LFP-Net: A deep learning framework to recognize human behavioral activities using brain STN-LFP signals

•Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for analysis of STN-LFP signals.•Evaluated the performance of the proposed classification method on human subjects with Parkinson’s disease. Rec...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 335; p. 108621
Main Authors Golshan, Hosein M., Hebb, Adam O., Mahoor, Mohammad H.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for analysis of STN-LFP signals.•Evaluated the performance of the proposed classification method on human subjects with Parkinson’s disease. Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson’s disease (PD) when medication cannot effectively tackle patients’ motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients’ activities may optimize therapy while reducing the stimulation side effects and improving the battery life. STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification. Our experiments on ten PD patients performing three behavioral tasks including “button press”, “target reaching”, and “speech” show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters. CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems.
AbstractList Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson's disease (PD) when medication cannot effectively tackle patients' motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients' activities may optimize therapy while reducing the stimulation side effects and improving the battery life.BACKGROUNDRecognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson's disease (PD) when medication cannot effectively tackle patients' motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients' activities may optimize therapy while reducing the stimulation side effects and improving the battery life.STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification.METHODSTN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification.Our experiments on ten PD patients performing three behavioral tasks including "button press", "target reaching", and "speech" show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters.RESULTSOur experiments on ten PD patients performing three behavioral tasks including "button press", "target reaching", and "speech" show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters.CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems.CONCLUSIONSCNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems.
•Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for analysis of STN-LFP signals.•Evaluated the performance of the proposed classification method on human subjects with Parkinson’s disease. Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson’s disease (PD) when medication cannot effectively tackle patients’ motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients’ activities may optimize therapy while reducing the stimulation side effects and improving the battery life. STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification. Our experiments on ten PD patients performing three behavioral tasks including “button press”, “target reaching”, and “speech” show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters. CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems.
Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson's disease (PD) when medication cannot effectively tackle patients' motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients' activities may optimize therapy while reducing the stimulation side effects and improving the battery life. STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification. Our experiments on ten PD patients performing three behavioral tasks including "button press", "target reaching", and "speech" show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters. CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems.
ArticleNumber 108621
Author Hebb, Adam O.
Golshan, Hosein M.
Mahoor, Mohammad H.
Author_xml – sequence: 1
  givenname: Hosein M.
  surname: Golshan
  fullname: Golshan, Hosein M.
  email: hosein.golshanmojdehi@du.edu
  organization: ECE Department, University of Denver, Denver, CO, USA
– sequence: 2
  givenname: Adam O.
  orcidid: 0000-0002-9572-3847
  surname: Hebb
  fullname: Hebb, Adam O.
  email: adam.hebb@aoh.md
  organization: Kaiser Hospital, Denver, CO, USA
– sequence: 3
  givenname: Mohammad H.
  orcidid: 0000-0001-8923-4660
  surname: Mahoor
  fullname: Mahoor, Mohammad H.
  email: mmahoor@du.edu
  organization: ECE Department, University of Denver, Denver, CO, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32027889$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAURUVISSZp_0LQshtPJNmW5dBFQ8gXDGmhKXQnZOl5RhNbmkrylObXR8MkXXQTEDwQ59zFvSfo0HkHCJ1RMqeE8vP1fO1gGiGt5oyw3afgjB6gGRUNK3gjfh2iWQbrgrCGHKOTGNeEkKol_Agdl9lphGhnaLm4-V48QLrAl9gAbPAAKjjrlrgPaoQ_Pjzh5HEA7ZfOPgNeTaNyuIOV2lof1ICVTnZrk4WIp7gTu6Cswz8eH4qcjaNdOjXEj-hDnw98er2n6OfN9ePVXbH4dnt_dbkodMlFKmrSlIyRtqdKc1P1qiQ1mKYSwnRdS2velrVQtTBMc9EoUVHRU1YzI3Sj8ytP0ed97ib43xPEJEcbNQyDcuCnKFlZM17lIJHRs1d06kYwchPsqMJf-VZOBvge0MHHGKD_h1AidyvItXxbQe5WkPsVsvjlP1HbpJL1LuVuhvf1r3sdclFbC0FGbcFpMDbvkKTx9r2IF77vptA
CitedBy_id crossref_primary_10_1038_s41551_024_01280_w
crossref_primary_10_3390_brainsci10110809
crossref_primary_10_3389_fpsyt_2023_1080260
crossref_primary_10_1016_j_nbd_2021_105372
crossref_primary_10_1109_TMRB_2021_3095361
crossref_primary_10_1016_j_neunet_2021_07_025
crossref_primary_10_1016_j_ipm_2022_102909
crossref_primary_10_1016_j_bspc_2021_102501
crossref_primary_10_3389_fnetp_2024_1356653
crossref_primary_10_1016_j_aei_2024_102893
crossref_primary_10_1016_j_jneumeth_2025_110431
crossref_primary_10_1093_bib_bbaa355
crossref_primary_10_1109_TBME_2021_3115799
crossref_primary_10_3389_fnhum_2023_1134599
crossref_primary_10_1002_mds_28513
crossref_primary_10_1016_j_clinph_2023_10_018
crossref_primary_10_3389_fnhum_2023_1111590
crossref_primary_10_1007_s00415_023_11873_1
crossref_primary_10_1007_s11571_024_10210_0
crossref_primary_10_3389_fnins_2021_637274
crossref_primary_10_1080_17434440_2024_2438309
crossref_primary_10_1371_journal_pcbi_1012247
crossref_primary_10_3233_JPD_225053
crossref_primary_10_1088_1741_2552_ac5d69
crossref_primary_10_1016_j_expneurol_2022_113993
crossref_primary_10_1152_jn_00055_2023
crossref_primary_10_1016_j_artmed_2021_102198
Cites_doi 10.1016/j.jneumeth.2017.10.001
10.1016/j.patrec.2008.01.030
10.1002/ana.23951
10.1109/TNSRE.2010.2081377
10.1016/j.expneurol.2012.06.012
10.1088/1741-2560/8/3/036015
10.1007/978-3-319-09330-7_25
10.1016/j.neuroimage.2010.06.048
10.1016/j.brs.2014.09.017
10.1088/1741-2560/10/5/056005
10.1016/S1388-2457(02)00057-3
10.3390/brainsci6040057
10.1038/nn.3997
10.1088/1741-2560/4/2/R01
10.1109/TBME.2004.827086
10.1016/j.conb.2014.05.004
10.1111/j.1749-6632.2012.06650.x
10.1016/j.expneurol.2012.09.008
10.1109/TNSRE.2012.2183617
10.1109/TNSRE.2017.2754879
10.1093/brain/awf156
10.1227/NEU.0b013e3182676b91
10.1016/j.tins.2007.05.004
10.1109/TBME.2004.826698
10.1159/000098526
10.1109/TBME.2004.826702
10.1007/s00415-015-7790-8
10.1212/WNL.0b013e318203e7d0
10.1109/TBME.2010.2047015
10.1016/j.jneumeth.2004.02.017
10.1056/NEJMoa0907083
10.1117/1.JMI.3.4.044501
10.1007/BF00994018
10.1093/brain/awg267
10.1002/mds.20957
10.1002/mds.26241
10.1016/j.neuron.2011.08.023
10.1016/j.medengphy.2016.02.007
10.1016/j.nec.2013.08.006
10.1093/brain/awx010
10.1016/B978-0-12-741252-8.50010-8
10.1016/S0304-3940(03)00470-1
10.1145/1961189.1961199
10.1038/nrneurol.2014.59
10.1002/mds.26545
10.1016/j.neuroscience.2011.11.072
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2020.108621
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 32027889
10_1016_j_jneumeth_2020_108621
S0165027020300431
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
WUQ
X7M
ZGI
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c368t-50732209f1ac6d4fa305ed7488dbb91569358a58d2c687a8418f1252d8c7cc7c3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Mon Jul 21 10:48:55 EDT 2025
Thu Apr 03 07:09:50 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Tue Jul 01 02:57:12 EDT 2025
Sun Apr 06 06:54:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Behavior classification
Local field potential
Time-frequency analysis
Convolutional neural networks
Deep brain stimulation
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-50732209f1ac6d4fa305ed7488dbb91569358a58d2c687a8418f1252d8c7cc7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9572-3847
0000-0001-8923-4660
PMID 32027889
PQID 2352641568
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2352641568
pubmed_primary_32027889
crossref_primary_10_1016_j_jneumeth_2020_108621
crossref_citationtrail_10_1016_j_jneumeth_2020_108621
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
2020-Apr-01
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Flint, Wright, Scheid, Slutzky (bib0090) 2013; 10
Rezaeilouyeh, Mollahosseini, Mahoor (bib0230) 2016; 3
Loukas, Brown (bib0200) 2004; 137
Hebb, Darvas, Miller (bib0140) 2012; 202
Little, Pogosyan, Neal, Zavala, Zrinzo, Hariz, Foltynie, Limousin, Ashkan, FitzGerald (bib0190) 2013; 74
Hammond, Bergman, Brown (bib0130) 2007; 30
Golshan, Hebb, Hanrahan, Nedrud, Mahoor (bib0115) 2017
Santaniello, Fiengo, Glielmo, Grill (bib0245) 2011; 19
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0195) 2007; 4
Friston, Bastos, Pinotsis, Litvak (bib0100) 2015; 31
Yang, Sakhavi, Ang, Guan (bib0295) 2015
De Hemptinne, Swann, Ostrem, Ryapolova-Webb, San Luciano, Galifianakis (bib0065) 2015; 18
Sheikh, McFarland, Sarnacki, Wolpaw (bib0250) 2003; 345
Rezaei Tabar, Ugur (bib0225) 2016; 14
Bostanov (bib0040) 2004; 51
Darvas, Hebb (bib0060) 2014; 8
Krizhevsky, Sutskever, Hinton (bib0175) 2012
Mahlknecht, Limousin, Foltynie (bib0205) 2015; 262
Fisher, Velasco (bib0080) 2014; 10
Hebb, Zhang, Mahoor, Tsiokos, Matlack, Chizeck, Pouratian (bib0145) 2014; 25
Jia, Dong, Socher, Li, Li, Fei-Fei (bib0155) 2009
Tripoliti, Zrinzo, Martinez-Torres, Frost, Pinto, Foltynie, Holl, Petersen, Roughton, Hariz (bib0275) 2011; 76
.
An, Kuang, Guo, Zhao, He (bib0015) 2014
Golshan, Hebb, Nedrud, Mahoor (bib0125) 2018
Silberstein, Kuhn, Kupsch, Trottenberg, Krauss, Wohrle (bib0255) 2003; 126
Kaper, Meinicke, Grossekathoefer, Lingner, Ritter (bib0160) 2004; 51
Niketeghad, Hebb, Nedrud, Hanrahan, Mahoor (bib0220) 2018; 26
Rosa, Arlotti, Ardolino, Cogiamanian, Marceglia, Di Fonzo (bib0235) 2015; 30
Zhuang, Truccolo, Varagas-Irwin, Donoghue (bib0305) 2010; 57
Deuschl, Herzog, Kleiner-Fisman, Kubu, Lozano, Lyons, Rodriguez-Oroz, Tamma, Troster, Vitek (bib0075) 2006; 21
Golshan, Hebb, Hanrahan, Nedrud, Mahoor (bib0120) 2018; 293
Tinkhauser, Pogosyan, Little, Beudel, Herz, Tan (bib0265) 2017; 140
Stanslaski, Afshar, Cong, Giftakis, Stypulkowski, Carlson, Linde, Ullestad, Avestruz, Denison (bib0260) 2012; 20
Abosch, Lanctin, Onaran, Eberly, Spaniol, Ince (bib0010) 2012; 71
Golshan, Hebb, Hanrahan, Nedrud, Mahoor (bib0110) 2016
Brocker, Swan, Turner, Gross, Tatter, Koop (bib0045) 2013; 239
Zaker, Dutta, Maurer, Zhang, Hanrahan, Hebb, Kovvali (bib0300) 2014
Niketeghad, Hebb, Nedrud, Hanrahan, Mahoor (bib0215) 2015
Bordini, Garg, Gallagher, Bell, Garell (bib0035) 2007; 85
Hanrahan, Nedrud, Davidson, Farris, Giroux, Haug, Mahoor, Silverman, Zhang, Hebb (bib0135) 2016; 6
Kingma, Ba (bib0170) 2014; 1412
Abosch, Lanctin, Onaran, Eberly, Spaniol, Ince (bib0005) 2012; 71
Giannicola, Rosa, Servello, Menghetti, Carrabba, Pacchetti, Zangaglia, Cogiamanian, Scelzo, Marceglia (bib0105) 2012; 237
Fleury, Pollak, Gere, Tommasi, Romito, Combescure, Bardinet, Chabardes, Momjian, Krainik (bib0085) 2016; 31
Kent, Swan, Brocker, Turner, Gross, Grill (bib0165) 2015; 8
Hecht-Nielsen (bib0150) 1992
Blankertz, Lemm, Treder, Haufe, Müller (bib0030) 2011; 56
Follett, Weaver, Stern, Hur, Harris, Luo, Marks, Rothlind, Sagher, Moy, Pahwa (bib0095) 2010; 362
Li, Guan, Li, Chin (bib0180) 2008; 29
Williams, Tijssen, Van Bruggen, Bosch, Insola, Di Lazzaro, Mazzone, Oliviero, Quartarone, Speelman (bib0280) 2002; 125
Treder, Blankertz (bib0270) 2010; 6
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib0285) 2002; 113
Cortes, Vapnik (bib0055) 1995; 20
Chang, Lin (bib0050) 2011; 2
Millán, Renkens, Mourino, Gerstner (bib0210) 2004; 51
Little, Brown (bib0185) 2012; 1265
Wulsin, Gupta, Mani, Blanco, Litt (bib0290) 2011; 8
Arlotti, Rossi, Rosa, Marceglia, Priori (bib0025) 2016; 38
Rosin, Slovik, Mitelman, Rivlin-Etzion, Haber, Israel, Vaadia, Bergman (bib0240) 2011; 72
Demšar (bib0070) 2006; 7
Tinkhauser (10.1016/j.jneumeth.2020.108621_bib0265) 2017; 140
Golshan (10.1016/j.jneumeth.2020.108621_bib0115) 2017
Rosa (10.1016/j.jneumeth.2020.108621_bib0235) 2015; 30
Follett (10.1016/j.jneumeth.2020.108621_bib0095) 2010; 362
Sheikh (10.1016/j.jneumeth.2020.108621_bib0250) 2003; 345
Little (10.1016/j.jneumeth.2020.108621_bib0190) 2013; 74
Yang (10.1016/j.jneumeth.2020.108621_bib0295) 2015
Arlotti (10.1016/j.jneumeth.2020.108621_bib0025) 2016; 38
Deuschl (10.1016/j.jneumeth.2020.108621_bib0075) 2006; 21
Stanslaski (10.1016/j.jneumeth.2020.108621_bib0260) 2012; 20
Hebb (10.1016/j.jneumeth.2020.108621_bib0140) 2012; 202
Giannicola (10.1016/j.jneumeth.2020.108621_bib0105) 2012; 237
Bordini (10.1016/j.jneumeth.2020.108621_bib0035) 2007; 85
An (10.1016/j.jneumeth.2020.108621_bib0015) 2014
Rezaeilouyeh (10.1016/j.jneumeth.2020.108621_bib0230) 2016; 3
Golshan (10.1016/j.jneumeth.2020.108621_bib0125) 2018
Silberstein (10.1016/j.jneumeth.2020.108621_bib0255) 2003; 126
Little (10.1016/j.jneumeth.2020.108621_bib0185) 2012; 1265
Kent (10.1016/j.jneumeth.2020.108621_bib0165) 2015; 8
Wulsin (10.1016/j.jneumeth.2020.108621_bib0290) 2011; 8
Abosch (10.1016/j.jneumeth.2020.108621_bib0005) 2012; 71
Darvas (10.1016/j.jneumeth.2020.108621_bib0060) 2014; 8
Zaker (10.1016/j.jneumeth.2020.108621_bib0300) 2014
Treder (10.1016/j.jneumeth.2020.108621_bib0270) 2010; 6
Wolpaw (10.1016/j.jneumeth.2020.108621_bib0285) 2002; 113
Hebb (10.1016/j.jneumeth.2020.108621_bib0145) 2014; 25
Zhuang (10.1016/j.jneumeth.2020.108621_bib0305) 2010; 57
Chang (10.1016/j.jneumeth.2020.108621_bib0050) 2011; 2
Golshan (10.1016/j.jneumeth.2020.108621_bib0120) 2018; 293
Niketeghad (10.1016/j.jneumeth.2020.108621_bib0215) 2015
Williams (10.1016/j.jneumeth.2020.108621_bib0280) 2002; 125
Blankertz (10.1016/j.jneumeth.2020.108621_bib0030) 2011; 56
Cortes (10.1016/j.jneumeth.2020.108621_bib0055) 1995; 20
Fleury (10.1016/j.jneumeth.2020.108621_bib0085) 2016; 31
Mahlknecht (10.1016/j.jneumeth.2020.108621_bib0205) 2015; 262
Kingma (10.1016/j.jneumeth.2020.108621_bib0170) 2014; 1412
Lotte (10.1016/j.jneumeth.2020.108621_bib0195) 2007; 4
Kaper (10.1016/j.jneumeth.2020.108621_bib0160) 2004; 51
Demšar (10.1016/j.jneumeth.2020.108621_bib0070) 2006; 7
Golshan (10.1016/j.jneumeth.2020.108621_bib0110) 2016
Jia (10.1016/j.jneumeth.2020.108621_bib0155) 2009
10.1016/j.jneumeth.2020.108621_bib0020
Hanrahan (10.1016/j.jneumeth.2020.108621_bib0135) 2016; 6
Fisher (10.1016/j.jneumeth.2020.108621_bib0080) 2014; 10
Rosin (10.1016/j.jneumeth.2020.108621_bib0240) 2011; 72
Krizhevsky (10.1016/j.jneumeth.2020.108621_bib0175) 2012
Friston (10.1016/j.jneumeth.2020.108621_bib0100) 2015; 31
Tripoliti (10.1016/j.jneumeth.2020.108621_bib0275) 2011; 76
Niketeghad (10.1016/j.jneumeth.2020.108621_bib0220) 2018; 26
Santaniello (10.1016/j.jneumeth.2020.108621_bib0245) 2011; 19
Bostanov (10.1016/j.jneumeth.2020.108621_bib0040) 2004; 51
Hammond (10.1016/j.jneumeth.2020.108621_bib0130) 2007; 30
Hecht-Nielsen (10.1016/j.jneumeth.2020.108621_bib0150) 1992
Brocker (10.1016/j.jneumeth.2020.108621_bib0045) 2013; 239
De Hemptinne (10.1016/j.jneumeth.2020.108621_bib0065) 2015; 18
Flint (10.1016/j.jneumeth.2020.108621_bib0090) 2013; 10
Rezaei Tabar (10.1016/j.jneumeth.2020.108621_bib0225) 2016; 14
Li (10.1016/j.jneumeth.2020.108621_bib0180) 2008; 29
Loukas (10.1016/j.jneumeth.2020.108621_bib0200) 2004; 137
Abosch (10.1016/j.jneumeth.2020.108621_bib0010) 2012; 71
Millán (10.1016/j.jneumeth.2020.108621_bib0210) 2004; 51
References_xml – volume: 30
  start-page: 357
  year: 2007
  end-page: 364
  ident: bib0130
  article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments
  publication-title: Trends Neurosci.
– volume: 25
  start-page: 187
  year: 2014
  end-page: 204
  ident: bib0145
  article-title: Creating the feedback loop
  publication-title: Neurosurg. Clin. N. Am.
– volume: 19
  start-page: 15
  year: 2011
  end-page: 24
  ident: bib0245
  article-title: Closed-loop control of deepbrain stimulation: a simulation study
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 6
  year: 2010
  ident: bib0270
  article-title: Overt attention and visual speller design in an ERP-based brain-computer interface
  publication-title: Behav. Brain Funct.
– volume: 10
  start-page: 261
  year: 2014
  end-page: 270
  ident: bib0080
  article-title: Electrical brain stimulation for epilepsy
  publication-title: Nat. Rev. Neurol.
– volume: 202
  start-page: 218
  year: 2012
  end-page: 233
  ident: bib0140
  article-title: Transient and state modulation of beta power in human subthalamic nucleus during speech production and finger movement
  publication-title: Neuroscience
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0070
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 8
  year: 2014
  ident: bib0060
  article-title: Task specific inter-hemispheric coupling in human subthalamic nuclei
  publication-title: Front. Hum. Neurosci.
– volume: 126
  start-page: 2597
  year: 2003
  end-page: 2608
  ident: bib0255
  article-title: Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia
  publication-title: Brain
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0175
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 345
  start-page: 89
  year: 2003
  end-page: 92
  ident: bib0250
  article-title: Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans
  publication-title: Neurosci. Lett.
– start-page: 4720
  year: 2018
  end-page: 4723
  ident: bib0125
  article-title: Studying the effects of deep brain stimulation and medication on the dynamics of STN-LFP signals for human behavior analysis
  publication-title: 40
– volume: 71
  start-page: 804
  year: 2012
  end-page: 814
  ident: bib0010
  article-title: Long-term recordings of local field potentials from implanted deep brain stimulation electrodes
  publication-title: Neurosurgery
– volume: 26
  year: 2018
  ident: bib0220
  article-title: Motor task detection from human STN using interhemispheric connectivity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 137
  start-page: 193
  year: 2004
  end-page: 205
  ident: bib0200
  article-title: Online prediction of self-paced hand-movements from subthalamic activity using neural networks in Parkinson’s disease
  publication-title: J. Neurosci. Methods
– volume: 14
  year: 2016
  ident: bib0225
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
– volume: 51
  start-page: 1026
  year: 2004
  end-page: 1033
  ident: bib0210
  article-title: Non-invasive brain-actuated control of a mobile robot by human EEG
  publication-title: IEEE Trans. Biomd. Eng.
– volume: 38
  start-page: 498
  year: 2016
  end-page: 505
  ident: bib0025
  article-title: An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson’s disease
  publication-title: Med. Eng. Phys.
– volume: 293
  start-page: 254
  year: 2018
  end-page: 263
  ident: bib0120
  article-title: A hierarchical structure for human behavior classification using STN local field potentials
  publication-title: J. Neurosci. Methods
– volume: 20
  start-page: 410
  year: 2012
  end-page: 421
  ident: bib0260
  article-title: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib0285
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 2
  year: 2011
  ident: bib0050
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– start-page: 208
  year: 2014
  end-page: 212
  ident: bib0300
  article-title: Adaptive learning of behavioral tasks for patients with Parkinson’s disease using signals from deep brain stimulation
  publication-title: Asilomar Conference on Signals, Systems and Computers
– start-page: 2620
  year: 2015
  end-page: 2623
  ident: bib0295
  article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
  publication-title: 37
– volume: 29
  start-page: 1285
  year: 2008
  end-page: 1294
  ident: bib0180
  article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
  publication-title: Pattern Recognit. Lett.
– volume: 76
  start-page: 80
  year: 2011
  end-page: 86
  ident: bib0275
  article-title: Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease
  publication-title: Neurology
– volume: 140
  start-page: 1053
  year: 2017
  end-page: 1067
  ident: bib0265
  article-title: The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
  publication-title: Brain
– start-page: 65
  year: 1992
  end-page: 93
  ident: bib0150
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Netw. Percept.
– volume: 8
  start-page: 42
  year: 2015
  end-page: 56
  ident: bib0165
  article-title: Measurement of evoked potentials during thalamic deep brain stimulation
  publication-title: Brain Stimul.
– volume: 362
  start-page: 2077
  year: 2010
  end-page: 2091
  ident: bib0095
  article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease
  publication-title: N. Engl. J. Med.
– volume: 1412
  year: 2014
  ident: bib0170
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv
– volume: 51
  start-page: 1057
  year: 2004
  end-page: 1061
  ident: bib0040
  article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 262
  start-page: 2583
  year: 2015
  end-page: 2595
  ident: bib0205
  article-title: Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments
  publication-title: J. Neurol.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0155
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: IEEE Conference on CVPR
– volume: 57
  start-page: 1774
  year: 2010
  end-page: 1784
  ident: bib0305
  article-title: Decoding 3-Dreach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 979
  year: 2017
  end-page: 983
  ident: bib0115
  article-title: An FFT-based synchronization approach to recognize human behaviors using STN-LFP signal
  publication-title: 42
– volume: 3
  year: 2016
  ident: bib0230
  article-title: Microscopic medical image classification framework via deep learning and shearlet transform
  publication-title: J. Med. Imaging
– volume: 56
  start-page: 814
  year: 2011
  end-page: 825
  ident: bib0030
  article-title: Single-trial analysis and classification of ERP components—a tutorial
  publication-title: Neuroimage
– volume: 21
  start-page: 219
  year: 2006
  end-page: 237
  ident: bib0075
  article-title: Deep brain stimulation: postoperative issues
  publication-title: Mov. Disord.
– volume: 18
  start-page: 779
  year: 2015
  end-page: 786
  ident: bib0065
  article-title: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease
  publication-title: Nat. Neurosci.
– volume: 10
  year: 2013
  ident: bib0090
  article-title: Long term, stable brain machine interface performance using local field potentials and multiunit spikes
  publication-title: J. Neural Eng.
– volume: 1265
  start-page: 9
  year: 2012
  end-page: 24
  ident: bib0185
  article-title: What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease?
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 8
  year: 2011
  ident: bib0290
  article-title: Modeling electroencephalography waveforms with semi supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
– volume: 71
  start-page: 804
  year: 2012
  end-page: 814
  ident: bib0005
  article-title: Long-termrecordings of local field potentials from implanted deep brain stimulation electrodes
  publication-title: Neurosurgery
– volume: 72
  start-page: 370
  year: 2011
  end-page: 384
  ident: bib0240
  article-title: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism
  publication-title: Neuron
– volume: 31
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib0100
  article-title: LFP and oscillations-what do they tell us?
  publication-title: Curr. Opin. Neurobiol.
– volume: 51
  start-page: 1073
  year: 2004
  end-page: 1076
  ident: bib0160
  article-title: BCIcompetition 2003—data set IIb: support vector machines for the P300 speller paradigm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 74
  start-page: 449
  year: 2013
  end-page: 457
  ident: bib0190
  article-title: Adaptive deep brain stimulation in advanced Parkinson disease
  publication-title: Ann. Neurol.
– volume: 85
  start-page: 113
  year: 2007
  end-page: 120
  ident: bib0035
  article-title: Neuropsychological effects of bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 6
  year: 2016
  ident: bib0135
  article-title: Long-term task-and dopamine-dependent dynamics of subthalamic local field potentials in Parkinson’s disease
  publication-title: Brain Sci.
– year: 2016
  ident: bib0110
  article-title: A multiple kernel learning approach for human behavioral task classification using STN-LFP signal
  publication-title: Engineering in Medicine and Biology Society (EMBC), 38
– volume: 239
  start-page: 60
  year: 2013
  end-page: 67
  ident: bib0045
  article-title: Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease
  publication-title: Exp. Neurol.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 237
  start-page: 312
  year: 2012
  end-page: 317
  ident: bib0105
  article-title: Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease
  publication-title: Exp. Neurol.
– reference: .
– volume: 4
  start-page: 1
  year: 2007
  end-page: 13
  ident: bib0195
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– start-page: 5553
  year: 2015
  end-page: 5556
  ident: bib0215
  article-title: Motor task event detection using subthalamic nucleus local field potentials
  publication-title: 37
– volume: 30
  start-page: 1003
  year: 2015
  end-page: 1005
  ident: bib0235
  article-title: Adaptive deep brain stimulation in a freely moving Parkinsonian Patient
  publication-title: Mov. Disord.
– volume: 125
  start-page: 1558
  year: 2002
  end-page: 1569
  ident: bib0280
  article-title: Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans
  publication-title: Brain J. Neurol.
– start-page: 203
  year: 2014
  end-page: 210
  ident: bib0015
  article-title: A deep learning method for classification of EEG data based on motor imagery
  publication-title: Intelligent Comput. Bioinf.
– volume: 31
  start-page: 1389
  year: 2016
  end-page: 1397
  ident: bib0085
  article-title: Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait
  publication-title: Mov. Disord.
– volume: 293
  start-page: 254
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108621_bib0120
  article-title: A hierarchical structure for human behavior classification using STN local field potentials
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.10.001
– volume: 29
  start-page: 1285
  issue: 9
  year: 2008
  ident: 10.1016/j.jneumeth.2020.108621_bib0180
  article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.01.030
– volume: 74
  start-page: 449
  issue: 3
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108621_bib0190
  article-title: Adaptive deep brain stimulation in advanced Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23951
– volume: 19
  start-page: 15
  issue: 1
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108621_bib0245
  article-title: Closed-loop control of deepbrain stimulation: a simulation study
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2081377
– volume: 237
  start-page: 312
  issue: 2
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108621_bib0105
  article-title: Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2012.06.012
– volume: 8
  issue: 3
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108621_bib0290
  article-title: Modeling electroencephalography waveforms with semi supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– volume: 14
  issue: 1
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108621_bib0225
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
– start-page: 203
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108621_bib0015
  article-title: A deep learning method for classification of EEG data based on motor imagery
  publication-title: Intelligent Comput. Bioinf.
  doi: 10.1007/978-3-319-09330-7_25
– volume: 56
  start-page: 814
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108621_bib0030
  article-title: Single-trial analysis and classification of ERP components—a tutorial
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.048
– volume: 8
  start-page: 42
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108621_bib0165
  article-title: Measurement of evoked potentials during thalamic deep brain stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.09.017
– volume: 10
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108621_bib0090
  article-title: Long term, stable brain machine interface performance using local field potentials and multiunit spikes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056005
– start-page: 979
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108621_bib0115
  article-title: An FFT-based synchronization approach to recognize human behaviors using STN-LFP signal
  publication-title: 42nd IEEE International Conference on ICASSP
– volume: 8
  issue: September
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108621_bib0060
  article-title: Task specific inter-hemispheric coupling in human subthalamic nuclei
  publication-title: Front. Hum. Neurosci.
– volume: 113
  start-page: 767
  year: 2002
  ident: 10.1016/j.jneumeth.2020.108621_bib0285
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 6
  issue: 4
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108621_bib0135
  article-title: Long-term task-and dopamine-dependent dynamics of subthalamic local field potentials in Parkinson’s disease
  publication-title: Brain Sci.
  doi: 10.3390/brainsci6040057
– volume: 18
  start-page: 779
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108621_bib0065
  article-title: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3997
– volume: 4
  start-page: 1
  issue: 2
  year: 2007
  ident: 10.1016/j.jneumeth.2020.108621_bib0195
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– volume: 51
  start-page: 1026
  issue: 6
  year: 2004
  ident: 10.1016/j.jneumeth.2020.108621_bib0210
  article-title: Non-invasive brain-actuated control of a mobile robot by human EEG
  publication-title: IEEE Trans. Biomd. Eng.
  doi: 10.1109/TBME.2004.827086
– volume: 31
  start-page: 1
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108621_bib0100
  article-title: LFP and oscillations-what do they tell us?
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.05.004
– volume: 1265
  start-page: 9
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108621_bib0185
  article-title: What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease?
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2012.06650.x
– volume: 239
  start-page: 60
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108621_bib0045
  article-title: Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2012.09.008
– volume: 20
  start-page: 410
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108621_bib0260
  article-title: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2183617
– volume: 26
  issue: 1
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108621_bib0220
  article-title: Motor task detection from human STN using interhemispheric connectivity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2754879
– volume: 125
  start-page: 1558
  year: 2002
  ident: 10.1016/j.jneumeth.2020.108621_bib0280
  article-title: Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans
  publication-title: Brain J. Neurol.
  doi: 10.1093/brain/awf156
– start-page: 4720
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108621_bib0125
  article-title: Studying the effects of deep brain stimulation and medication on the dynamics of STN-LFP signals for human behavior analysis
  publication-title: 40th IEEE International Conference on Engineering in Medicine and Biology Society (EMBC)
– volume: 71
  start-page: 804
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108621_bib0010
  article-title: Long-term recordings of local field potentials from implanted deep brain stimulation electrodes
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e3182676b91
– volume: 30
  start-page: 357
  year: 2007
  ident: 10.1016/j.jneumeth.2020.108621_bib0130
  article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.05.004
– volume: 51
  start-page: 1073
  issue: 6
  year: 2004
  ident: 10.1016/j.jneumeth.2020.108621_bib0160
  article-title: BCIcompetition 2003—data set IIb: support vector machines for the P300 speller paradigm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826698
– volume: 85
  start-page: 113
  year: 2007
  ident: 10.1016/j.jneumeth.2020.108621_bib0035
  article-title: Neuropsychological effects of bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000098526
– volume: 51
  start-page: 1057
  issue: 6
  year: 2004
  ident: 10.1016/j.jneumeth.2020.108621_bib0040
  article-title: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826702
– start-page: 5553
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108621_bib0215
  article-title: Motor task event detection using subthalamic nucleus local field potentials
  publication-title: 37th IEEE International Conference on Engineering in Medicine and Biology Society (EMBC)
– volume: 262
  start-page: 2583
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108621_bib0205
  article-title: Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments
  publication-title: J. Neurol.
  doi: 10.1007/s00415-015-7790-8
– volume: 76
  start-page: 80
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108621_bib0275
  article-title: Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318203e7d0
– year: 2016
  ident: 10.1016/j.jneumeth.2020.108621_bib0110
  article-title: A multiple kernel learning approach for human behavioral task classification using STN-LFP signal
  publication-title: Engineering in Medicine and Biology Society (EMBC), 38th IEEE International Conference on
– volume: 57
  start-page: 1774
  issue: 7
  year: 2010
  ident: 10.1016/j.jneumeth.2020.108621_bib0305
  article-title: Decoding 3-Dreach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2047015
– volume: 137
  start-page: 193
  year: 2004
  ident: 10.1016/j.jneumeth.2020.108621_bib0200
  article-title: Online prediction of self-paced hand-movements from subthalamic activity using neural networks in Parkinson’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2004.02.017
– volume: 71
  start-page: 804
  issue: 4
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108621_bib0005
  article-title: Long-termrecordings of local field potentials from implanted deep brain stimulation electrodes
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e3182676b91
– start-page: 1097
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108621_bib0175
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 362
  start-page: 2077
  year: 2010
  ident: 10.1016/j.jneumeth.2020.108621_bib0095
  article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0907083
– volume: 3
  issue: 4
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108621_bib0230
  article-title: Microscopic medical image classification framework via deep learning and shearlet transform
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.3.4.044501
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jneumeth.2020.108621_bib0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 126
  start-page: 2597
  year: 2003
  ident: 10.1016/j.jneumeth.2020.108621_bib0255
  article-title: Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia
  publication-title: Brain
  doi: 10.1093/brain/awg267
– volume: 6
  issue: 28
  year: 2010
  ident: 10.1016/j.jneumeth.2020.108621_bib0270
  article-title: Overt attention and visual speller design in an ERP-based brain-computer interface
  publication-title: Behav. Brain Funct.
– volume: 21
  start-page: 219
  year: 2006
  ident: 10.1016/j.jneumeth.2020.108621_bib0075
  article-title: Deep brain stimulation: postoperative issues
  publication-title: Mov. Disord.
  doi: 10.1002/mds.20957
– volume: 30
  start-page: 1003
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108621_bib0235
  article-title: Adaptive deep brain stimulation in a freely moving Parkinsonian Patient
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26241
– volume: 72
  start-page: 370
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108621_bib0240
  article-title: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.023
– volume: 38
  start-page: 498
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108621_bib0025
  article-title: An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson’s disease
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.02.007
– volume: 25
  start-page: 187
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108621_bib0145
  article-title: Creating the feedback loop
  publication-title: Neurosurg. Clin. N. Am.
  doi: 10.1016/j.nec.2013.08.006
– volume: 1412
  issue: 6980
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108621_bib0170
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv
– volume: 140
  start-page: 1053
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108621_bib0265
  article-title: The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awx010
– start-page: 2620
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108621_bib0295
  article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
  publication-title: 37th IEEE International Conference on Engineering in Medicine and Biology Society (EMBC)
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.jneumeth.2020.108621_bib0070
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– start-page: 65
  year: 1992
  ident: 10.1016/j.jneumeth.2020.108621_bib0150
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Netw. Percept.
  doi: 10.1016/B978-0-12-741252-8.50010-8
– volume: 345
  start-page: 89
  issue: 2
  year: 2003
  ident: 10.1016/j.jneumeth.2020.108621_bib0250
  article-title: Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00470-1
– volume: 2
  issue: 3
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108621_bib0050
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 10
  start-page: 261
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108621_bib0080
  article-title: Electrical brain stimulation for epilepsy
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2014.59
– volume: 31
  start-page: 1389
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108621_bib0085
  article-title: Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26545
– start-page: 248
  year: 2009
  ident: 10.1016/j.jneumeth.2020.108621_bib0155
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: IEEE Conference on CVPR
– start-page: 208
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108621_bib0300
  article-title: Adaptive learning of behavioral tasks for patients with Parkinson’s disease using signals from deep brain stimulation
  publication-title: Asilomar Conference on Signals, Systems and Computers
– ident: 10.1016/j.jneumeth.2020.108621_bib0020
– volume: 202
  start-page: 218
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108621_bib0140
  article-title: Transient and state modulation of beta power in human subthalamic nucleus during speech production and finger movement
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.11.072
SSID ssj0004906
Score 2.455467
Snippet •Developed a deep convolutional neural network for behavior classification using brain STN-LFP signals.•Developed a wavelet-based feature extraction method for...
Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108621
SubjectTerms Behavior classification
Convolutional neural networks
Deep brain stimulation
Local field potential
Time-frequency analysis
Title LFP-Net: A deep learning framework to recognize human behavioral activities using brain STN-LFP signals
URI https://dx.doi.org/10.1016/j.jneumeth.2020.108621
https://www.ncbi.nlm.nih.gov/pubmed/32027889
https://www.proquest.com/docview/2352641568
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CAqWXkkcf20eYQunNWdsrr6XeltBl-8hSSAK5CVmSlyytd2m8hfaQ354ZWU7aQ8ih4IuNZQnNaDTj-UYfwDvnK2FoY0hsWlWJEKUhO1irRDknVW3HLiu4dvhkPp6di88XxcUWHPe1MAyrjLa_s-nBWscnwzibw_Xl5fCUC3FSLqdK-dSoUEtNfbGWH13fwTyECvya_DLnK9O_qoSXR8vGb5ipmeLEvCMdyrP7Nqj7HNCwEU134Un0IHHSDXIPtnyzDweThqLnH7_xPQZMZ_hZvg-PTmLq_AAWX6ffkrlvP-AEnfdrjHwRC6x7fBa2K4yAoj8eA3sf3pXxI5dA_AoHsCKj5RdYMb0Enp7NE_o2MhKEdPkpnE8_nh3PksiykNjRWLYJOYS0qFNVZ4ZEI2pDFsC7kha2qypF4R1nSk0hXW7HsjRSZLImryh30paWrtEz2G5WjX8BWKrCZSYvRko6ChSFtCatpRTGibySpR1A0U-ttvEIcmbC-K57rNlS9yLRLBLdiWQAw9t26-4QjgdbqF5y-h910rRTPNj2bS9qTWuNEyim8avNlc6ZTIAjXjmA550O3I6HeehLKdXL_-j5FTzmuw4Y9Bq2258b_4Z8nrY6DEp9CDuTT19m8xvzcf-5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VRQIuqLQ8QnkMEuLmxnbW8S63qCIKkERITaXeVuvdddQInKh1kNoDv50Ze93CoeoBySfba688s7Mznm_mA_jgfCEMbQyRjYsiEiI3ZAdLFSnnpCrt0CUZ1w7P5sPJqfh6lp3twHFXC8OwymD7W5veWOtwph--Zn9zft4_4UKcmMupYu4axbXUDwQtX6YxOPp9i_MQqiHY5Ls5YRn_VSa8OlpVfstUzRQopi3rUJrctUPd5YE2O9F4D54EFxJH7Syfwo6v9uFgVFH4_PMKP2ID6mz-lu_Dw1nInR_Acjr-Hs19_QlH6LzfYCCMWGLZAbSwXmNAFF17bOj78LaOH7kG4lfTgRUZLr_Egvkl8GQxj-jZyFAQUuZncDr-vDieRIFmIbKDoawj8ghpVceqTAzJRpSGTIB3Oa1sVxSK4jtOlZpMutQOZW6kSGRJblHqpM0tHYPnsFutK_8SMFeZS0yaDZR0FCkKaU1cSimME2khc9uDrPu02oYe5EyF8UN3YLOV7kSiWSS6FUkP-jfjNm0XjntHqE5y-h990rRV3Dv2fSdqTYuNMyim8uvtpU6ZTYBDXtmDF60O3MyHiehzKdWr_3jzO3g0Wcymevpl_u0QHvOVFiX0Gnbri61_Qw5QXbxtFPwPvhkBVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LFP-Net%3A+A+deep+learning+framework+to+recognize+human+behavioral+activities+using+brain+STN-LFP+signals&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Golshan%2C+Hosein+M.&rft.au=Hebb%2C+Adam+O.&rft.au=Mahoor%2C+Mohammad+H.&rft.date=2020-04-01&rft.issn=0165-0270&rft.volume=335&rft.spage=108621&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2020_108621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon