Measurement of average particle size in metal powders by microwave cavity perturbation in the magnetic field
•Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave based particle size sensor is revealed. The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoret...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 259; pp. 137 - 143 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.06.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2017.03.037 |
Cover
Loading…
Abstract | •Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave based particle size sensor is revealed.
The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of previous research examining the dependence of absorption on the ratio of the particle skin depth to radius. Here, the validity of the theoretical approach concerning the peak in the absorption spectrum is verified using a 3D simulation of a hexagonal, close-packed particle matrix. Clear experimental data is given for the real and imaginary parts of the magnetic permeability of metal alloy powders (Ti6Al4V), of varying size, obtained by using the cavity perturbation technique across three separate frequencies in the GHz range. The results are shown to be congruent with existing theory. Further verification of the absorption peak is given by the testing of the powder at lowered conductivity by elevating the temperature. The results demonstrate the applicability of the relatively simple microwave cavity perturbation approach to the determination of the average particle size in a metal powder when compared with other, more complex and time-consuming methods. |
---|---|
AbstractList | The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of previous research examining the dependence of absorption on the ratio of the particle skin depth to radius. Here, the validity of the theoretical approach concerning the peak in the absorption spectrum is verified using a 3D simulation of a hexagonal, close-packed particle matrix. Clear experimental data is given for the real and imaginary parts of the magnetic permeability of metal alloy powders (Ti6AI4V), of varying size, obtained by using the cavity perturbation technique across three separate frequencies in the GHz range. The results are shown to be congruent with existing theory. Further verification of the absorption peak is given by the testing of the powder at lowered conductivity by elevating the temperature. The results demonstrate the applicability of the relatively simple microwave cavity perturbation approach to the determination of the average particle size in a metal powder when compared with other, more complex and time-consuming methods. •Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave based particle size sensor is revealed. The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of previous research examining the dependence of absorption on the ratio of the particle skin depth to radius. Here, the validity of the theoretical approach concerning the peak in the absorption spectrum is verified using a 3D simulation of a hexagonal, close-packed particle matrix. Clear experimental data is given for the real and imaginary parts of the magnetic permeability of metal alloy powders (Ti6Al4V), of varying size, obtained by using the cavity perturbation technique across three separate frequencies in the GHz range. The results are shown to be congruent with existing theory. Further verification of the absorption peak is given by the testing of the powder at lowered conductivity by elevating the temperature. The results demonstrate the applicability of the relatively simple microwave cavity perturbation approach to the determination of the average particle size in a metal powder when compared with other, more complex and time-consuming methods. |
Author | Clark, N. Porch, A. Jones, N. |
Author_xml | – sequence: 1 givenname: N. surname: Clark fullname: Clark, N. email: clarkns@cardiff.ac.uk organization: Centre for High Frequency Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom – sequence: 2 givenname: N. surname: Jones fullname: Jones, N. organization: Renishaw Plc, New Mills, Wotton-under-Edge, Gloucestershire, GL12 8JR, United Kingdom – sequence: 3 givenname: A. surname: Porch fullname: Porch, A. organization: Centre for High Frequency Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom |
BookMark | eNp9kE1LxDAQhoMouH78AG8Bz12Tppu0eBLxCxQveg7TdKJZ2rQm2ZX115t1PXkQBuYw7zMz73tE9v3okZAzzuaccXmxnEcP85JxNWcil9ojM14rUQgmm30yY01ZFVVZqUNyFOOSMSaEUjPSPyHEVcABfaKjpbDGAG9IJwjJmR5pdF9InacDJujpNH52GCJtN3RwJoyfWU8NrF3a0AlDWoUWkhv9lkjvSAd485gXUeuw707IgYU-4ulvPyavtzcv1_fF4_Pdw_XVY2GErFMhrETbgTQ1CimhtkoBCqYaqVomTMuhLLmpWgk8zwyYRcVMA01jbc26shXH5Hy3dwrjxwpj0stxFXw-qXlTLZRQYtFkldqpso8YA1ptXPr5PgVwveZMb6PVS52j1dtoNRO5VCb5H3IKboCw-Ze53DGYja8dBh2NQ2-wcwFN0t3o_qG_ATIHlfQ |
CitedBy_id | crossref_primary_10_1039_D3BM01151H crossref_primary_10_1021_acsomega_7b02000 crossref_primary_10_1109_TMTT_2018_2882480 crossref_primary_10_3390_app11052234 crossref_primary_10_1039_C8CY01601A crossref_primary_10_1109_TCPMT_2019_2921055 |
Cites_doi | 10.1039/c2cp43310a 10.1023/A:1017900214477 10.1007/s11663-006-0066-z 10.1063/1.3036900 10.1143/JJAP.48.067001 10.1063/1.2713087 10.1063/1.4772648 10.1016/j.physb.2009.08.086 10.1088/0965-0393/18/2/025015 10.1002/(SICI)1098-2760(199807)18:4<241::AID-MOP1>3.0.CO;2-E 10.2298/SOS1002169M 10.1063/1.2159078 10.1038/21390 10.1143/JJAP.10.345 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright Elsevier BV Jun 1, 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright Elsevier BV Jun 1, 2017 |
DBID | 6I. AAFTH AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2017.03.037 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 143 |
ExternalDocumentID | 10_1016_j_sna_2017_03_037 S092442471630927X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c368t-3f6efda6c8e366a8f77ae307967b03cb1a221c4b6a18f7cac540c9a99ff80d2b3 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Fri Jul 25 06:28:02 EDT 2025 Tue Jul 01 01:05:24 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Fri Feb 23 02:21:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cavity perturbation Microwave Magnetic Permeability Eddy current Metal powder |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-3f6efda6c8e366a8f77ae307967b03cb1a221c4b6a18f7cac540c9a99ff80d2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S092442471630927X |
PQID | 1945737359 |
PQPubID | 2045401 |
PageCount | 7 |
ParticipantIDs | proquest_journals_1945737359 crossref_citationtrail_10_1016_j_sna_2017_03_037 crossref_primary_10_1016_j_sna_2017_03_037 elsevier_sciencedirect_doi_10_1016_j_sna_2017_03_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 2017-06-00 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Rybakov, Semenov, Egorov, Eremeev, Plotnikov, Bykov (bib0020) 2006; 99 (bib0110) 1961 Mondal, Shukla, Upadhyaya, Agrawal (bib0035) 2010; 42 J.A. Cuenca, E. Thomas, S. Mandal, O. Williams, A. Porch, Investigating the broadband microwave absorption of nanodiamond impurities, 63 (2015) 4110–4118. 10.1109/TMTT.2015.2495156. Zimmerman, Cardellino, Cravener, Feather, Miskovsky, Weisel (bib0060) 2008; 93 Roy, Agrawal, Cheng, Gedevanishvili (bib0005) 1999; 399 Ignatenko, Tanaka (bib0080) 2010; 405 Ignatenko, Tanaka, Sato (bib0015) 2009; 48 M.C. Sanchez, E. Martin, J.M. Zamarro, New vectorial automatic technique for characterisation of resonators, 136 (1989) 147–150. Kashimura, Hasegawa, Suzuki, Hayashi, Mitani, Shinohara, Nagata (bib0040) 2013; 113 Mishra, Upadhyaya, Sethi (bib0045) 2006; 37 Cuenca, Thomas, Mandal, Williams, Porch (bib0070) 2014 Lin, Wang, Afsar (bib0065) 2005 Callister (bib0100) 2003 Ma, Diehl, Johnson, Martin, Miskovsky, Smith, Weisel, Weiss, Zimmerman (bib0030) 2007; 101 Cheng, Roy, Agrawal (bib0025) 2001; 20 Galek, Porath, Burkel, van Rienen (bib0085) 2010; 18 Parshin, Serov, Van Klooster, Ravanelli (bib0105) 2010 Raveendranath, Mathew (bib0050) 1998; 18 Cuenca, Klein, Rüger, Porch (bib0095) 2014 Kobayashi, Ogawa (bib0055) 1971; 10 Porch, Slocombe, Edwards (bib0010) 2013; 15 Porch (10.1016/j.sna.2017.03.037_bib0010) 2013; 15 Roy (10.1016/j.sna.2017.03.037_bib0005) 1999; 399 10.1016/j.sna.2017.03.037_bib0090 Callister (10.1016/j.sna.2017.03.037_bib0100) 2003 Cuenca (10.1016/j.sna.2017.03.037_bib0070) 2014 Galek (10.1016/j.sna.2017.03.037_bib0085) 2010; 18 Cuenca (10.1016/j.sna.2017.03.037_bib0095) 2014 Lin (10.1016/j.sna.2017.03.037_bib0065) 2005 Parshin (10.1016/j.sna.2017.03.037_bib0105) 2010 Mondal (10.1016/j.sna.2017.03.037_bib0035) 2010; 42 Ma (10.1016/j.sna.2017.03.037_bib0030) 2007; 101 Mishra (10.1016/j.sna.2017.03.037_bib0045) 2006; 37 Ignatenko (10.1016/j.sna.2017.03.037_bib0080) 2010; 405 Kashimura (10.1016/j.sna.2017.03.037_bib0040) 2013; 113 Cheng (10.1016/j.sna.2017.03.037_bib0025) 2001; 20 Zimmerman (10.1016/j.sna.2017.03.037_bib0060) 2008; 93 Ignatenko (10.1016/j.sna.2017.03.037_bib0015) 2009; 48 Kobayashi (10.1016/j.sna.2017.03.037_bib0055) 1971; 10 Raveendranath (10.1016/j.sna.2017.03.037_bib0050) 1998; 18 (10.1016/j.sna.2017.03.037_bib0110) 1961 Rybakov (10.1016/j.sna.2017.03.037_bib0020) 2006; 99 10.1016/j.sna.2017.03.037_bib0075 |
References_xml | – year: 2005 ident: bib0065 article-title: Precision measurement of complex permittivity and permeability by microwave cavity perturbation technique publication-title: Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005 – reference: M.C. Sanchez, E. Martin, J.M. Zamarro, New vectorial automatic technique for characterisation of resonators, 136 (1989) 147–150. – reference: J.A. Cuenca, E. Thomas, S. Mandal, O. Williams, A. Porch, Investigating the broadband microwave absorption of nanodiamond impurities, 63 (2015) 4110–4118. 10.1109/TMTT.2015.2495156. – volume: 48 start-page: 67001 year: 2009 ident: bib0015 article-title: Absorption of microwave energy by a spherical nonmagnetic metal particle publication-title: Jpn. J. Appl. Phys. – volume: 113 start-page: 24902 year: 2013 ident: bib0040 article-title: Effects of relative density on microwave heating of various carbon powder compacts microwave-metallic multi-particle coupling using spatially separated magnetic fields publication-title: J. Appl. Phys. – volume: 37 start-page: 839 year: 2006 end-page: 845 ident: bib0045 article-title: Modeling of microwave heating of particulate metals publication-title: Metall. Mater. Trans. B – start-page: 128 year: 2014 end-page: 131 ident: bib0095 article-title: Microwave complex permeability of magnetite using non-demagnetising and demagnetising cavity modes publication-title: 44th Eur. Microw. Conf. – volume: 99 start-page: 23506 year: 2006 ident: bib0020 article-title: Microwave heating of conductive powder materials publication-title: J. Appl. Phys. – volume: 20 start-page: 1561 year: 2001 end-page: 1563 ident: bib0025 article-title: Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites publication-title: J. Mater. Sci. Lett. – volume: 101 start-page: 74906 year: 2007 ident: bib0030 article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts publication-title: J.Appl. Phys. – volume: 399 start-page: 668 year: 1999 end-page: 670 ident: bib0005 article-title: Full sintering of powdered-metal bodies in a microwave field publication-title: Nature – year: 2003 ident: bib0100 article-title: Materials Science and Engineering: An Introduction – volume: 42 start-page: 169 year: 2010 end-page: 182 ident: bib0035 article-title: Effect of porosity and particle size on microwave heating of copper publication-title: Sci. Sinter. – volume: 93 start-page: 214103 year: 2008 ident: bib0060 article-title: Microwave absorption in percolating metal-insulator composites publication-title: Appl. Phys. Lett. – volume: 15 start-page: 2757 year: 2013 end-page: 2763 ident: bib0010 article-title: Microwave absorption in powders of small conducting particles for heating applications publication-title: Phys. Chem. Chem. Phys. – volume: 18 start-page: 25015 year: 2010 ident: bib0085 article-title: Extraction of effective permittivity and permeability of metallic powders in the microwave range publication-title: Model. Simul. Mater. Sci. Eng. – start-page: 441 year: 2014 end-page: 443 ident: bib0070 article-title: Broadband microwave measurements of nanodiamond publication-title: Microw. Conf. (APMC), 2014 Asia-Pacific – year: 1961 ident: bib0110 article-title: Metals Handbook Volume 1 – volume: 10 start-page: 345 year: 1971 end-page: 350 ident: bib0055 article-title: Dielectric constant and conductivity measurement of powder samples by the cavity perturbation method publication-title: Jpn. J. Appl. Phys. – volume: 405 start-page: 352 year: 2010 end-page: 358 ident: bib0080 article-title: Effective permittivity and permeability of coated metal powders at microwave frequency publication-title: Phys. B Condens. Matter. – volume: 18 start-page: 241 year: 1998 end-page: 243 ident: bib0050 article-title: New cavity rerturbation technique for measuring complex permeability of ferrite materials publication-title: Microw. Opt. Technol. Lett. – start-page: 1 year: 2010 end-page: 5 ident: bib0105 article-title: Resonator techniques for reflectivity and surface resistivity at high temperature: methodology and measurements publication-title: Int. Conf. Microw. Radar Wirel. Commun. – volume: 15 start-page: 2757 year: 2013 ident: 10.1016/j.sna.2017.03.037_bib0010 article-title: Microwave absorption in powders of small conducting particles for heating applications publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp43310a – volume: 20 start-page: 1561 year: 2001 ident: 10.1016/j.sna.2017.03.037_bib0025 article-title: Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites publication-title: J. Mater. Sci. Lett. doi: 10.1023/A:1017900214477 – ident: 10.1016/j.sna.2017.03.037_bib0075 – volume: 37 start-page: 839 year: 2006 ident: 10.1016/j.sna.2017.03.037_bib0045 article-title: Modeling of microwave heating of particulate metals publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-006-0066-z – volume: 93 start-page: 214103 year: 2008 ident: 10.1016/j.sna.2017.03.037_bib0060 article-title: Microwave absorption in percolating metal-insulator composites publication-title: Appl. Phys. Lett. doi: 10.1063/1.3036900 – year: 2005 ident: 10.1016/j.sna.2017.03.037_bib0065 article-title: Precision measurement of complex permittivity and permeability by microwave cavity perturbation technique – volume: 48 start-page: 67001 year: 2009 ident: 10.1016/j.sna.2017.03.037_bib0015 article-title: Absorption of microwave energy by a spherical nonmagnetic metal particle publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.067001 – start-page: 441 year: 2014 ident: 10.1016/j.sna.2017.03.037_bib0070 article-title: Broadband microwave measurements of nanodiamond – volume: 101 start-page: 74906 year: 2007 ident: 10.1016/j.sna.2017.03.037_bib0030 article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts publication-title: J.Appl. Phys. doi: 10.1063/1.2713087 – volume: 113 start-page: 24902 year: 2013 ident: 10.1016/j.sna.2017.03.037_bib0040 article-title: Effects of relative density on microwave heating of various carbon powder compacts microwave-metallic multi-particle coupling using spatially separated magnetic fields publication-title: J. Appl. Phys. doi: 10.1063/1.4772648 – year: 1961 ident: 10.1016/j.sna.2017.03.037_bib0110 – volume: 405 start-page: 352 year: 2010 ident: 10.1016/j.sna.2017.03.037_bib0080 article-title: Effective permittivity and permeability of coated metal powders at microwave frequency publication-title: Phys. B Condens. Matter. doi: 10.1016/j.physb.2009.08.086 – start-page: 128 year: 2014 ident: 10.1016/j.sna.2017.03.037_bib0095 article-title: Microwave complex permeability of magnetite using non-demagnetising and demagnetising cavity modes – volume: 18 start-page: 25015 year: 2010 ident: 10.1016/j.sna.2017.03.037_bib0085 article-title: Extraction of effective permittivity and permeability of metallic powders in the microwave range publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/2/025015 – volume: 18 start-page: 241 year: 1998 ident: 10.1016/j.sna.2017.03.037_bib0050 article-title: New cavity rerturbation technique for measuring complex permeability of ferrite materials publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/(SICI)1098-2760(199807)18:4<241::AID-MOP1>3.0.CO;2-E – ident: 10.1016/j.sna.2017.03.037_bib0090 – volume: 42 start-page: 169 year: 2010 ident: 10.1016/j.sna.2017.03.037_bib0035 article-title: Effect of porosity and particle size on microwave heating of copper publication-title: Sci. Sinter. doi: 10.2298/SOS1002169M – year: 2003 ident: 10.1016/j.sna.2017.03.037_bib0100 – start-page: 1 year: 2010 ident: 10.1016/j.sna.2017.03.037_bib0105 article-title: Resonator techniques for reflectivity and surface resistivity at high temperature: methodology and measurements publication-title: Int. Conf. Microw. Radar Wirel. Commun. – volume: 99 start-page: 23506 year: 2006 ident: 10.1016/j.sna.2017.03.037_bib0020 article-title: Microwave heating of conductive powder materials publication-title: J. Appl. Phys. doi: 10.1063/1.2159078 – volume: 399 start-page: 668 year: 1999 ident: 10.1016/j.sna.2017.03.037_bib0005 article-title: Full sintering of powdered-metal bodies in a microwave field publication-title: Nature doi: 10.1038/21390 – volume: 10 start-page: 345 year: 1971 ident: 10.1016/j.sna.2017.03.037_bib0055 article-title: Dielectric constant and conductivity measurement of powder samples by the cavity perturbation method publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.10.345 |
SSID | ssj0003377 |
Score | 2.2497134 |
Snippet | •Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave... The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 137 |
SubjectTerms | Absorption spectra Alloy powders Cavity perturbation Eddy current Magnetic Magnetic fields Magnetic permeability Measurement Metal powder Metal powders Microwave Microwave frequencies Microwaves Particle size Permeability Perturbation Studies |
Title | Measurement of average particle size in metal powders by microwave cavity perturbation in the magnetic field |
URI | https://dx.doi.org/10.1016/j.sna.2017.03.037 https://www.proquest.com/docview/1945737359 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWz8sCEFJrEjp2MqKIqILpApW6W7dioiKYRLUIw8Nu5SxNeQgxIGfI4R8md7-HkuztCjjk3PNMJC2ChxgPuIxZok4G68yS2sOLKeYIJztcD0R_yy1EyapFukwuDsMra9i9semWt6zOdmpudcjzu3ISwdOAxGFfBYFeOMIOdS4T1nb59wjwYq7ovInGA1M2fzQrjNSuw9FAkqzqn2Ar9d9_0w0pXrqe3TtbqmJGeLR5rg7RcsUlWv1QS3CIP15_f-ujUUw0zFCwFLet3obPxq6Pjgk4cRNu0nD4jgJmaFzpBRN4z0FOrsY8ELd0juCFTSQxHQIRIJ_quwGxHWgHetsmwd37b7Qd1I4XAMpHOA-aF87kWNnVMCJ16KbUD5c6ENCGzJtJxHFluhI7gmtUWwjib6SzzPg3z2LAdslRMC7dLaA46LKXB-p6Om1RoH3qduzzJQbYg6T0SNixUtq4yjs0uHlQDJ7tXwHWFXFchg03ukZOPIeWixMZfxLyRi_o2TxS4gL-GHTYyVLWSzlSU8UQyyZJs_393PSAreLRAjh2SpfnjkzuCGGVu2tUkbJPls4ur_uAdCePnuA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-C9jA4oMFAsLHhA6dJUZPYsZMjQqCyflwAqTfLdmxU1KYRLULsr99z6pRtmjhMyiGK_aLkPb-v5Of3AM4Z06xQGY0wUWMRcwmNlC5Q3VmWGsy4Spb5Dc6jMe_fsx-TbLIFl-1eGA-rDLZ_bdMbax2u9AI3e_V02ruNMXVgKRpXTvFUTLah66tTsQ50L24G_fHGIFPaNGD08yNP0P7cbGBey8pXH0pEU-rUd0P_t3v6y1A33uf6I-yFsJFcrJ9sH7ZsdQC7vxUT_ASz0dvnPrJwROEiRWNB6vA6ZDn9acm0InOLATepFy8ew0z0K5l7UN4LzidG-VYSpLZP6Il0IzRPgUEimauHym94JA3m7RDur6_uLvtR6KUQGcrzVUQdt65U3OSWcq5yJ4SyqN8FFzqmRicqTRPDNFcJjhllMJIzhSoK5_K4TDU9gk61qOwxkBLVWAjtS3xapnOuXOxUacusRPGisE8gblkoTSg07vtdzGSLKHuUyHXpuS5jioc4ge8bknpdZeO9yayVi_xjqUj0Au-RnbYylEFPlzIpWCaooFnx-f_uegYf-nejoRzejAdfYMePrIFkp9BZPT3brxiyrPS3sCR_AfxS6mk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+average+particle+size+in+metal+powders+by+microwave+cavity+perturbation+in+the+magnetic+field&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Clark%2C+N&rft.au=Jones%2C+N&rft.au=Porch%2C+A&rft.date=2017-06-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=259&rft.spage=137&rft_id=info:doi/10.1016%2Fj.sna.2017.03.037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |