Measurement of average particle size in metal powders by microwave cavity perturbation in the magnetic field

•Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave based particle size sensor is revealed. The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoret...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 259; pp. 137 - 143
Main Authors Clark, N., Jones, N., Porch, A.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.06.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2017.03.037

Cover

Loading…
Abstract •Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave based particle size sensor is revealed. The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of previous research examining the dependence of absorption on the ratio of the particle skin depth to radius. Here, the validity of the theoretical approach concerning the peak in the absorption spectrum is verified using a 3D simulation of a hexagonal, close-packed particle matrix. Clear experimental data is given for the real and imaginary parts of the magnetic permeability of metal alloy powders (Ti6Al4V), of varying size, obtained by using the cavity perturbation technique across three separate frequencies in the GHz range. The results are shown to be congruent with existing theory. Further verification of the absorption peak is given by the testing of the powder at lowered conductivity by elevating the temperature. The results demonstrate the applicability of the relatively simple microwave cavity perturbation approach to the determination of the average particle size in a metal powder when compared with other, more complex and time-consuming methods.
AbstractList The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of previous research examining the dependence of absorption on the ratio of the particle skin depth to radius. Here, the validity of the theoretical approach concerning the peak in the absorption spectrum is verified using a 3D simulation of a hexagonal, close-packed particle matrix. Clear experimental data is given for the real and imaginary parts of the magnetic permeability of metal alloy powders (Ti6AI4V), of varying size, obtained by using the cavity perturbation technique across three separate frequencies in the GHz range. The results are shown to be congruent with existing theory. Further verification of the absorption peak is given by the testing of the powder at lowered conductivity by elevating the temperature. The results demonstrate the applicability of the relatively simple microwave cavity perturbation approach to the determination of the average particle size in a metal powder when compared with other, more complex and time-consuming methods.
•Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave based particle size sensor is revealed. The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of previous research examining the dependence of absorption on the ratio of the particle skin depth to radius. Here, the validity of the theoretical approach concerning the peak in the absorption spectrum is verified using a 3D simulation of a hexagonal, close-packed particle matrix. Clear experimental data is given for the real and imaginary parts of the magnetic permeability of metal alloy powders (Ti6Al4V), of varying size, obtained by using the cavity perturbation technique across three separate frequencies in the GHz range. The results are shown to be congruent with existing theory. Further verification of the absorption peak is given by the testing of the powder at lowered conductivity by elevating the temperature. The results demonstrate the applicability of the relatively simple microwave cavity perturbation approach to the determination of the average particle size in a metal powder when compared with other, more complex and time-consuming methods.
Author Clark, N.
Porch, A.
Jones, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Clark
  fullname: Clark, N.
  email: clarkns@cardiff.ac.uk
  organization: Centre for High Frequency Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom
– sequence: 2
  givenname: N.
  surname: Jones
  fullname: Jones, N.
  organization: Renishaw Plc, New Mills, Wotton-under-Edge, Gloucestershire, GL12 8JR, United Kingdom
– sequence: 3
  givenname: A.
  surname: Porch
  fullname: Porch, A.
  organization: Centre for High Frequency Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom
BookMark eNp9kE1LxDAQhoMouH78AG8Bz12Tppu0eBLxCxQveg7TdKJZ2rQm2ZX115t1PXkQBuYw7zMz73tE9v3okZAzzuaccXmxnEcP85JxNWcil9ojM14rUQgmm30yY01ZFVVZqUNyFOOSMSaEUjPSPyHEVcABfaKjpbDGAG9IJwjJmR5pdF9InacDJujpNH52GCJtN3RwJoyfWU8NrF3a0AlDWoUWkhv9lkjvSAd485gXUeuw707IgYU-4ulvPyavtzcv1_fF4_Pdw_XVY2GErFMhrETbgTQ1CimhtkoBCqYaqVomTMuhLLmpWgk8zwyYRcVMA01jbc26shXH5Hy3dwrjxwpj0stxFXw-qXlTLZRQYtFkldqpso8YA1ptXPr5PgVwveZMb6PVS52j1dtoNRO5VCb5H3IKboCw-Ze53DGYja8dBh2NQ2-wcwFN0t3o_qG_ATIHlfQ
CitedBy_id crossref_primary_10_1039_D3BM01151H
crossref_primary_10_1021_acsomega_7b02000
crossref_primary_10_1109_TMTT_2018_2882480
crossref_primary_10_3390_app11052234
crossref_primary_10_1039_C8CY01601A
crossref_primary_10_1109_TCPMT_2019_2921055
Cites_doi 10.1039/c2cp43310a
10.1023/A:1017900214477
10.1007/s11663-006-0066-z
10.1063/1.3036900
10.1143/JJAP.48.067001
10.1063/1.2713087
10.1063/1.4772648
10.1016/j.physb.2009.08.086
10.1088/0965-0393/18/2/025015
10.1002/(SICI)1098-2760(199807)18:4<241::AID-MOP1>3.0.CO;2-E
10.2298/SOS1002169M
10.1063/1.2159078
10.1038/21390
10.1143/JJAP.10.345
ContentType Journal Article
Copyright 2017 The Authors
Copyright Elsevier BV Jun 1, 2017
Copyright_xml – notice: 2017 The Authors
– notice: Copyright Elsevier BV Jun 1, 2017
DBID 6I.
AAFTH
AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2017.03.037
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 143
ExternalDocumentID 10_1016_j_sna_2017_03_037
S092442471630927X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c368t-3f6efda6c8e366a8f77ae307967b03cb1a221c4b6a18f7cac540c9a99ff80d2b3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 25 06:28:02 EDT 2025
Tue Jul 01 01:05:24 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Fri Feb 23 02:21:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cavity perturbation
Microwave
Magnetic
Permeability
Eddy current
Metal powder
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-3f6efda6c8e366a8f77ae307967b03cb1a221c4b6a18f7cac540c9a99ff80d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S092442471630927X
PQID 1945737359
PQPubID 2045401
PageCount 7
ParticipantIDs proquest_journals_1945737359
crossref_citationtrail_10_1016_j_sna_2017_03_037
crossref_primary_10_1016_j_sna_2017_03_037
elsevier_sciencedirect_doi_10_1016_j_sna_2017_03_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Rybakov, Semenov, Egorov, Eremeev, Plotnikov, Bykov (bib0020) 2006; 99
(bib0110) 1961
Mondal, Shukla, Upadhyaya, Agrawal (bib0035) 2010; 42
J.A. Cuenca, E. Thomas, S. Mandal, O. Williams, A. Porch, Investigating the broadband microwave absorption of nanodiamond impurities, 63 (2015) 4110–4118. 10.1109/TMTT.2015.2495156.
Zimmerman, Cardellino, Cravener, Feather, Miskovsky, Weisel (bib0060) 2008; 93
Roy, Agrawal, Cheng, Gedevanishvili (bib0005) 1999; 399
Ignatenko, Tanaka (bib0080) 2010; 405
Ignatenko, Tanaka, Sato (bib0015) 2009; 48
M.C. Sanchez, E. Martin, J.M. Zamarro, New vectorial automatic technique for characterisation of resonators, 136 (1989) 147–150.
Kashimura, Hasegawa, Suzuki, Hayashi, Mitani, Shinohara, Nagata (bib0040) 2013; 113
Mishra, Upadhyaya, Sethi (bib0045) 2006; 37
Cuenca, Thomas, Mandal, Williams, Porch (bib0070) 2014
Lin, Wang, Afsar (bib0065) 2005
Callister (bib0100) 2003
Ma, Diehl, Johnson, Martin, Miskovsky, Smith, Weisel, Weiss, Zimmerman (bib0030) 2007; 101
Cheng, Roy, Agrawal (bib0025) 2001; 20
Galek, Porath, Burkel, van Rienen (bib0085) 2010; 18
Parshin, Serov, Van Klooster, Ravanelli (bib0105) 2010
Raveendranath, Mathew (bib0050) 1998; 18
Cuenca, Klein, Rüger, Porch (bib0095) 2014
Kobayashi, Ogawa (bib0055) 1971; 10
Porch, Slocombe, Edwards (bib0010) 2013; 15
Porch (10.1016/j.sna.2017.03.037_bib0010) 2013; 15
Roy (10.1016/j.sna.2017.03.037_bib0005) 1999; 399
10.1016/j.sna.2017.03.037_bib0090
Callister (10.1016/j.sna.2017.03.037_bib0100) 2003
Cuenca (10.1016/j.sna.2017.03.037_bib0070) 2014
Galek (10.1016/j.sna.2017.03.037_bib0085) 2010; 18
Cuenca (10.1016/j.sna.2017.03.037_bib0095) 2014
Lin (10.1016/j.sna.2017.03.037_bib0065) 2005
Parshin (10.1016/j.sna.2017.03.037_bib0105) 2010
Mondal (10.1016/j.sna.2017.03.037_bib0035) 2010; 42
Ma (10.1016/j.sna.2017.03.037_bib0030) 2007; 101
Mishra (10.1016/j.sna.2017.03.037_bib0045) 2006; 37
Ignatenko (10.1016/j.sna.2017.03.037_bib0080) 2010; 405
Kashimura (10.1016/j.sna.2017.03.037_bib0040) 2013; 113
Cheng (10.1016/j.sna.2017.03.037_bib0025) 2001; 20
Zimmerman (10.1016/j.sna.2017.03.037_bib0060) 2008; 93
Ignatenko (10.1016/j.sna.2017.03.037_bib0015) 2009; 48
Kobayashi (10.1016/j.sna.2017.03.037_bib0055) 1971; 10
Raveendranath (10.1016/j.sna.2017.03.037_bib0050) 1998; 18
(10.1016/j.sna.2017.03.037_bib0110) 1961
Rybakov (10.1016/j.sna.2017.03.037_bib0020) 2006; 99
10.1016/j.sna.2017.03.037_bib0075
References_xml – year: 2005
  ident: bib0065
  article-title: Precision measurement of complex permittivity and permeability by microwave cavity perturbation technique
  publication-title: Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005
– reference: M.C. Sanchez, E. Martin, J.M. Zamarro, New vectorial automatic technique for characterisation of resonators, 136 (1989) 147–150.
– reference: J.A. Cuenca, E. Thomas, S. Mandal, O. Williams, A. Porch, Investigating the broadband microwave absorption of nanodiamond impurities, 63 (2015) 4110–4118. 10.1109/TMTT.2015.2495156.
– volume: 48
  start-page: 67001
  year: 2009
  ident: bib0015
  article-title: Absorption of microwave energy by a spherical nonmagnetic metal particle
  publication-title: Jpn. J. Appl. Phys.
– volume: 113
  start-page: 24902
  year: 2013
  ident: bib0040
  article-title: Effects of relative density on microwave heating of various carbon powder compacts microwave-metallic multi-particle coupling using spatially separated magnetic fields
  publication-title: J. Appl. Phys.
– volume: 37
  start-page: 839
  year: 2006
  end-page: 845
  ident: bib0045
  article-title: Modeling of microwave heating of particulate metals
  publication-title: Metall. Mater. Trans. B
– start-page: 128
  year: 2014
  end-page: 131
  ident: bib0095
  article-title: Microwave complex permeability of magnetite using non-demagnetising and demagnetising cavity modes
  publication-title: 44th Eur. Microw. Conf.
– volume: 99
  start-page: 23506
  year: 2006
  ident: bib0020
  article-title: Microwave heating of conductive powder materials
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 1561
  year: 2001
  end-page: 1563
  ident: bib0025
  article-title: Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites
  publication-title: J. Mater. Sci. Lett.
– volume: 101
  start-page: 74906
  year: 2007
  ident: bib0030
  article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts
  publication-title: J.Appl. Phys.
– volume: 399
  start-page: 668
  year: 1999
  end-page: 670
  ident: bib0005
  article-title: Full sintering of powdered-metal bodies in a microwave field
  publication-title: Nature
– year: 2003
  ident: bib0100
  article-title: Materials Science and Engineering: An Introduction
– volume: 42
  start-page: 169
  year: 2010
  end-page: 182
  ident: bib0035
  article-title: Effect of porosity and particle size on microwave heating of copper
  publication-title: Sci. Sinter.
– volume: 93
  start-page: 214103
  year: 2008
  ident: bib0060
  article-title: Microwave absorption in percolating metal-insulator composites
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 2757
  year: 2013
  end-page: 2763
  ident: bib0010
  article-title: Microwave absorption in powders of small conducting particles for heating applications
  publication-title: Phys. Chem. Chem. Phys.
– volume: 18
  start-page: 25015
  year: 2010
  ident: bib0085
  article-title: Extraction of effective permittivity and permeability of metallic powders in the microwave range
  publication-title: Model. Simul. Mater. Sci. Eng.
– start-page: 441
  year: 2014
  end-page: 443
  ident: bib0070
  article-title: Broadband microwave measurements of nanodiamond
  publication-title: Microw. Conf. (APMC), 2014 Asia-Pacific
– year: 1961
  ident: bib0110
  article-title: Metals Handbook Volume 1
– volume: 10
  start-page: 345
  year: 1971
  end-page: 350
  ident: bib0055
  article-title: Dielectric constant and conductivity measurement of powder samples by the cavity perturbation method
  publication-title: Jpn. J. Appl. Phys.
– volume: 405
  start-page: 352
  year: 2010
  end-page: 358
  ident: bib0080
  article-title: Effective permittivity and permeability of coated metal powders at microwave frequency
  publication-title: Phys. B Condens. Matter.
– volume: 18
  start-page: 241
  year: 1998
  end-page: 243
  ident: bib0050
  article-title: New cavity rerturbation technique for measuring complex permeability of ferrite materials
  publication-title: Microw. Opt. Technol. Lett.
– start-page: 1
  year: 2010
  end-page: 5
  ident: bib0105
  article-title: Resonator techniques for reflectivity and surface resistivity at high temperature: methodology and measurements
  publication-title: Int. Conf. Microw. Radar Wirel. Commun.
– volume: 15
  start-page: 2757
  year: 2013
  ident: 10.1016/j.sna.2017.03.037_bib0010
  article-title: Microwave absorption in powders of small conducting particles for heating applications
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp43310a
– volume: 20
  start-page: 1561
  year: 2001
  ident: 10.1016/j.sna.2017.03.037_bib0025
  article-title: Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1023/A:1017900214477
– ident: 10.1016/j.sna.2017.03.037_bib0075
– volume: 37
  start-page: 839
  year: 2006
  ident: 10.1016/j.sna.2017.03.037_bib0045
  article-title: Modeling of microwave heating of particulate metals
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-006-0066-z
– volume: 93
  start-page: 214103
  year: 2008
  ident: 10.1016/j.sna.2017.03.037_bib0060
  article-title: Microwave absorption in percolating metal-insulator composites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3036900
– year: 2005
  ident: 10.1016/j.sna.2017.03.037_bib0065
  article-title: Precision measurement of complex permittivity and permeability by microwave cavity perturbation technique
– volume: 48
  start-page: 67001
  year: 2009
  ident: 10.1016/j.sna.2017.03.037_bib0015
  article-title: Absorption of microwave energy by a spherical nonmagnetic metal particle
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.48.067001
– start-page: 441
  year: 2014
  ident: 10.1016/j.sna.2017.03.037_bib0070
  article-title: Broadband microwave measurements of nanodiamond
– volume: 101
  start-page: 74906
  year: 2007
  ident: 10.1016/j.sna.2017.03.037_bib0030
  article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts
  publication-title: J.Appl. Phys.
  doi: 10.1063/1.2713087
– volume: 113
  start-page: 24902
  year: 2013
  ident: 10.1016/j.sna.2017.03.037_bib0040
  article-title: Effects of relative density on microwave heating of various carbon powder compacts microwave-metallic multi-particle coupling using spatially separated magnetic fields
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4772648
– year: 1961
  ident: 10.1016/j.sna.2017.03.037_bib0110
– volume: 405
  start-page: 352
  year: 2010
  ident: 10.1016/j.sna.2017.03.037_bib0080
  article-title: Effective permittivity and permeability of coated metal powders at microwave frequency
  publication-title: Phys. B Condens. Matter.
  doi: 10.1016/j.physb.2009.08.086
– start-page: 128
  year: 2014
  ident: 10.1016/j.sna.2017.03.037_bib0095
  article-title: Microwave complex permeability of magnetite using non-demagnetising and demagnetising cavity modes
– volume: 18
  start-page: 25015
  year: 2010
  ident: 10.1016/j.sna.2017.03.037_bib0085
  article-title: Extraction of effective permittivity and permeability of metallic powders in the microwave range
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/2/025015
– volume: 18
  start-page: 241
  year: 1998
  ident: 10.1016/j.sna.2017.03.037_bib0050
  article-title: New cavity rerturbation technique for measuring complex permeability of ferrite materials
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/(SICI)1098-2760(199807)18:4<241::AID-MOP1>3.0.CO;2-E
– ident: 10.1016/j.sna.2017.03.037_bib0090
– volume: 42
  start-page: 169
  year: 2010
  ident: 10.1016/j.sna.2017.03.037_bib0035
  article-title: Effect of porosity and particle size on microwave heating of copper
  publication-title: Sci. Sinter.
  doi: 10.2298/SOS1002169M
– year: 2003
  ident: 10.1016/j.sna.2017.03.037_bib0100
– start-page: 1
  year: 2010
  ident: 10.1016/j.sna.2017.03.037_bib0105
  article-title: Resonator techniques for reflectivity and surface resistivity at high temperature: methodology and measurements
  publication-title: Int. Conf. Microw. Radar Wirel. Commun.
– volume: 99
  start-page: 23506
  year: 2006
  ident: 10.1016/j.sna.2017.03.037_bib0020
  article-title: Microwave heating of conductive powder materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2159078
– volume: 399
  start-page: 668
  year: 1999
  ident: 10.1016/j.sna.2017.03.037_bib0005
  article-title: Full sintering of powdered-metal bodies in a microwave field
  publication-title: Nature
  doi: 10.1038/21390
– volume: 10
  start-page: 345
  year: 1971
  ident: 10.1016/j.sna.2017.03.037_bib0055
  article-title: Dielectric constant and conductivity measurement of powder samples by the cavity perturbation method
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.10.345
SSID ssj0003377
Score 2.2497134
Snippet •Direct permeability measurement of metal powders is presented.•Correlation of experimental results and previous theory is observed.•Potential for microwave...
The magnetic absorption of metallic powders, particularly at microwave frequencies, is of great theoretical and practical interest and has been the subject of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Absorption spectra
Alloy powders
Cavity perturbation
Eddy current
Magnetic
Magnetic fields
Magnetic permeability
Measurement
Metal powder
Metal powders
Microwave
Microwave frequencies
Microwaves
Particle size
Permeability
Perturbation
Studies
Title Measurement of average particle size in metal powders by microwave cavity perturbation in the magnetic field
URI https://dx.doi.org/10.1016/j.sna.2017.03.037
https://www.proquest.com/docview/1945737359
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWz8sCEFJrEjp2MqKIqILpApW6W7dioiKYRLUIw8Nu5SxNeQgxIGfI4R8md7-HkuztCjjk3PNMJC2ChxgPuIxZok4G68yS2sOLKeYIJztcD0R_yy1EyapFukwuDsMra9i9semWt6zOdmpudcjzu3ISwdOAxGFfBYFeOMIOdS4T1nb59wjwYq7ovInGA1M2fzQrjNSuw9FAkqzqn2Ar9d9_0w0pXrqe3TtbqmJGeLR5rg7RcsUlWv1QS3CIP15_f-ujUUw0zFCwFLet3obPxq6Pjgk4cRNu0nD4jgJmaFzpBRN4z0FOrsY8ELd0juCFTSQxHQIRIJ_quwGxHWgHetsmwd37b7Qd1I4XAMpHOA-aF87kWNnVMCJ16KbUD5c6ENCGzJtJxHFluhI7gmtUWwjib6SzzPg3z2LAdslRMC7dLaA46LKXB-p6Om1RoH3qduzzJQbYg6T0SNixUtq4yjs0uHlQDJ7tXwHWFXFchg03ukZOPIeWixMZfxLyRi_o2TxS4gL-GHTYyVLWSzlSU8UQyyZJs_393PSAreLRAjh2SpfnjkzuCGGVu2tUkbJPls4ur_uAdCePnuA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-C9jA4oMFAsLHhA6dJUZPYsZMjQqCyflwAqTfLdmxU1KYRLULsr99z6pRtmjhMyiGK_aLkPb-v5Of3AM4Z06xQGY0wUWMRcwmNlC5Q3VmWGsy4Spb5Dc6jMe_fsx-TbLIFl-1eGA-rDLZ_bdMbax2u9AI3e_V02ruNMXVgKRpXTvFUTLah66tTsQ50L24G_fHGIFPaNGD08yNP0P7cbGBey8pXH0pEU-rUd0P_t3v6y1A33uf6I-yFsJFcrJ9sH7ZsdQC7vxUT_ASz0dvnPrJwROEiRWNB6vA6ZDn9acm0InOLATepFy8ew0z0K5l7UN4LzidG-VYSpLZP6Il0IzRPgUEimauHym94JA3m7RDur6_uLvtR6KUQGcrzVUQdt65U3OSWcq5yJ4SyqN8FFzqmRicqTRPDNFcJjhllMJIzhSoK5_K4TDU9gk61qOwxkBLVWAjtS3xapnOuXOxUacusRPGisE8gblkoTSg07vtdzGSLKHuUyHXpuS5jioc4ge8bknpdZeO9yayVi_xjqUj0Au-RnbYylEFPlzIpWCaooFnx-f_uegYf-nejoRzejAdfYMePrIFkp9BZPT3brxiyrPS3sCR_AfxS6mk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+average+particle+size+in+metal+powders+by+microwave+cavity+perturbation+in+the+magnetic+field&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Clark%2C+N&rft.au=Jones%2C+N&rft.au=Porch%2C+A&rft.date=2017-06-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=259&rft.spage=137&rft_id=info:doi/10.1016%2Fj.sna.2017.03.037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon