A generalized Eulerian-Lagrangian discontinuous Galerkin method for transport problems
We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework,...
Saved in:
Published in | Journal of computational physics Vol. 464; p. 111160 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Inc
01.09.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework, allowing extra large time stepping size with stability. The newly proposed GEL DG method in this paper is motivated for solving linear hyperbolic systems with variable coefficients, where the velocity field for adjoint problems of the test functions is frozen to constant. In this paper, in a simplified scalar setting, we propose the GEL DG methodology by freezing the velocity field of adjoint problems, and by formulating the semi-discrete scheme over the space-time region partitioned by linear lines approximating characteristics. The fully-discrete schemes are obtained by method-of-lines Runge-Kutta methods. We further design flux limiters for the schemes to satisfy the discrete geometric conservation law (DGCL) and maximum principle preserving (MPP) properties. Numerical results on 1D and 2D linear transport problems are presented to demonstrate great properties of the GEL DG method. These include the high order spatial and temporal accuracy, stability with extra large time stepping size, and satisfaction of DGCL and MPP properties.
•We develop a generalized Eulerian Lagrangian (EL) discontinuous Galerkin (DG) method.•We establish connection of the generalized EL DG method with the EL DG method.•Numerical results on linear transport problems. |
---|---|
AbstractList | We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework, allowing extra large time stepping size with stability. The newly proposed GEL DG method in this paper is motivated for solving linear hyperbolic systems with variable coefficients, where the velocity field for adjoint problems of the test functions is frozen to constant. In this paper, in a simplified scalar setting, we propose the GEL DG methodology by freezing the velocity field of adjoint problems, and by formulating the semi-discrete scheme over the space-time region partitioned by linear lines approximating characteristics. The fully-discrete schemes are obtained by method-of-lines Runge-Kutta methods. We further design flux limiters for the schemes to satisfy the discrete geometric conservation law (DGCL) and maximum principle preserving (MPP) properties. Numerical results on 1D and 2D linear transport problems are presented to demonstrate great properties of the GEL DG method. These include the high order spatial and temporal accuracy, stability with extra large time stepping size, and satisfaction of DGCL and MPP properties.
•We develop a generalized Eulerian Lagrangian (EL) discontinuous Galerkin (DG) method.•We establish connection of the generalized EL DG method with the EL DG method.•Numerical results on linear transport problems. We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework, allowing extra large time stepping size with stability. The newly proposed GEL DG method in this paper is motivated for solving linear hyperbolic systems with variable coefficients, where the velocity field for adjoint problems of the test functions is frozen to constant. In this paper, in a simplified scalar setting, we propose the GEL DG methodology by freezing the velocity field of adjoint problems, and by formulating the semi-discrete scheme over the space-time region partitioned by linear lines approximating characteristics. The fully-discrete schemes are obtained by method-of-lines Runge-Kutta methods. We further design flux limiters for the schemes to satisfy the discrete geometric conservation law (DGCL) and maximum principle preserving (MPP) properties. Numerical results on 1D and 2D linear transport problems are presented to demonstrate great properties of the GEL DG method. These include the high order spatial and temporal accuracy, stability with extra large time stepping size, and satisfaction of DGCL and MPP properties. |
ArticleNumber | 111160 |
Author | Qiu, Jing-Mei Hong, Xue |
Author_xml | – sequence: 1 givenname: Xue orcidid: 0000-0002-8842-8698 surname: Hong fullname: Hong, Xue email: xuehong1@mail.ustc.edu.cn organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China – sequence: 2 givenname: Jing-Mei surname: Qiu fullname: Qiu, Jing-Mei email: jingqiu@udel.edu organization: Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA |
BookMark | eNp9kE1LAzEQhoMo2FZ_gLcFz7vmY7-Cp1JqFQpe1GvIJtOadZvUJCvorzelnjx0LjOH95lhnik6t84CQjcEFwST-q4verUvKKa0IKlqfIYmBHOc04bU52iCMSU555xcomkIPca4rcp2gt7m2RYseDmYH9DZchzAG2nztdx6abdpzLQJytlo7OjGkK1kSnwYm-0gvjudbZzPYoqGvfMx23vXDbALV-hiI4cA1399hl4fli-Lx3z9vHpazNe5YnUbc6Y7plrddU0JlWw7IMAl6LLEpeZkkx5hsqsqSiRraclVq6hsaQWsKjvJOGMzdHvcmw5_jhCi6N3obTopaM0pbThueEqRY0p5F4KHjdh7s5P-WxAsDvpEL5I-cdAnjvoS0_xjlIkymmTCSzOcJO-PJKTHvwx4EZQBq0AbDyoK7cwJ-hcX44yk |
CitedBy_id | crossref_primary_10_1016_j_jcp_2023_112682 crossref_primary_10_1016_j_jcp_2024_113053 |
Cites_doi | 10.1090/mcom/3417 10.1016/j.jcp.2014.05.033 10.1016/j.jcp.2016.07.021 10.1007/s10915-017-0554-0 10.1016/j.jcp.2010.08.016 10.1016/j.jcp.2013.06.026 10.1016/j.jcp.2009.12.030 10.1137/0733033 10.1006/jcph.2001.6932 10.1016/0309-1708(90)90041-2 10.1006/jcph.1996.0130 10.1016/j.jcp.2012.01.030 10.1137/140965326 10.1016/0375-9601(90)90092-3 10.1137/19M1268008 10.1090/mcom/3126 10.1016/j.jcp.2021.110392 10.1051/m2an/2018069 10.1016/S0309-1708(02)00104-5 10.1006/jcph.1999.6239 10.1016/0167-2789(90)90019-L 10.1016/0021-9991(88)90177-5 10.1016/j.jcp.2011.07.018 10.1016/j.jcp.2017.10.048 10.1002/num.20223 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright Elsevier Science Ltd. Sep 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Sep 1, 2022 |
DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.jcp.2022.111160 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1090-2716 |
ExternalDocumentID | 10_1016_j_jcp_2022_111160 S0021999122002224 |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-18-1-0257 funderid: https://doi.org/10.13039/100000181 – fundername: University of Delaware funderid: https://doi.org/10.13039/100006094 – fundername: NSF grantid: NSF-DMS-1818924; NSF-DMS-2111253 funderid: https://doi.org/10.13039/100000001 – fundername: China Scholarship Council grantid: CSC NO.201906340216 funderid: https://doi.org/10.13039/501100004543 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSH SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EJD FGOYB G-2 HLZ HME HMV HZ~ NDZJH R2- RIG SBC SEW SHN SPG T9H UQL WUQ ZY4 7SC 7SP 7U5 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-3db3c8dbb74e5a8be1e9aed4404d91f1113ab5521a38249c8c2a825e354ba3933 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Fri Jul 25 05:35:32 EDT 2025 Tue Jul 01 01:54:55 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Sun Apr 06 06:53:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Discontinuous Galerkin Characteristics method Discrete geometric conservation law Maximum principle preserving Eulerian-Lagrangian Mass conservative |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-3db3c8dbb74e5a8be1e9aed4404d91f1113ab5521a38249c8c2a825e354ba3933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8842-8698 |
OpenAccessLink | https://doi.org/10.1016/j.jcp.2022.111160 |
PQID | 2692279079 |
PQPubID | 2047462 |
ParticipantIDs | proquest_journals_2692279079 crossref_primary_10_1016_j_jcp_2022_111160 crossref_citationtrail_10_1016_j_jcp_2022_111160 elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of computational physics |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Klingenberg, Schnücke, Xia (br0150) 2017; 86 Cai, Qiu, Yang (br0050) 2021; 439 Xiong, Qiu, Xu (br0220) 2013; 252 Jiang, Shu (br0140) 1996; 126 Zhou, Xia, Shu (br0280) 2019; 53 Shu, Osher (br0190) 1988; 77 Zhang, Shu (br0270) 2010; 229 Cai, Guo, Qiu (br0020) 2018; 354 Cai, Guo, Qiu (br0010) 2017; 73 Xiong, Qiu, Xu (br0230) 2015; 37 Hairer, Lubich, Wanner (br0110) 2006; vol. 31 Xiong, Qiu, Xu, Christlieb (br0240) 2014; 273 Forest, Ruth (br0090) 1990; 43 LeVeque (br0160) 1996; 33 Yoshida (br0250) 1990; 150 Cai, Qiu, Qiu (br0040) 2016; 323 Wang, Ewing, Qin, Lyons, Al-Lawatia, Man (br0200) 1999; 152 Hong, Xia (br0120) 2020; 58 Russell, Celia (br0180) 2002; 25 Fu, Schnücke, Xia (br0100) 2019; 88 Cai, Guo, Qiu (br0030) 2020 Celia, Russell, Herrera, Ewing (br0060) 1990; 13 Zhang, Shu (br0260) 2010; 229 Cockburn, Shu TVB (br0070) 1989; 52 Farhat, Geuzaine, Grandmont (br0080) 2001; 174 Wang, Wang, Al-Lawatia (br0210) 2007; 23 Qiu, Shu (br0170) 2011; 230 Huang, Arbogast, Qiu (br0130) 2012; 231 Hong (10.1016/j.jcp.2022.111160_br0120) 2020; 58 Russell (10.1016/j.jcp.2022.111160_br0180) 2002; 25 Celia (10.1016/j.jcp.2022.111160_br0060) 1990; 13 Klingenberg (10.1016/j.jcp.2022.111160_br0150) 2017; 86 Zhang (10.1016/j.jcp.2022.111160_br0270) 2010; 229 Cai (10.1016/j.jcp.2022.111160_br0040) 2016; 323 Cai (10.1016/j.jcp.2022.111160_br0020) 2018; 354 Huang (10.1016/j.jcp.2022.111160_br0130) 2012; 231 Zhang (10.1016/j.jcp.2022.111160_br0260) 2010; 229 Xiong (10.1016/j.jcp.2022.111160_br0220) 2013; 252 Wang (10.1016/j.jcp.2022.111160_br0200) 1999; 152 Yoshida (10.1016/j.jcp.2022.111160_br0250) 1990; 150 Forest (10.1016/j.jcp.2022.111160_br0090) 1990; 43 Cockburn (10.1016/j.jcp.2022.111160_br0070) 1989; 52 Fu (10.1016/j.jcp.2022.111160_br0100) 2019; 88 LeVeque (10.1016/j.jcp.2022.111160_br0160) 1996; 33 Shu (10.1016/j.jcp.2022.111160_br0190) 1988; 77 Jiang (10.1016/j.jcp.2022.111160_br0140) 1996; 126 Cai (10.1016/j.jcp.2022.111160_br0010) 2017; 73 Xiong (10.1016/j.jcp.2022.111160_br0240) 2014; 273 Hairer (10.1016/j.jcp.2022.111160_br0110) 2006; vol. 31 Zhou (10.1016/j.jcp.2022.111160_br0280) 2019; 53 Cai (10.1016/j.jcp.2022.111160_br0050) 2021; 439 Wang (10.1016/j.jcp.2022.111160_br0210) 2007; 23 Xiong (10.1016/j.jcp.2022.111160_br0230) 2015; 37 Cai (10.1016/j.jcp.2022.111160_br0030) 2020 Farhat (10.1016/j.jcp.2022.111160_br0080) 2001; 174 Qiu (10.1016/j.jcp.2022.111160_br0170) 2011; 230 |
References_xml | – volume: 13 start-page: 187 year: 1990 end-page: 206 ident: br0060 article-title: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation publication-title: Adv. Water Resour. – volume: 52 start-page: 411 year: 1989 end-page: 435 ident: br0070 article-title: Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework publication-title: Math. Comput. – volume: 439 year: 2021 ident: br0050 article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics publication-title: J. Comput. Phys. – volume: 43 start-page: 105 year: 1990 end-page: 117 ident: br0090 article-title: Fourth-order symplectic integration publication-title: Physica D – volume: 174 start-page: 669 year: 2001 end-page: 694 ident: br0080 article-title: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids publication-title: J. Comput. Phys. – volume: 88 start-page: 2221 year: 2019 end-page: 2255 ident: br0100 article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes publication-title: Math. Comput. – volume: 150 start-page: 262 year: 1990 end-page: 268 ident: br0250 article-title: Construction of higher order symplectic integrators publication-title: Phys. Lett. A – volume: 229 start-page: 8918 year: 2010 end-page: 8934 ident: br0270 article-title: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes publication-title: J. Comput. Phys. – volume: 77 start-page: 439 year: 1988 end-page: 471 ident: br0190 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. – volume: 323 start-page: 95 year: 2016 end-page: 114 ident: br0040 article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation publication-title: J. Comput. Phys. – volume: 86 start-page: 1203 year: 2017 end-page: 1232 ident: br0150 article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension publication-title: Math. Comput. – volume: 231 start-page: 4028 year: 2012 end-page: 4052 ident: br0130 article-title: An Eulerian–Lagrangian WENO finite volume scheme for advection problems publication-title: J. Comput. Phys. – volume: vol. 31 year: 2006 ident: br0110 article-title: Structure-preserving algorithms for ordinary differential equations publication-title: Geometric Numerical Integration – volume: 25 start-page: 1215 year: 2002 end-page: 1231 ident: br0180 article-title: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM) publication-title: Adv. Water Resour. – volume: 273 start-page: 618 year: 2014 end-page: 639 ident: br0240 article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation publication-title: J. Comput. Phys. – volume: 73 start-page: 514 year: 2017 end-page: 542 ident: br0010 article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations publication-title: J. Sci. Comput. – start-page: 1 year: 2020 end-page: 31 ident: br0030 article-title: Comparison of semi-Lagrangian discontinuous Galerkin schemes for linear and nonlinear transport simulations publication-title: Commun. Appl. Math. Comput. Sci. – volume: 126 start-page: 202 year: 1996 end-page: 228 ident: br0140 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. – volume: 58 start-page: 125 year: 2020 end-page: 152 ident: br0120 article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for hyperbolic equations involving publication-title: SIAM J. Numer. Anal. – volume: 252 start-page: 310 year: 2013 end-page: 331 ident: br0220 article-title: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows publication-title: J. Comput. Phys. – volume: 230 start-page: 8386 year: 2011 end-page: 8409 ident: br0170 article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system publication-title: J. Comput. Phys. – volume: 229 start-page: 3091 year: 2010 end-page: 3120 ident: br0260 article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws publication-title: J. Comput. Phys. – volume: 354 start-page: 529 year: 2018 end-page: 551 ident: br0020 article-title: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting publication-title: J. Comput. Phys. – volume: 33 start-page: 627 year: 1996 end-page: 665 ident: br0160 article-title: High-resolution conservative algorithms for advection in incompressible flow publication-title: SIAM J. Numer. Anal. – volume: 37 start-page: 583 year: 2015 end-page: 608 ident: br0230 article-title: High order maximum principle preserving discontinuous Galerkin method for convection-diffusion equations publication-title: SIAM J. Sci. Comput. – volume: 152 start-page: 120 year: 1999 end-page: 163 ident: br0200 article-title: A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations publication-title: J. Comput. Phys. – volume: 23 start-page: 1343 year: 2007 end-page: 1367 ident: br0210 article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations publication-title: Numer. Methods Partial Differ. Equ. – volume: 53 start-page: 105 year: 2019 end-page: 144 ident: br0280 article-title: Stability analysis and error estimates of arbitrary Lagrangian Eulerian discontinuous Galerkin method coupled with Runge Kutta time-marching for linear conservation laws publication-title: ESAIM: Math. Model. Numer. Anal. – volume: 88 start-page: 2221 year: 2019 ident: 10.1016/j.jcp.2022.111160_br0100 article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes publication-title: Math. Comput. doi: 10.1090/mcom/3417 – volume: 273 start-page: 618 year: 2014 ident: 10.1016/j.jcp.2022.111160_br0240 article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.05.033 – volume: 323 start-page: 95 year: 2016 ident: 10.1016/j.jcp.2022.111160_br0040 article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.021 – volume: 73 start-page: 514 issue: 2–3 year: 2017 ident: 10.1016/j.jcp.2022.111160_br0010 article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0554-0 – volume: 229 start-page: 8918 year: 2010 ident: 10.1016/j.jcp.2022.111160_br0270 article-title: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.08.016 – volume: vol. 31 year: 2006 ident: 10.1016/j.jcp.2022.111160_br0110 article-title: Structure-preserving algorithms for ordinary differential equations – volume: 252 start-page: 310 year: 2013 ident: 10.1016/j.jcp.2022.111160_br0220 article-title: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.06.026 – volume: 229 start-page: 3091 issue: 9 year: 2010 ident: 10.1016/j.jcp.2022.111160_br0260 article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.12.030 – volume: 33 start-page: 627 issue: 2 year: 1996 ident: 10.1016/j.jcp.2022.111160_br0160 article-title: High-resolution conservative algorithms for advection in incompressible flow publication-title: SIAM J. Numer. Anal. doi: 10.1137/0733033 – volume: 174 start-page: 669 issue: 2 year: 2001 ident: 10.1016/j.jcp.2022.111160_br0080 article-title: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6932 – volume: 13 start-page: 187 issue: 4 year: 1990 ident: 10.1016/j.jcp.2022.111160_br0060 article-title: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(90)90041-2 – volume: 126 start-page: 202 issue: 1 year: 1996 ident: 10.1016/j.jcp.2022.111160_br0140 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – volume: 231 start-page: 4028 issue: 11 year: 2012 ident: 10.1016/j.jcp.2022.111160_br0130 article-title: An Eulerian–Lagrangian WENO finite volume scheme for advection problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.01.030 – volume: 37 start-page: 583 issue: 2 year: 2015 ident: 10.1016/j.jcp.2022.111160_br0230 article-title: High order maximum principle preserving discontinuous Galerkin method for convection-diffusion equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/140965326 – start-page: 1 year: 2020 ident: 10.1016/j.jcp.2022.111160_br0030 article-title: Comparison of semi-Lagrangian discontinuous Galerkin schemes for linear and nonlinear transport simulations publication-title: Commun. Appl. Math. Comput. Sci. – volume: 150 start-page: 262 issue: 5–7 year: 1990 ident: 10.1016/j.jcp.2022.111160_br0250 article-title: Construction of higher order symplectic integrators publication-title: Phys. Lett. A doi: 10.1016/0375-9601(90)90092-3 – volume: 58 start-page: 125 issue: 1 year: 2020 ident: 10.1016/j.jcp.2022.111160_br0120 article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for hyperbolic equations involving δ-singularities publication-title: SIAM J. Numer. Anal. doi: 10.1137/19M1268008 – volume: 86 start-page: 1203 issue: 305 year: 2017 ident: 10.1016/j.jcp.2022.111160_br0150 article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension publication-title: Math. Comput. doi: 10.1090/mcom/3126 – volume: 439 year: 2021 ident: 10.1016/j.jcp.2022.111160_br0050 article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110392 – volume: 53 start-page: 105 issue: 1 year: 2019 ident: 10.1016/j.jcp.2022.111160_br0280 article-title: Stability analysis and error estimates of arbitrary Lagrangian Eulerian discontinuous Galerkin method coupled with Runge Kutta time-marching for linear conservation laws publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2018069 – volume: 25 start-page: 1215 issue: 8 year: 2002 ident: 10.1016/j.jcp.2022.111160_br0180 article-title: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM) publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(02)00104-5 – volume: 152 start-page: 120 issue: 1 year: 1999 ident: 10.1016/j.jcp.2022.111160_br0200 article-title: A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6239 – volume: 43 start-page: 105 issue: 1 year: 1990 ident: 10.1016/j.jcp.2022.111160_br0090 article-title: Fourth-order symplectic integration publication-title: Physica D doi: 10.1016/0167-2789(90)90019-L – volume: 77 start-page: 439 issue: 2 year: 1988 ident: 10.1016/j.jcp.2022.111160_br0190 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90177-5 – volume: 230 start-page: 8386 issue: 23 year: 2011 ident: 10.1016/j.jcp.2022.111160_br0170 article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.07.018 – volume: 354 start-page: 529 year: 2018 ident: 10.1016/j.jcp.2022.111160_br0020 article-title: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.048 – volume: 52 start-page: 411 issue: 186 year: 1989 ident: 10.1016/j.jcp.2022.111160_br0070 article-title: Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework publication-title: Math. Comput. – volume: 23 start-page: 1343 issue: 6 year: 2007 ident: 10.1016/j.jcp.2022.111160_br0210 article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20223 |
SSID | ssj0008548 |
Score | 2.418504 |
Snippet | We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111160 |
SubjectTerms | Characteristics method Computational physics Conservation laws Discontinuous Galerkin Discrete geometric conservation law Eulerian-Lagrangian Freezing Galerkin method Hyperbolic systems Mass conservative Maximum principle Maximum principle preserving Method of lines Runge-Kutta method Stability Velocity distribution |
Title | A generalized Eulerian-Lagrangian discontinuous Galerkin method for transport problems |
URI | https://dx.doi.org/10.1016/j.jcp.2022.111160 https://www.proquest.com/docview/2692279079 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhQK8sCEFNo4TmKPVdVSXp0o6mbFjlu1qtKKpgsDv527xAGBUAe2POwoOp-_u0vuviPkmkkbG5u2vdCYyONiIgEHtfCM4cb6Nkx10SXieRgNRvxhHI5rpFvVwmBapcP-EtMLtHZXWk6ardVshjW-DGvofcaKik7kBOU8Ri2__fhO8xAhL9EYUxFgdPVns8jxmhukrGSsAI6CpfJP2_QLpQvT0z8ge85npJ3ytQ5JzWZHZN_5j9TtzvUxee3QackiPXuHG73NAtUr856SKVikKRxSLMJdYnOIDUT89A6sA34rp2UfaQoOLM0rtnPqes2sT8io33vpDjzXN8EzQSRyL0h1YESqdcxtmAgNMpeJTZEJMJX-BJvLJzoEu50EAqIvIwxLIFC0Qch1EsggOCX1bJnZM0ItxleC6YhHhmuZSPCWIutrcLuiCTgrDdKuJKaMIxXH3hYLVWWPzRUIWaGQVSnkBrn5mrIqGTW2DebVMqgfaqEA8bdNa1ZLptyeXCsWSaRLbMfy_H9PvSC7eFZmmDVJPX_b2EtwSXJ9VejcFdnp3D8Ohp-Gqt-V |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxFF7cGTyYR13ViPhICowAkMt2btCoGQQWRcPPi3-97WaTSGg7dlbZfltf3e6_be9xFyx4RpaBPXHV_rwOHhRAAOqtDRmmvjGj9WmUpEfxB0R_x57I9LpFXUwmBapcX-HNMztLZ3ataatdVshjW-DGvoXcayik6-Q3Y5bF-UMXj4-M7zCH2ewzHmIkD34tdmluQ118hZyViGHBlN5Z_O6RdMZ76nc0QObNBIm_l7HZOSSU7IoQ0gqd2e61Py2qTTnEZ69g4N7c0C11fi9KIpuKQpXFKswl2iOsQGjvz0EdwDfiynuZA0hQiWpgXdObViM-szMuq0h62uY4UTHO0FYep4sfJ0GCvV4MaPQgVGF5GJkQowFu4E1eUj5YPjjsBcXOhQswhOisbzuYo84XnnpJwsE3NBqMEDVshUwAPNlYgEhEuBcRXEXcEEopUKqRcWk9qyiqO4xUIW6WNzCUaWaGSZG7lC7r-GrHJKjW2deTEN8se6kAD524ZViymTdlOuJQsE8iXWG-Lyf0-9JXvdYb8ne0-Dlyuyjy15ulmVlNO3jbmG-CRVN9n6-wS9f-Ej |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+Eulerian-Lagrangian+discontinuous+Galerkin+method+for+transport+problems&rft.jtitle=Journal+of+computational+physics&rft.au=Hong%2C+Xue&rft.au=Qiu%2C+Jing-Mei&rft.date=2022-09-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.volume=464&rft_id=info:doi/10.1016%2Fj.jcp.2022.111160&rft.externalDocID=S0021999122002224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |