1117/1.JMI.3.4.044501 10.1007/BF00994018 10.1093/brain/awg267 10.1002/mds.20957 10.1002/mds.26241 10.1016/j.neuron.2011.08.023 10.1016/j.medengphy.2016.02.007 10.1016/j.nec.2013.08.006 10.1093/brain/awx010 10.1016/B978-0-12-741252-8.50010-8 10.1016/S0304-3940(03)00470-1 10.1145/1961189.1961199 10.1038/nrneurol.2014.59 10.1002/mds.26545 10.1016/j.neuroscience.2011.11.072 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jneumeth.2020.108621 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 32027889 10_1016_j_jneumeth_2020_108621 S0165027020300431 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS WUQ X7M ZGI NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c368t-50732209f1ac6d4fa305ed7488dbb91569358a58d2c687a8418f1252d8c7cc7c3 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Mon Jul 21 10:48:55 EDT 2025 Thu Apr 03 07:09:50 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Tue Jul 01 02:57:12 EDT 2025 Sun Apr 06 06:54:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Behavior classification Local field potential Time-frequency analysis Convolutional neural networks Deep brain stimulation |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-50732209f1ac6d4fa305ed7488dbb91569358a58d2c687a8418f1252d8c7cc7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9572-3847 0000-0001-8923-4660 |
PMID | 32027889 |
PQID | 2352641568 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2352641568 pubmed_primary_32027889 crossref_primary_10_1016_j_jneumeth_2020_108621 crossref_citationtrail_10_1016_j_jneumeth_2020_108621 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-04-00 2020-Apr-01 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Flint, Wright, Scheid, Slutzky (bib0090) 2013; 10 Rezaeilouyeh, Mollahosseini, Mahoor (bib0230) 2016; 3 Loukas, Brown (bib0200) 2004; 137 Hebb, Darvas, Miller (bib0140) 2012; 202 Little, Pogosyan, Neal, Zavala, Zrinzo, Hariz, Foltynie, Limousin, Ashkan, FitzGerald (bib0190) 2013; 74 Hammond, Bergman, Brown (bib0130) 2007; 30 Golshan, Hebb, Hanrahan, Nedrud, Mahoor (bib0115) 2017 Santaniello, Fiengo, Glielmo, Grill (bib0245) 2011; 19 Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0195) 2007; 4 Friston, Bastos, Pinotsis, Litvak (bib0100) 2015; 31 Yang, Sakhavi, Ang, Guan (bib0295) 2015 De Hemptinne, Swann, Ostrem, Ryapolova-Webb, San Luciano, Galifianakis (bib0065) 2015; 18 Sheikh, McFarland, Sarnacki, Wolpaw (bib0250) 2003; 345 Rezaei Tabar, Ugur (bib0225) 2016; 14 Bostanov (bib0040) 2004; 51 Darvas, Hebb (bib0060) 2014; 8 Krizhevsky, Sutskever, Hinton (bib0175) 2012 Mahlknecht, Limousin, Foltynie (bib0205) 2015; 262 Fisher, Velasco (bib0080) 2014; 10 Hebb, Zhang, Mahoor, Tsiokos, Matlack, Chizeck, Pouratian (bib0145) 2014; 25 Jia, Dong, Socher, Li, Li, Fei-Fei (bib0155) 2009 Tripoliti, Zrinzo, Martinez-Torres, Frost, Pinto, Foltynie, Holl, Petersen, Roughton, Hariz (bib0275) 2011; 76 . An, Kuang, Guo, Zhao, He (bib0015) 2014 Golshan, Hebb, Nedrud, Mahoor (bib0125) 2018 Silberstein, Kuhn, Kupsch, Trottenberg, Krauss, Wohrle (bib0255) 2003; 126 Kaper, Meinicke, Grossekathoefer, Lingner, Ritter (bib0160) 2004; 51 Niketeghad, Hebb, Nedrud, Hanrahan, Mahoor (bib0220) 2018; 26 Rosa, Arlotti, Ardolino, Cogiamanian, Marceglia, Di Fonzo (bib0235) 2015; 30 Zhuang, Truccolo, Varagas-Irwin, Donoghue (bib0305) 2010; 57 Deuschl, Herzog, Kleiner-Fisman, Kubu, Lozano, Lyons, Rodriguez-Oroz, Tamma, Troster, Vitek (bib0075) 2006; 21 Golshan, Hebb, Hanrahan, Nedrud, Mahoor (bib0120) 2018; 293 Tinkhauser, Pogosyan, Little, Beudel, Herz, Tan (bib0265) 2017; 140 Stanslaski, Afshar, Cong, Giftakis, Stypulkowski, Carlson, Linde, Ullestad, Avestruz, Denison (bib0260) 2012; 20 Abosch, Lanctin, Onaran, Eberly, Spaniol, Ince (bib0010) 2012; 71 Golshan, Hebb, Hanrahan, Nedrud, Mahoor (bib0110) 2016 Brocker, Swan, Turner, Gross, Tatter, Koop (bib0045) 2013; 239 Zaker, Dutta, Maurer, Zhang, Hanrahan, Hebb, Kovvali (bib0300) 2014 Niketeghad, Hebb, Nedrud, Hanrahan, Mahoor (bib0215) 2015 Bordini, Garg, Gallagher, Bell, Garell (bib0035) 2007; 85 Hanrahan, Nedrud, Davidson, Farris, Giroux, Haug, Mahoor, Silverman, Zhang, Hebb (bib0135) 2016; 6 Kingma, Ba (bib0170) 2014; 1412 Abosch, Lanctin, Onaran, Eberly, Spaniol, Ince (bib0005) 2012; 71 Giannicola, Rosa, Servello, Menghetti, Carrabba, Pacchetti, Zangaglia, Cogiamanian, Scelzo, Marceglia (bib0105) 2012; 237 Fleury, Pollak, Gere, Tommasi, Romito, Combescure, Bardinet, Chabardes, Momjian, Krainik (bib0085) 2016; 31 Kent, Swan, Brocker, Turner, Gross, Grill (bib0165) 2015; 8 Hecht-Nielsen (bib0150) 1992 Blankertz, Lemm, Treder, Haufe, Müller (bib0030) 2011; 56 Follett, Weaver, Stern, Hur, Harris, Luo, Marks, Rothlind, Sagher, Moy, Pahwa (bib0095) 2010; 362 Li, Guan, Li, Chin (bib0180) 2008; 29 Williams, Tijssen, Van Bruggen, Bosch, Insola, Di Lazzaro, Mazzone, Oliviero, Quartarone, Speelman (bib0280) 2002; 125 Treder, Blankertz (bib0270) 2010; 6 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib0285) 2002; 113 Cortes, Vapnik (bib0055) 1995; 20 Chang, Lin (bib0050) 2011; 2 Millán, Renkens, Mourino, Gerstner (bib0210) 2004; 51 Little, Brown (bib0185) 2012; 1265 Wulsin, Gupta, Mani, Blanco, Litt (bib0290) 2011; 8 Arlotti, Rossi, Rosa, Marceglia, Priori (bib0025) 2016; 38 Rosin, Slovik, Mitelman, Rivlin-Etzion, Haber, Israel, Vaadia, Bergman (bib0240) 2011; 72 Demšar (bib0070) 2006; 7 Tinkhauser (10.1016/j.jneumeth.2020.108621_bib0265) 2017; 140 Golshan (10.1016/j.jneumeth.2020.108621_bib0115) 2017 Rosa (10.1016/j.jneumeth.2020.108621_bib0235) 2015; 30 Follett (10.1016/j.jneumeth.2020.108621_bib0095) 2010; 362 Sheikh (10.1016/j.jneumeth.2020.108621_bib0250) 2003; 345 Little (10.1016/j.jneumeth.2020.108621_bib0190) 2013; 74 Yang (10.1016/j.jneumeth.2020.108621_bib0295) 2015 Arlotti (10.1016/j.jneumeth.2020.108621_bib0025) 2016; 38 Deuschl (10.1016/j.jneumeth.2020.108621_bib0075) 2006; 21 Stanslaski (10.1016/j.jneumeth.2020.108621_bib0260) 2012; 20 Hebb (10.1016/j.jneumeth.2020.108621_bib0140) 2012; 202 Giannicola (10.1016/j.jneumeth.2020.108621_bib0105) 2012; 237 Bordini (10.1016/j.jneumeth.2020.108621_bib0035) 2007; 85 An (10.1016/j.jneumeth.2020.108621_bib0015) 2014 Rezaeilouyeh (10.1016/j.jneumeth.2020.108621_bib0230) 2016; 3 Golshan (10.1016/j.jneumeth.2020.108621_bib0125) 2018 Silberstein (10.1016/j.jneumeth.2020.108621_bib0255) 2003; 126 Little (10.1016/j.jneumeth.2020.108621_bib0185) 2012; 1265 Kent (10.1016/j.jneumeth.2020.108621_bib0165) 2015; 8 Wulsin (10.1016/j.jneumeth.2020.108621_bib0290) 2011; 8 Abosch (10.1016/j.jneumeth.2020.108621_bib0005) 2012; 71 Darvas (10.1016/j.jneumeth.2020.108621_bib0060) 2014; 8 Zaker (10.1016/j.jneumeth.2020.108621_bib0300) 2014 Treder (10.1016/j.jneumeth.2020.108621_bib0270) 2010; 6 Wolpaw (10.1016/j.jneumeth.2020.108621_bib0285) 2002; 113 Hebb (10.1016/j.jneumeth.2020.108621_bib0145) 2014; 25 Zhuang (10.1016/j.jneumeth.2020.108621_bib0305) 2010; 57 Chang (10.1016/j.jneumeth.2020.108621_bib0050) 2011; 2 Golshan (10.1016/j.jneumeth.2020.108621_bib0120) 2018; 293 Niketeghad (10.1016/j.jneumeth.2020.108621_bib0215) 2015 Williams (10.1016/j.jneumeth.2020.108621_bib0280) 2002; 125 Blankertz (10.1016/j.jneumeth.2020.108621_bib0030) 2011; 56 Cortes (10.1016/j.jneumeth.2020.108621_bib0055) 1995; 20 Fleury (10.1016/j.jneumeth.2020.108621_bib0085) 2016; 31 Mahlknecht (10.1016/j.jneumeth.2020.108621_bib0205) 2015; 262 Kingma (10.1016/j.jneumeth.2020.108621_bib0170) 2014; 1412 Lotte (10.1016/j.jneumeth.2020.108621_bib0195) 2007; 4 Kaper (10.1016/j.jneumeth.2020.108621_bib0160) 2004; 51 Demšar (10.1016/j.jneumeth.2020.108621_bib0070) 2006; 7 Golshan (10.1016/j.jneumeth.2020.108621_bib0110) 2016 Jia (10.1016/j.jneumeth.2020.108621_bib0155) 2009 10.1016/j.jneumeth.2020.108621_bib0020 Hanrahan (10.1016/j.jneumeth.2020.108621_bib0135) 2016; 6 Fisher (10.1016/j.jneumeth.2020.108621_bib0080) 2014; 10 Rosin (10.1016/j.jneumeth.2020.108621_bib0240) 2011; 72 Krizhevsky (10.1016/j.jneumeth.2020.108621_bib0175) 2012 Friston (10.1016/j.jneumeth.2020.108621_bib0100) 2015; 31 Tripoliti (10.1016/j.jneumeth.2020.108621_bib0275) 2011; 76 Niketeghad (10.1016/j.jneumeth.2020.108621_bib0220) 2018; 26 Santaniello (10.1016/j.jneumeth.2020.108621_bib0245) 2011; 19 Bostanov (10.1016/j.jneumeth.2020.108621_bib0040) 2004; 51 Hammond (10.1016/j.jneumeth.2020.108621_bib0130) 2007; 30 Hecht-Nielsen (10.1016/j.jneumeth.2020.108621_bib0150) 1992 Brocker (10.1016/j.jneumeth.2020.108621_bib0045) 2013; 239 De Hemptinne (10.1016/j.jneumeth.2020.108621_bib0065) 2015; 18 Flint (10.1016/j.jneumeth.2020.108621_bib0090) 2013; 10 Rezaei Tabar (10.1016/j.jneumeth.2020.108621_bib0225) 2016; 14 Li (10.1016/j.jneumeth.2020.108621_bib0180) 2008; 29 Loukas (10.1016/j.jneumeth.2020.108621_bib0200) 2004; 137 Abosch (10.1016/j.jneumeth.2020.108621_bib0010) 2012; 71 Millán (10.1016/j.jneumeth.2020.108621_bib0210) 2004; 51 |
References_xml | – volume: 30 start-page: 357 year: 2007 end-page: 364 ident: bib0130 article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments publication-title: Trends Neurosci. – volume: 25 start-page: 187 year: 2014 end-page: 204 ident: bib0145 article-title: Creating the feedback loop publication-title: Neurosurg. Clin. N. Am. – volume: 19 start-page: 15 year: 2011 end-page: 24 ident: bib0245 article-title: Closed-loop control of deepbrain stimulation: a simulation study publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 6 year: 2010 ident: bib0270 article-title: Overt attention and visual speller design in an ERP-based brain-computer interface publication-title: Behav. Brain Funct. – volume: 10 start-page: 261 year: 2014 end-page: 270 ident: bib0080 article-title: Electrical brain stimulation for epilepsy publication-title: Nat. Rev. Neurol. – volume: 202 start-page: 218 year: 2012 end-page: 233 ident: bib0140 article-title: Transient and state modulation of beta power in human subthalamic nucleus during speech production and finger movement publication-title: Neuroscience – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0070 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 8 year: 2014 ident: bib0060 article-title: Task specific inter-hemispheric coupling in human subthalamic nuclei publication-title: Front. Hum. Neurosci. – volume: 126 start-page: 2597 year: 2003 end-page: 2608 ident: bib0255 article-title: Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia publication-title: Brain – start-page: 1097 year: 2012 end-page: 1105 ident: bib0175 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 345 start-page: 89 year: 2003 end-page: 92 ident: bib0250 article-title: Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans publication-title: Neurosci. Lett. – start-page: 4720 year: 2018 end-page: 4723 ident: bib0125 article-title: Studying the effects of deep brain stimulation and medication on the dynamics of STN-LFP signals for human behavior analysis publication-title: 40 – volume: 71 start-page: 804 year: 2012 end-page: 814 ident: bib0010 article-title: Long-term recordings of local field potentials from implanted deep brain stimulation electrodes publication-title: Neurosurgery – volume: 26 year: 2018 ident: bib0220 article-title: Motor task detection from human STN using interhemispheric connectivity publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 137 start-page: 193 year: 2004 end-page: 205 ident: bib0200 article-title: Online prediction of self-paced hand-movements from subthalamic activity using neural networks in Parkinson’s disease publication-title: J. Neurosci. Methods – volume: 14 year: 2016 ident: bib0225 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. – volume: 51 start-page: 1026 year: 2004 end-page: 1033 ident: bib0210 article-title: Non-invasive brain-actuated control of a mobile robot by human EEG publication-title: IEEE Trans. Biomd. Eng. – volume: 38 start-page: 498 year: 2016 end-page: 505 ident: bib0025 article-title: An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson’s disease publication-title: Med. Eng. Phys. – volume: 293 start-page: 254 year: 2018 end-page: 263 ident: bib0120 article-title: A hierarchical structure for human behavior classification using STN local field potentials publication-title: J. Neurosci. Methods – volume: 20 start-page: 410 year: 2012 end-page: 421 ident: bib0260 article-title: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib0285 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 2 year: 2011 ident: bib0050 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – start-page: 208 year: 2014 end-page: 212 ident: bib0300 article-title: Adaptive learning of behavioral tasks for patients with Parkinson’s disease using signals from deep brain stimulation publication-title: Asilomar Conference on Signals, Systems and Computers – start-page: 2620 year: 2015 end-page: 2623 ident: bib0295 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification publication-title: 37 – volume: 29 start-page: 1285 year: 2008 end-page: 1294 ident: bib0180 article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system publication-title: Pattern Recognit. Lett. – volume: 76 start-page: 80 year: 2011 end-page: 86 ident: bib0275 article-title: Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease publication-title: Neurology – volume: 140 start-page: 1053 year: 2017 end-page: 1067 ident: bib0265 article-title: The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease publication-title: Brain – start-page: 65 year: 1992 end-page: 93 ident: bib0150 article-title: Theory of the backpropagation neural network publication-title: Neural Netw. Percept. – volume: 8 start-page: 42 year: 2015 end-page: 56 ident: bib0165 article-title: Measurement of evoked potentials during thalamic deep brain stimulation publication-title: Brain Stimul. – volume: 362 start-page: 2077 year: 2010 end-page: 2091 ident: bib0095 article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease publication-title: N. Engl. J. Med. – volume: 1412 year: 2014 ident: bib0170 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv – volume: 51 start-page: 1057 year: 2004 end-page: 1061 ident: bib0040 article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram publication-title: IEEE Trans. Biomed. Eng. – volume: 262 start-page: 2583 year: 2015 end-page: 2595 ident: bib0205 article-title: Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments publication-title: J. Neurol. – start-page: 248 year: 2009 end-page: 255 ident: bib0155 article-title: Imagenet: a large-scale hierarchical image database publication-title: IEEE Conference on CVPR – volume: 57 start-page: 1774 year: 2010 end-page: 1784 ident: bib0305 article-title: Decoding 3-Dreach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex publication-title: IEEE Trans. Biomed. Eng. – start-page: 979 year: 2017 end-page: 983 ident: bib0115 article-title: An FFT-based synchronization approach to recognize human behaviors using STN-LFP signal publication-title: 42 – volume: 3 year: 2016 ident: bib0230 article-title: Microscopic medical image classification framework via deep learning and shearlet transform publication-title: J. Med. Imaging – volume: 56 start-page: 814 year: 2011 end-page: 825 ident: bib0030 article-title: Single-trial analysis and classification of ERP components—a tutorial publication-title: Neuroimage – volume: 21 start-page: 219 year: 2006 end-page: 237 ident: bib0075 article-title: Deep brain stimulation: postoperative issues publication-title: Mov. Disord. – volume: 18 start-page: 779 year: 2015 end-page: 786 ident: bib0065 article-title: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease publication-title: Nat. Neurosci. – volume: 10 year: 2013 ident: bib0090 article-title: Long term, stable brain machine interface performance using local field potentials and multiunit spikes publication-title: J. Neural Eng. – volume: 1265 start-page: 9 year: 2012 end-page: 24 ident: bib0185 article-title: What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? publication-title: Ann. N. Y. Acad. Sci. – volume: 8 year: 2011 ident: bib0290 article-title: Modeling electroencephalography waveforms with semi supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. – volume: 71 start-page: 804 year: 2012 end-page: 814 ident: bib0005 article-title: Long-termrecordings of local field potentials from implanted deep brain stimulation electrodes publication-title: Neurosurgery – volume: 72 start-page: 370 year: 2011 end-page: 384 ident: bib0240 article-title: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism publication-title: Neuron – volume: 31 start-page: 1 year: 2015 end-page: 6 ident: bib0100 article-title: LFP and oscillations-what do they tell us? publication-title: Curr. Opin. Neurobiol. – volume: 51 start-page: 1073 year: 2004 end-page: 1076 ident: bib0160 article-title: BCIcompetition 2003—data set IIb: support vector machines for the P300 speller paradigm publication-title: IEEE Trans. Biomed. Eng. – volume: 74 start-page: 449 year: 2013 end-page: 457 ident: bib0190 article-title: Adaptive deep brain stimulation in advanced Parkinson disease publication-title: Ann. Neurol. – volume: 85 start-page: 113 year: 2007 end-page: 120 ident: bib0035 article-title: Neuropsychological effects of bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease publication-title: Stereotact. Funct. Neurosurg. – volume: 6 year: 2016 ident: bib0135 article-title: Long-term task-and dopamine-dependent dynamics of subthalamic local field potentials in Parkinson’s disease publication-title: Brain Sci. – year: 2016 ident: bib0110 article-title: A multiple kernel learning approach for human behavioral task classification using STN-LFP signal publication-title: Engineering in Medicine and Biology Society (EMBC), 38 – volume: 239 start-page: 60 year: 2013 end-page: 67 ident: bib0045 article-title: Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease publication-title: Exp. Neurol. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0055 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 237 start-page: 312 year: 2012 end-page: 317 ident: bib0105 article-title: Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease publication-title: Exp. Neurol. – reference: . – volume: 4 start-page: 1 year: 2007 end-page: 13 ident: bib0195 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – start-page: 5553 year: 2015 end-page: 5556 ident: bib0215 article-title: Motor task event detection using subthalamic nucleus local field potentials publication-title: 37 – volume: 30 start-page: 1003 year: 2015 end-page: 1005 ident: bib0235 article-title: Adaptive deep brain stimulation in a freely moving Parkinsonian Patient publication-title: Mov. Disord. – volume: 125 start-page: 1558 year: 2002 end-page: 1569 ident: bib0280 article-title: Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans publication-title: Brain J. Neurol. – start-page: 203 year: 2014 end-page: 210 ident: bib0015 article-title: A deep learning method for classification of EEG data based on motor imagery publication-title: Intelligent Comput. Bioinf. – volume: 31 start-page: 1389 year: 2016 end-page: 1397 ident: bib0085 article-title: Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait publication-title: Mov. Disord. – volume: 293 start-page: 254 year: 2018 ident: 10.1016/j.jneumeth.2020.108621_bib0120 article-title: A hierarchical structure for human behavior classification using STN local field potentials publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.10.001 – volume: 29 start-page: 1285 issue: 9 year: 2008 ident: 10.1016/j.jneumeth.2020.108621_bib0180 article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.01.030 – volume: 74 start-page: 449 issue: 3 year: 2013 ident: 10.1016/j.jneumeth.2020.108621_bib0190 article-title: Adaptive deep brain stimulation in advanced Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.23951 – volume: 19 start-page: 15 issue: 1 year: 2011 ident: 10.1016/j.jneumeth.2020.108621_bib0245 article-title: Closed-loop control of deepbrain stimulation: a simulation study publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2081377 – volume: 237 start-page: 312 issue: 2 year: 2012 ident: 10.1016/j.jneumeth.2020.108621_bib0105 article-title: Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2012.06.012 – volume: 8 issue: 3 year: 2011 ident: 10.1016/j.jneumeth.2020.108621_bib0290 article-title: Modeling electroencephalography waveforms with semi supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036015 – volume: 14 issue: 1 year: 2016 ident: 10.1016/j.jneumeth.2020.108621_bib0225 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. – start-page: 203 year: 2014 ident: 10.1016/j.jneumeth.2020.108621_bib0015 article-title: A deep learning method for classification of EEG data based on motor imagery publication-title: Intelligent Comput. Bioinf. doi: 10.1007/978-3-319-09330-7_25 – volume: 56 start-page: 814 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2020.108621_bib0030 article-title: Single-trial analysis and classification of ERP components—a tutorial publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.048 – volume: 8 start-page: 42 year: 2015 ident: 10.1016/j.jneumeth.2020.108621_bib0165 article-title: Measurement of evoked potentials during thalamic deep brain stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.09.017 – volume: 10 year: 2013 ident: 10.1016/j.jneumeth.2020.108621_bib0090 article-title: Long term, stable brain machine interface performance using local field potentials and multiunit spikes publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056005 – start-page: 979 year: 2017 ident: 10.1016/j.jneumeth.2020.108621_bib0115 article-title: An FFT-based synchronization approach to recognize human behaviors using STN-LFP signal publication-title: 42nd IEEE International Conference on ICASSP – volume: 8 issue: September year: 2014 ident: 10.1016/j.jneumeth.2020.108621_bib0060 article-title: Task specific inter-hemispheric coupling in human subthalamic nuclei publication-title: Front. Hum. Neurosci. – volume: 113 start-page: 767 year: 2002 ident: 10.1016/j.jneumeth.2020.108621_bib0285 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 6 issue: 4 year: 2016 ident: 10.1016/j.jneumeth.2020.108621_bib0135 article-title: Long-term task-and dopamine-dependent dynamics of subthalamic local field potentials in Parkinson’s disease publication-title: Brain Sci. doi: 10.3390/brainsci6040057 – volume: 18 start-page: 779 year: 2015 ident: 10.1016/j.jneumeth.2020.108621_bib0065 article-title: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease publication-title: Nat. Neurosci. doi: 10.1038/nn.3997 – volume: 4 start-page: 1 issue: 2 year: 2007 ident: 10.1016/j.jneumeth.2020.108621_bib0195 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – volume: 51 start-page: 1026 issue: 6 year: 2004 ident: 10.1016/j.jneumeth.2020.108621_bib0210 article-title: Non-invasive brain-actuated control of a mobile robot by human EEG publication-title: IEEE Trans. Biomd. Eng. doi: 10.1109/TBME.2004.827086 – volume: 31 start-page: 1 year: 2015 ident: 10.1016/j.jneumeth.2020.108621_bib0100 article-title: LFP and oscillations-what do they tell us? publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.05.004 – volume: 1265 start-page: 9 year: 2012 ident: 10.1016/j.jneumeth.2020.108621_bib0185 article-title: What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2012.06650.x – volume: 239 start-page: 60 year: 2013 ident: 10.1016/j.jneumeth.2020.108621_bib0045 article-title: Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2012.09.008 – volume: 20 start-page: 410 year: 2012 ident: 10.1016/j.jneumeth.2020.108621_bib0260 article-title: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2183617 – volume: 26 issue: 1 year: 2018 ident: 10.1016/j.jneumeth.2020.108621_bib0220 article-title: Motor task detection from human STN using interhemispheric connectivity publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2754879 – volume: 125 start-page: 1558 year: 2002 ident: 10.1016/j.jneumeth.2020.108621_bib0280 article-title: Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans publication-title: Brain J. Neurol. doi: 10.1093/brain/awf156 – start-page: 4720 year: 2018 ident: 10.1016/j.jneumeth.2020.108621_bib0125 article-title: Studying the effects of deep brain stimulation and medication on the dynamics of STN-LFP signals for human behavior analysis publication-title: 40th IEEE International Conference on Engineering in Medicine and Biology Society (EMBC) – volume: 71 start-page: 804 year: 2012 ident: 10.1016/j.jneumeth.2020.108621_bib0010 article-title: Long-term recordings of local field potentials from implanted deep brain stimulation electrodes publication-title: Neurosurgery doi: 10.1227/NEU.0b013e3182676b91 – volume: 30 start-page: 357 year: 2007 ident: 10.1016/j.jneumeth.2020.108621_bib0130 article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.05.004 – volume: 51 start-page: 1073 issue: 6 year: 2004 ident: 10.1016/j.jneumeth.2020.108621_bib0160 article-title: BCIcompetition 2003—data set IIb: support vector machines for the P300 speller paradigm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826698 – volume: 85 start-page: 113 year: 2007 ident: 10.1016/j.jneumeth.2020.108621_bib0035 article-title: Neuropsychological effects of bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000098526 – volume: 51 start-page: 1057 issue: 6 year: 2004 ident: 10.1016/j.jneumeth.2020.108621_bib0040 article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826702 – start-page: 5553 year: 2015 ident: 10.1016/j.jneumeth.2020.108621_bib0215 article-title: Motor task event detection using subthalamic nucleus local field potentials publication-title: 37th IEEE International Conference on Engineering in Medicine and Biology Society (EMBC) – volume: 262 start-page: 2583 year: 2015 ident: 10.1016/j.jneumeth.2020.108621_bib0205 article-title: Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments publication-title: J. Neurol. doi: 10.1007/s00415-015-7790-8 – volume: 76 start-page: 80 year: 2011 ident: 10.1016/j.jneumeth.2020.108621_bib0275 article-title: Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e318203e7d0 – year: 2016 ident: 10.1016/j.jneumeth.2020.108621_bib0110 article-title: A multiple kernel learning approach for human behavioral task classification using STN-LFP signal publication-title: Engineering in Medicine and Biology Society (EMBC), 38th IEEE International Conference on – volume: 57 start-page: 1774 issue: 7 year: 2010 ident: 10.1016/j.jneumeth.2020.108621_bib0305 article-title: Decoding 3-Dreach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2047015 – volume: 137 start-page: 193 year: 2004 ident: 10.1016/j.jneumeth.2020.108621_bib0200 article-title: Online prediction of self-paced hand-movements from subthalamic activity using neural networks in Parkinson’s disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2004.02.017 – volume: 71 start-page: 804 issue: 4 year: 2012 ident: 10.1016/j.jneumeth.2020.108621_bib0005 article-title: Long-termrecordings of local field potentials from implanted deep brain stimulation electrodes publication-title: Neurosurgery doi: 10.1227/NEU.0b013e3182676b91 – start-page: 1097 year: 2012 ident: 10.1016/j.jneumeth.2020.108621_bib0175 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 362 start-page: 2077 year: 2010 ident: 10.1016/j.jneumeth.2020.108621_bib0095 article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0907083 – volume: 3 issue: 4 year: 2016 ident: 10.1016/j.jneumeth.2020.108621_bib0230 article-title: Microscopic medical image classification framework via deep learning and shearlet transform publication-title: J. Med. Imaging doi: 10.1117/1.JMI.3.4.044501 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jneumeth.2020.108621_bib0055 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 126 start-page: 2597 year: 2003 ident: 10.1016/j.jneumeth.2020.108621_bib0255 article-title: Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia publication-title: Brain doi: 10.1093/brain/awg267 – volume: 6 issue: 28 year: 2010 ident: 10.1016/j.jneumeth.2020.108621_bib0270 article-title: Overt attention and visual speller design in an ERP-based brain-computer interface publication-title: Behav. Brain Funct. – volume: 21 start-page: 219 year: 2006 ident: 10.1016/j.jneumeth.2020.108621_bib0075 article-title: Deep brain stimulation: postoperative issues publication-title: Mov. Disord. doi: 10.1002/mds.20957 – volume: 30 start-page: 1003 year: 2015 ident: 10.1016/j.jneumeth.2020.108621_bib0235 article-title: Adaptive deep brain stimulation in a freely moving Parkinsonian Patient publication-title: Mov. Disord. doi: 10.1002/mds.26241 – volume: 72 start-page: 370 year: 2011 ident: 10.1016/j.jneumeth.2020.108621_bib0240 article-title: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism publication-title: Neuron doi: 10.1016/j.neuron.2011.08.023 – volume: 38 start-page: 498 year: 2016 ident: 10.1016/j.jneumeth.2020.108621_bib0025 article-title: An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson’s disease publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.02.007 – volume: 25 start-page: 187 year: 2014 ident: 10.1016/j.jneumeth.2020.108621_bib0145 article-title: Creating the feedback loop publication-title: Neurosurg. Clin. N. Am. doi: 10.1016/j.nec.2013.08.006 – volume: 1412 issue: 6980 year: 2014 ident: 10.1016/j.jneumeth.2020.108621_bib0170 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv – volume: 140 start-page: 1053 year: 2017 ident: 10.1016/j.jneumeth.2020.108621_bib0265 article-title: The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awx010 – start-page: 2620 year: 2015 ident: 10.1016/j.jneumeth.2020.108621_bib0295 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification publication-title: 37th IEEE International Conference on Engineering in Medicine and Biology Society (EMBC) – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.jneumeth.2020.108621_bib0070 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – start-page: 65 year: 1992 ident: 10.1016/j.jneumeth.2020.108621_bib0150 article-title: Theory of the backpropagation neural network publication-title: Neural Netw. Percept. doi: 10.1016/B978-0-12-741252-8.50010-8 – volume: 345 start-page: 89 issue: 2 year: 2003 ident: 10.1016/j.jneumeth.2020.108621_bib0250 article-title: Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(03)00470-1 – volume: 2 issue: 3 year: 2011 ident: 10.1016/j.jneumeth.2020.108621_bib0050 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 10 start-page: 261 year: 2014 ident: 10.1016/j.jneumeth.2020.108621_bib0080 article-title: Electrical brain stimulation for epilepsy publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2014.59 – volume: 31 start-page: 1389 year: 2016 ident: 10.1016/j.jneumeth.2020.108621_bib0085 article-title: Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait publication-title: Mov. Disord. doi: 10.1002/mds.26545 – start-page: 248 year: 2009 ident: 10.1016/j.jneumeth.2020.108621_bib0155 article-title: Imagenet: a large-scale hierarchical image database publication-title: IEEE Conference on CVPR – start-page: 208 year: 2014 ident: 10.1016/j.jneumeth.2020.108621_bib0300 article-title: Adaptive learning of behavioral tasks for patients with Parkinson’s disease using signals from deep brain stimulation publication-title: Asilomar Conference on Signals, Systems and Computers – ident: 10.1016/j.jneumeth.2020.108621_bib0020 – volume: 202 start-page: 218 year: 2012 ident: 10.1016/j.jneumeth.2020.108621_bib0140 article-title: Transient and state modulation of beta power in human subthalamic nucleus during speech production and finger movement publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.11.072 |
SSID | ssj0004906 |
Score | 2.455467 |
Snippet | •Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for... Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108621 |
SubjectTerms | Behavior classification Convolutional neural networks Deep brain stimulation Local field potential Time-frequency analysis |
Title | LFP-Net: A deep learning framework to recognize human behavioral activities using brain STN-LFP signals |
URI | https://dx.doi.org/10.1016/j.jneumeth.2020.108621 https://www.ncbi.nlm.nih.gov/pubmed/32027889 https://www.proquest.com/docview/2352641568 |
Volume | 335 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CAqWXkkcf20eYQunNWdsrr6XeltBl-8hSSAK5CVmSlyytd2m8hfaQ354ZWU7aQ8ih4IuNZQnNaDTj-UYfwDvnK2FoY0hsWlWJEKUhO1irRDknVW3HLiu4dvhkPp6di88XxcUWHPe1MAyrjLa_s-nBWscnwzibw_Xl5fCUC3FSLqdK-dSoUEtNfbGWH13fwTyECvya_DLnK9O_qoSXR8vGb5ipmeLEvCMdyrP7Nqj7HNCwEU134Un0IHHSDXIPtnyzDweThqLnH7_xPQZMZ_hZvg-PTmLq_AAWX6ffkrlvP-AEnfdrjHwRC6x7fBa2K4yAoj8eA3sf3pXxI5dA_AoHsCKj5RdYMb0Enp7NE_o2MhKEdPkpnE8_nh3PksiykNjRWLYJOYS0qFNVZ4ZEI2pDFsC7kha2qypF4R1nSk0hXW7HsjRSZLImryh30paWrtEz2G5WjX8BWKrCZSYvRko6ChSFtCatpRTGibySpR1A0U-ttvEIcmbC-K57rNlS9yLRLBLdiWQAw9t26-4QjgdbqF5y-h910rRTPNj2bS9qTWuNEyim8avNlc6ZTIAjXjmA550O3I6HeehLKdXL_-j5FTzmuw4Y9Bq2258b_4Z8nrY6DEp9CDuTT19m8xvzcf-5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VRQIuqLQ8QnkMEuLmxnbW8S63qCIKkERITaXeVuvdddQInKh1kNoDv50Ze93CoeoBySfba688s7Mznm_mA_jgfCEMbQyRjYsiEiI3ZAdLFSnnpCrt0CUZ1w7P5sPJqfh6lp3twHFXC8OwymD7W5veWOtwph--Zn9zft4_4UKcmMupYu4axbXUDwQtX6YxOPp9i_MQqiHY5Ls5YRn_VSa8OlpVfstUzRQopi3rUJrctUPd5YE2O9F4D54EFxJH7Syfwo6v9uFgVFH4_PMKP2ID6mz-lu_Dw1nInR_Acjr-Hs19_QlH6LzfYCCMWGLZAbSwXmNAFF17bOj78LaOH7kG4lfTgRUZLr_Egvkl8GQxj-jZyFAQUuZncDr-vDieRIFmIbKDoawj8ghpVceqTAzJRpSGTIB3Oa1sVxSK4jtOlZpMutQOZW6kSGRJblHqpM0tHYPnsFutK_8SMFeZS0yaDZR0FCkKaU1cSimME2khc9uDrPu02oYe5EyF8UN3YLOV7kSiWSS6FUkP-jfjNm0XjntHqE5y-h990rRV3Dv2fSdqTYuNMyim8uvtpU6ZTYBDXtmDF60O3MyHiehzKdWr_3jzO3g0Wcymevpl_u0QHvOVFiX0Gnbri61_Qw5QXbxtFPwPvhkBVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LFP-Net%3A+A+deep+learning+framework+to+recognize+human+behavioral+activities+using+brain+STN-LFP+signals&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Golshan%2C+Hosein+M.&rft.au=Hebb%2C+Adam+O.&rft.au=Mahoor%2C+Mohammad+H.&rft.date=2020-04-01&rft.issn=0165-0270&rft.volume=335&rft.spage=108621&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2020_108621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |