Hypercontractivity and Asymptotic Behavior in Nonautonomous Kolmogorov Equations

We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercont...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 38; no. 12; pp. 2049 - 2080
Main Authors Angiuli, Luciana, Lorenzi, Luca, Lunardi, Alessandra
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 02.12.2013
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s).
AbstractList We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × R d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t [element of] I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s). [PUBLICATION ABSTRACT]
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s).
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I R super( )d where I is a right-halfline. We prove logarithmic Sobolev and Poincare inequalities with respect to an associated evolution system of measures { mu sub( )t t [isin] I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s).
Author Lunardi, Alessandra
Angiuli, Luciana
Lorenzi, Luca
Author_xml – sequence: 1
  givenname: Luciana
  surname: Angiuli
  fullname: Angiuli, Luciana
  organization: Dipartimento di Matematica e Informatica , Università degli Studi di Parma
– sequence: 2
  givenname: Luca
  surname: Lorenzi
  fullname: Lorenzi, Luca
  email: luca.lorenzi@unipr.it
  organization: Dipartimento di Matematica e Informatica , Università degli Studi di Parma
– sequence: 3
  givenname: Alessandra
  surname: Lunardi
  fullname: Lunardi, Alessandra
  organization: Dipartimento di Matematica e Informatica , Università degli Studi di Parma
BookMark eNp9kEtLxDAUhYOM4Pj4By4Kbtx0TJq0TVei4gtFXeg63LaJZmhzxyQd6b-3w-jGhavLhe8cDt8-mTl0mpBjRheMSnpGeUFzTrNFRhlfSEHLiu6QOct5lgrG-YzMN0i6YfbIfghLSpnMKjEnL3fjSvsGXfTQRLu2cUzAtclFGPtVxGib5FJ_wNqiT6xLntDBENFhj0NIHrDr8R09rpPrzwGiRRcOya6BLuijn3tA3m6uX6_u0sfn2_uri8e04YWMqeDGSFFlUNV5bUrDhSl0LVvIJRNNWUooBReVqAta6qplAHT6WE3bUgArOT8gp9velcfPQYeoehsa3XXg9LRNMVGIvMpzmk3oyR90iYN307qJEhXPmWRsosSWajyG4LVRK2978KNiVG00q1_NaqNZbTVPsfNtzDqDvocv9F2rIowdeuPBNTYo_m_DN7qEhW4
CitedBy_id crossref_primary_10_1090_proc_13031
crossref_primary_10_1007_s11118_014_9406_9
crossref_primary_10_1007_s00233_013_9495_6
crossref_primary_10_11948_2018_764
crossref_primary_10_1007_s10959_022_01215_8
crossref_primary_10_3934_cpaa_2014_13_1237
crossref_primary_10_1016_j_jmaa_2016_06_001
crossref_primary_10_1515_anona_2016_0166
crossref_primary_10_1007_s00028_019_00491_y
crossref_primary_10_1051_cocv_2016019
crossref_primary_10_1016_j_na_2015_05_034
crossref_primary_10_1214_18_EJP147
Cites_doi 10.1090/mmono/023
10.1112/jlms/jdn009
10.1016/j.jde.2008.12.015
10.1016/j.jde.2010.08.019
10.2307/2373688
10.1090/S0002-9939-04-07625-7
10.1090/S0002-9947-09-04738-2
10.1090/S0002-9939-05-08068-8
10.1007/s002330010129
10.1016/0022-1236(81)90050-1
10.1007/978-3-7643-8458-6_7
10.1081/PDE-100107815
10.1007/978-3-642-88264-7
10.1112/jlms/jdn057
10.1006/jfan.2002.3978
10.1007/b80743
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
Copyright Taylor and Francis Group, LLC
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
– notice: Copyright Taylor and Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2013.840790
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 2080
ExternalDocumentID 3121314741
10_1080_03605302_2013_840790
840790
Genre Original Articles
Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
3YN
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
N9A
NA5
NY~
O9-
P2P
PQEST
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
TWF
UPT
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
CITATION
TBQAZ
TDBHL
TUROJ
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-43ff8492a9b5bf7f34f6eb8da5814c778a743494b607e9d1aa04941b0d74a1733
ISSN 0360-5302
IngestDate Sat Oct 26 00:13:08 EDT 2024
Thu Oct 10 21:52:30 EDT 2024
Fri Aug 23 01:13:09 EDT 2024
Tue Jun 13 19:52:59 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-43ff8492a9b5bf7f34f6eb8da5814c778a743494b607e9d1aa04941b0d74a1733
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1449351811
PQPubID 186205
PageCount 32
ParticipantIDs proquest_journals_1449351811
informaworld_taylorfrancis_310_1080_03605302_2013_840790
crossref_primary_10_1080_03605302_2013_840790
proquest_miscellaneous_1464595502
PublicationCentury 2000
PublicationDate 2013-12-02
PublicationDateYYYYMMDD 2013-12-02
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-02
  day: 02
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2013
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0010
CIT0020
CIT0001
CIT0011
Prüss J. (CIT0018) 2006; 32
Davies E.B. (CIT0004) 1990; 92
CIT0003
CIT0014
CIT0002
Evans L.C. (CIT0006) 1998
CIT0013
CIT0016
Deuschel J.D. (CIT0005) 1984
Geissert M. (CIT0008) 2009; 79
CIT0015
CIT0007
Ladyžhenskaja O.A. (CIT0012) 1968
CIT0017
CIT0009
CIT0019
References_xml – volume-title: Linear and Quasilinear Equations of Parabolic Type
  year: 1968
  ident: CIT0012
  doi: 10.1090/mmono/023
  contributor:
    fullname: Ladyžhenskaja O.A.
– ident: CIT0007
  doi: 10.1112/jlms/jdn009
– ident: CIT0014
  doi: 10.1016/j.jde.2008.12.015
– ident: CIT0013
  doi: 10.1016/j.jde.2010.08.019
– volume-title: Large Deviations
  year: 1984
  ident: CIT0005
  contributor:
    fullname: Deuschel J.D.
– ident: CIT0010
  doi: 10.2307/2373688
– ident: CIT0020
  doi: 10.1090/S0002-9939-04-07625-7
– volume-title: Partial Differential Equations
  year: 1998
  ident: CIT0006
  contributor:
    fullname: Evans L.C.
– ident: CIT0011
  doi: 10.1090/S0002-9947-09-04738-2
– ident: CIT0015
  doi: 10.1090/S0002-9939-05-08068-8
– ident: CIT0017
  doi: 10.1007/s002330010129
– ident: CIT0019
  doi: 10.1016/0022-1236(81)90050-1
– volume: 32
  start-page: 563
  year: 2006
  ident: CIT0018
  publication-title: Houston J. Math.
  contributor:
    fullname: Prüss J.
– ident: CIT0003
  doi: 10.1007/978-3-7643-8458-6_7
– ident: CIT0001
  doi: 10.1081/PDE-100107815
– ident: CIT0009
  doi: 10.1007/978-3-642-88264-7
– volume: 79
  start-page: 85
  issue: 2
  year: 2009
  ident: CIT0008
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/jdn057
  contributor:
    fullname: Geissert M.
– ident: CIT0016
  doi: 10.1006/jfan.2002.3978
– ident: CIT0002
  doi: 10.1007/b80743
– volume: 92
  volume-title: Heat Kernes and Spectral Theory
  year: 1990
  ident: CIT0004
  contributor:
    fullname: Davies E.B.
SSID ssj0018294
Score 2.1793225
Snippet We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove...
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × R d , where I is a right-halfline. We prove...
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I R super( )d where I is a right-halfline. We...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 2049
SubjectTerms Asymptotic behavior
Asymptotic properties
Brownian motion
Evolution
Evolution operators
Hypercontractivity
Inequalities
Logarithmic Sobolev inequality
Mathematical analysis
Nonautonomous second order elliptic operators
Operators
Partial differential equations
Probability
Unbounded coefficients
Title Hypercontractivity and Asymptotic Behavior in Nonautonomous Kolmogorov Equations
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2013.840790
https://www.proquest.com/docview/1449351811
https://search.proquest.com/docview/1464595502
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMsLShI3KpUcewk9nEFRSugFYdWVFwiO3GqSm1SNglS-zP4xYxf2YStKsol2nVkx_FMZjzjmW8Qeg8skQiRVfCl0SIEDaFCIXEZZlgVAvRhREyi8OFRujyhn0-T09ns9yhqqe_kfnFza17J_1AV2oCuOkv2HpQdBoUG-A30hStQGK7_ROMlGJErE2yu0xNMFQjtB1-015dXXaOhWB38oY453zuCTXff6SQGHfb6pbm4bM6aVfNr7-BnP_LbediCceaIDTbXMzBnOramivmjJn2NP-Hs3Odc99plMsj9rw10uvF31s19rbnUZdu0LbzBSoydEZiYwI6xf5KkUagLEVn14mVqDFxg8S680CVszFzxWIRGFsPUqeM4spWeNkS9i42EB-rn6SA9sg_Wamarj06Rtf_SeEMcIvYAqW6UXI-S21EeoO0YhBdIze3F8uOP78PZFIu5AyWzr-oTMjVi-y2zmWx4JnC4G-rf7GmOn6DHzhgJFpaznqKZqp-hR4cDkm_7HH3b5LEAKBSseSzwPBac18GEx4I1jwUDj71AJ58Ojj8sQ1eFIyxIyrqQkqpilMeCy0RWWUVolSrJSpEwTIssYwI2oZRTmUaZ4iUWQkMOYRmVGRU4I-Ql2qqbWr1CAYkiUco0rkrMaREJphiHFsq4BLNdJHMU-qXKryzYSn4XieaIjdcz74yTq7IVaXJyd9ddv_a5-6JbMIMpJwnsefEcvRtug7zVh2iiVrBy2lSmCQe7Pn59z9nuoIfrT2YXbXWrXr2BHW0n3zoW-wPYCJz8
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqOLQ98Cit2LIUI_WarR07sX1EaFdL9yEOIHGL7MSuKiCBTVKp_fWM81ixRe2hvcZxHmOPZz575huEPsOUiLQWDjSNpwFYCBtoQ7NAUJtqsIeENYnCi2U8veZfb6I-mrDswio9hnYtUUSzVnvl9pvRfUjcF1h1ia924yOz2AggilCA2rdjz__lszjIcn2QIEPVMUiRwHfps-f-8JQN67TBXfpirW4M0GQXmf7T27iT21FdmVH66zdWx__6tz2007mn-KydT_volc3fobeLNbdreYAupwBdV02Iu0-K8LUnMLwOn5U_7x-qAm7CHeniCn_P8RJc_bryqRNFXeJZcXdffCtWxQ88fmxZxsv36HoyvjqfBl1dhiBlsawCzpyTXIVamcg44Rh3sTUy05GkPBVCanBLuOImJsKqjGrtSWioIZngmgrGPqCtvMjtIcKMEJ2ZOHQZVTwlWlqp4AqXygCQ09EABf14JA8t_UZCe1bTTlKJl1TSSmqA5PNBS6pm28O1NUoS9veuw36Ak06PSwBGXLEIvCA6QKfrZtBAf6yicwuS8-CJRwqQXvjx399-gl5PrxbzZH6xnB2hN76lCZoJh2irWtX2GFyfynxqJvcT6jX2xw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQkdDugcfCikIBI3FNsWMnto8VtCqUVj1spd4iO7FXK2hSmhQJfj3jPKotK_awe43jOBnPeOaLZz4j9AFUItJaOLA0ngbgIWygDc0CQW2qwR8SVhcKzxfxdMW_rqP1tSp-n1bpMbRriCLqtdob9zZzXUbcR1h0iT_sxidmsSEgFKEAtD-EQIB4TWdkcdhHkKFqCaRI4Lt0xXP_ecqRczqiLr2xVNf-Z_IE6e7Nm7ST78N9ZYbpn39IHe_zaU_R4zY4xaNGm56hBzY_Q6fzA7Nr-RwtpwBcd3WCuy-J8CdPYBgNj8rfm21VwE24pVzc4ascLyDQ31e-cKLYl3hW_NgUl8Wu-IXHPxuO8fIFWk3GF5-mQXsqQ5CyWFYBZ85JrkKtTGSccIy72BqZ6UhSngohNQQlXHETE2FVRrX2FDTUkExwTQVj56iXF7l9iTAjRGcmDl1GFU-JllYquMKlMgDjdNRHQTcdybYh30hox2naSirxkkoaSfWRvD5nSVX_9HDNCSUJu73roJvfpLXiEmARVyyCGIj20ftDM9if31TRuQXJeejEIwU4L3x199HfoUfLz5Pk25fF7DU68Q11xkw4QL1qt7dvIO6pzNtatf8C_UH1dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypercontractivity+and+Asymptotic+Behavior+in+Nonautonomous+Kolmogorov+Equations&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Angiuli%2C+Luciana&rft.au=Lorenzi%2C+Luca&rft.au=Lunardi%2C+Alessandra&rft.date=2013-12-02&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=38&rft.issue=12&rft.spage=2049&rft.epage=2080&rft_id=info:doi/10.1080%2F03605302.2013.840790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03605302_2013_840790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon