Hypercontractivity and Asymptotic Behavior in Nonautonomous Kolmogorov Equations
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercont...
Saved in:
Published in | Communications in partial differential equations Vol. 38; no. 12; pp. 2049 - 2080 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Group
02.12.2013
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ
d
, where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ
t
: t ∈ I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s). |
---|---|
AbstractList | We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × R d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t [element of] I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s). [PUBLICATION ABSTRACT] We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s). We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I R super( )d where I is a right-halfline. We prove logarithmic Sobolev and Poincare inequalities with respect to an associated evolution system of measures { mu sub( )t t [isin] I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s). |
Author | Lunardi, Alessandra Angiuli, Luciana Lorenzi, Luca |
Author_xml | – sequence: 1 givenname: Luciana surname: Angiuli fullname: Angiuli, Luciana organization: Dipartimento di Matematica e Informatica , Università degli Studi di Parma – sequence: 2 givenname: Luca surname: Lorenzi fullname: Lorenzi, Luca email: luca.lorenzi@unipr.it organization: Dipartimento di Matematica e Informatica , Università degli Studi di Parma – sequence: 3 givenname: Alessandra surname: Lunardi fullname: Lunardi, Alessandra organization: Dipartimento di Matematica e Informatica , Università degli Studi di Parma |
BookMark | eNp9kEtLxDAUhYOM4Pj4By4Kbtx0TJq0TVei4gtFXeg63LaJZmhzxyQd6b-3w-jGhavLhe8cDt8-mTl0mpBjRheMSnpGeUFzTrNFRhlfSEHLiu6QOct5lgrG-YzMN0i6YfbIfghLSpnMKjEnL3fjSvsGXfTQRLu2cUzAtclFGPtVxGib5FJ_wNqiT6xLntDBENFhj0NIHrDr8R09rpPrzwGiRRcOya6BLuijn3tA3m6uX6_u0sfn2_uri8e04YWMqeDGSFFlUNV5bUrDhSl0LVvIJRNNWUooBReVqAta6qplAHT6WE3bUgArOT8gp9velcfPQYeoehsa3XXg9LRNMVGIvMpzmk3oyR90iYN307qJEhXPmWRsosSWajyG4LVRK2978KNiVG00q1_NaqNZbTVPsfNtzDqDvocv9F2rIowdeuPBNTYo_m_DN7qEhW4 |
CitedBy_id | crossref_primary_10_1090_proc_13031 crossref_primary_10_1007_s11118_014_9406_9 crossref_primary_10_1007_s00233_013_9495_6 crossref_primary_10_11948_2018_764 crossref_primary_10_1007_s10959_022_01215_8 crossref_primary_10_3934_cpaa_2014_13_1237 crossref_primary_10_1016_j_jmaa_2016_06_001 crossref_primary_10_1515_anona_2016_0166 crossref_primary_10_1007_s00028_019_00491_y crossref_primary_10_1051_cocv_2016019 crossref_primary_10_1016_j_na_2015_05_034 crossref_primary_10_1214_18_EJP147 |
Cites_doi | 10.1090/mmono/023 10.1112/jlms/jdn009 10.1016/j.jde.2008.12.015 10.1016/j.jde.2010.08.019 10.2307/2373688 10.1090/S0002-9939-04-07625-7 10.1090/S0002-9947-09-04738-2 10.1090/S0002-9939-05-08068-8 10.1007/s002330010129 10.1016/0022-1236(81)90050-1 10.1007/978-3-7643-8458-6_7 10.1081/PDE-100107815 10.1007/978-3-642-88264-7 10.1112/jlms/jdn057 10.1006/jfan.2002.3978 10.1007/b80743 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2013 Copyright Taylor and Francis Group, LLC |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2013 – notice: Copyright Taylor and Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03605302.2013.840790 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 2080 |
ExternalDocumentID | 3121314741 10_1080_03605302_2013_840790 840790 |
Genre | Original Articles Feature |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 3YN 4.4 5GY 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z N9A NA5 NY~ O9- P2P PQEST PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TN5 TTHFI TWF UPT UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ ABXYU AHDZW CITATION TBQAZ TDBHL TUROJ 7SC 8FD H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-43ff8492a9b5bf7f34f6eb8da5814c778a743494b607e9d1aa04941b0d74a1733 |
ISSN | 0360-5302 |
IngestDate | Sat Oct 26 00:13:08 EDT 2024 Thu Oct 10 21:52:30 EDT 2024 Fri Aug 23 01:13:09 EDT 2024 Tue Jun 13 19:52:59 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-43ff8492a9b5bf7f34f6eb8da5814c778a743494b607e9d1aa04941b0d74a1733 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1449351811 |
PQPubID | 186205 |
PageCount | 32 |
ParticipantIDs | proquest_journals_1449351811 informaworld_taylorfrancis_310_1080_03605302_2013_840790 crossref_primary_10_1080_03605302_2013_840790 proquest_miscellaneous_1464595502 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-02 |
PublicationDateYYYYMMDD | 2013-12-02 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2013 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | CIT0010 CIT0020 CIT0001 CIT0011 Prüss J. (CIT0018) 2006; 32 Davies E.B. (CIT0004) 1990; 92 CIT0003 CIT0014 CIT0002 Evans L.C. (CIT0006) 1998 CIT0013 CIT0016 Deuschel J.D. (CIT0005) 1984 Geissert M. (CIT0008) 2009; 79 CIT0015 CIT0007 Ladyžhenskaja O.A. (CIT0012) 1968 CIT0017 CIT0009 CIT0019 |
References_xml | – volume-title: Linear and Quasilinear Equations of Parabolic Type year: 1968 ident: CIT0012 doi: 10.1090/mmono/023 contributor: fullname: Ladyžhenskaja O.A. – ident: CIT0007 doi: 10.1112/jlms/jdn009 – ident: CIT0014 doi: 10.1016/j.jde.2008.12.015 – ident: CIT0013 doi: 10.1016/j.jde.2010.08.019 – volume-title: Large Deviations year: 1984 ident: CIT0005 contributor: fullname: Deuschel J.D. – ident: CIT0010 doi: 10.2307/2373688 – ident: CIT0020 doi: 10.1090/S0002-9939-04-07625-7 – volume-title: Partial Differential Equations year: 1998 ident: CIT0006 contributor: fullname: Evans L.C. – ident: CIT0011 doi: 10.1090/S0002-9947-09-04738-2 – ident: CIT0015 doi: 10.1090/S0002-9939-05-08068-8 – ident: CIT0017 doi: 10.1007/s002330010129 – ident: CIT0019 doi: 10.1016/0022-1236(81)90050-1 – volume: 32 start-page: 563 year: 2006 ident: CIT0018 publication-title: Houston J. Math. contributor: fullname: Prüss J. – ident: CIT0003 doi: 10.1007/978-3-7643-8458-6_7 – ident: CIT0001 doi: 10.1081/PDE-100107815 – ident: CIT0009 doi: 10.1007/978-3-642-88264-7 – volume: 79 start-page: 85 issue: 2 year: 2009 ident: CIT0008 publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/jdn057 contributor: fullname: Geissert M. – ident: CIT0016 doi: 10.1006/jfan.2002.3978 – ident: CIT0002 doi: 10.1007/b80743 – volume: 92 volume-title: Heat Kernes and Spectral Theory year: 1990 ident: CIT0004 contributor: fullname: Davies E.B. |
SSID | ssj0018294 |
Score | 2.1793225 |
Snippet | We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ
d
, where I is a right-halfline. We prove... We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × R d , where I is a right-halfline. We prove... We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I R super( )d where I is a right-halfline. We... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 2049 |
SubjectTerms | Asymptotic behavior Asymptotic properties Brownian motion Evolution Evolution operators Hypercontractivity Inequalities Logarithmic Sobolev inequality Mathematical analysis Nonautonomous second order elliptic operators Operators Partial differential equations Probability Unbounded coefficients |
Title | Hypercontractivity and Asymptotic Behavior in Nonautonomous Kolmogorov Equations |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2013.840790 https://www.proquest.com/docview/1449351811 https://search.proquest.com/docview/1464595502 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMsLShI3KpUcewk9nEFRSugFYdWVFwiO3GqSm1SNglS-zP4xYxf2YStKsol2nVkx_FMZjzjmW8Qeg8skQiRVfCl0SIEDaFCIXEZZlgVAvRhREyi8OFRujyhn0-T09ns9yhqqe_kfnFza17J_1AV2oCuOkv2HpQdBoUG-A30hStQGK7_ROMlGJErE2yu0xNMFQjtB1-015dXXaOhWB38oY453zuCTXff6SQGHfb6pbm4bM6aVfNr7-BnP_LbediCceaIDTbXMzBnOramivmjJn2NP-Hs3Odc99plMsj9rw10uvF31s19rbnUZdu0LbzBSoydEZiYwI6xf5KkUagLEVn14mVqDFxg8S680CVszFzxWIRGFsPUqeM4spWeNkS9i42EB-rn6SA9sg_Wamarj06Rtf_SeEMcIvYAqW6UXI-S21EeoO0YhBdIze3F8uOP78PZFIu5AyWzr-oTMjVi-y2zmWx4JnC4G-rf7GmOn6DHzhgJFpaznqKZqp-hR4cDkm_7HH3b5LEAKBSseSzwPBac18GEx4I1jwUDj71AJ58Ojj8sQ1eFIyxIyrqQkqpilMeCy0RWWUVolSrJSpEwTIssYwI2oZRTmUaZ4iUWQkMOYRmVGRU4I-Ql2qqbWr1CAYkiUco0rkrMaREJphiHFsq4BLNdJHMU-qXKryzYSn4XieaIjdcz74yTq7IVaXJyd9ddv_a5-6JbMIMpJwnsefEcvRtug7zVh2iiVrBy2lSmCQe7Pn59z9nuoIfrT2YXbXWrXr2BHW0n3zoW-wPYCJz8 |
link.rule.ids | 315,783,787,27936,27937,60214,61003 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqOLQ98Cit2LIUI_WarR07sX1EaFdL9yEOIHGL7MSuKiCBTVKp_fWM81ixRe2hvcZxHmOPZz575huEPsOUiLQWDjSNpwFYCBtoQ7NAUJtqsIeENYnCi2U8veZfb6I-mrDswio9hnYtUUSzVnvl9pvRfUjcF1h1ia924yOz2AggilCA2rdjz__lszjIcn2QIEPVMUiRwHfps-f-8JQN67TBXfpirW4M0GQXmf7T27iT21FdmVH66zdWx__6tz2007mn-KydT_volc3fobeLNbdreYAupwBdV02Iu0-K8LUnMLwOn5U_7x-qAm7CHeniCn_P8RJc_bryqRNFXeJZcXdffCtWxQ88fmxZxsv36HoyvjqfBl1dhiBlsawCzpyTXIVamcg44Rh3sTUy05GkPBVCanBLuOImJsKqjGrtSWioIZngmgrGPqCtvMjtIcKMEJ2ZOHQZVTwlWlqp4AqXygCQ09EABf14JA8t_UZCe1bTTlKJl1TSSmqA5PNBS6pm28O1NUoS9veuw36Ak06PSwBGXLEIvCA6QKfrZtBAf6yicwuS8-CJRwqQXvjx399-gl5PrxbzZH6xnB2hN76lCZoJh2irWtX2GFyfynxqJvcT6jX2xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQkdDugcfCikIBI3FNsWMnto8VtCqUVj1spd4iO7FXK2hSmhQJfj3jPKotK_awe43jOBnPeOaLZz4j9AFUItJaOLA0ngbgIWygDc0CQW2qwR8SVhcKzxfxdMW_rqP1tSp-n1bpMbRriCLqtdob9zZzXUbcR1h0iT_sxidmsSEgFKEAtD-EQIB4TWdkcdhHkKFqCaRI4Lt0xXP_ecqRczqiLr2xVNf-Z_IE6e7Nm7ST78N9ZYbpn39IHe_zaU_R4zY4xaNGm56hBzY_Q6fzA7Nr-RwtpwBcd3WCuy-J8CdPYBgNj8rfm21VwE24pVzc4ascLyDQ31e-cKLYl3hW_NgUl8Wu-IXHPxuO8fIFWk3GF5-mQXsqQ5CyWFYBZ85JrkKtTGSccIy72BqZ6UhSngohNQQlXHETE2FVRrX2FDTUkExwTQVj56iXF7l9iTAjRGcmDl1GFU-JllYquMKlMgDjdNRHQTcdybYh30hox2naSirxkkoaSfWRvD5nSVX_9HDNCSUJu73roJvfpLXiEmARVyyCGIj20ftDM9if31TRuQXJeejEIwU4L3x199HfoUfLz5Pk25fF7DU68Q11xkw4QL1qt7dvIO6pzNtatf8C_UH1dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypercontractivity+and+Asymptotic+Behavior+in+Nonautonomous+Kolmogorov+Equations&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Angiuli%2C+Luciana&rft.au=Lorenzi%2C+Luca&rft.au=Lunardi%2C+Alessandra&rft.date=2013-12-02&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=38&rft.issue=12&rft.spage=2049&rft.epage=2080&rft_id=info:doi/10.1080%2F03605302.2013.840790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03605302_2013_840790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |