A generalized Eulerian-Lagrangian discontinuous Galerkin method for transport problems

We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework,...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 464; p. 111160
Main Authors Hong, Xue, Qiu, Jing-Mei
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.09.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework, allowing extra large time stepping size with stability. The newly proposed GEL DG method in this paper is motivated for solving linear hyperbolic systems with variable coefficients, where the velocity field for adjoint problems of the test functions is frozen to constant. In this paper, in a simplified scalar setting, we propose the GEL DG methodology by freezing the velocity field of adjoint problems, and by formulating the semi-discrete scheme over the space-time region partitioned by linear lines approximating characteristics. The fully-discrete schemes are obtained by method-of-lines Runge-Kutta methods. We further design flux limiters for the schemes to satisfy the discrete geometric conservation law (DGCL) and maximum principle preserving (MPP) properties. Numerical results on 1D and 2D linear transport problems are presented to demonstrate great properties of the GEL DG method. These include the high order spatial and temporal accuracy, stability with extra large time stepping size, and satisfaction of DGCL and MPP properties. •We develop a generalized Eulerian Lagrangian (EL) discontinuous Galerkin (DG) method.•We establish connection of the generalized EL DG method with the EL DG method.•Numerical results on linear transport problems.
AbstractList We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework, allowing extra large time stepping size with stability. The newly proposed GEL DG method in this paper is motivated for solving linear hyperbolic systems with variable coefficients, where the velocity field for adjoint problems of the test functions is frozen to constant. In this paper, in a simplified scalar setting, we propose the GEL DG methodology by freezing the velocity field of adjoint problems, and by formulating the semi-discrete scheme over the space-time region partitioned by linear lines approximating characteristics. The fully-discrete schemes are obtained by method-of-lines Runge-Kutta methods. We further design flux limiters for the schemes to satisfy the discrete geometric conservation law (DGCL) and maximum principle preserving (MPP) properties. Numerical results on 1D and 2D linear transport problems are presented to demonstrate great properties of the GEL DG method. These include the high order spatial and temporal accuracy, stability with extra large time stepping size, and satisfaction of DGCL and MPP properties. •We develop a generalized Eulerian Lagrangian (EL) discontinuous Galerkin (DG) method.•We establish connection of the generalized EL DG method with the EL DG method.•Numerical results on linear transport problems.
We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method for transport problems proposed in Cai et al. (2021) [5], which tracks solution along approximations to characteristics in the DG framework, allowing extra large time stepping size with stability. The newly proposed GEL DG method in this paper is motivated for solving linear hyperbolic systems with variable coefficients, where the velocity field for adjoint problems of the test functions is frozen to constant. In this paper, in a simplified scalar setting, we propose the GEL DG methodology by freezing the velocity field of adjoint problems, and by formulating the semi-discrete scheme over the space-time region partitioned by linear lines approximating characteristics. The fully-discrete schemes are obtained by method-of-lines Runge-Kutta methods. We further design flux limiters for the schemes to satisfy the discrete geometric conservation law (DGCL) and maximum principle preserving (MPP) properties. Numerical results on 1D and 2D linear transport problems are presented to demonstrate great properties of the GEL DG method. These include the high order spatial and temporal accuracy, stability with extra large time stepping size, and satisfaction of DGCL and MPP properties.
ArticleNumber 111160
Author Qiu, Jing-Mei
Hong, Xue
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0002-8842-8698
  surname: Hong
  fullname: Hong, Xue
  email: xuehong1@mail.ustc.edu.cn
  organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
– sequence: 2
  givenname: Jing-Mei
  surname: Qiu
  fullname: Qiu, Jing-Mei
  email: jingqiu@udel.edu
  organization: Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA
BookMark eNp9kE1LAzEQhoMo2FZ_gLcFz7vmY7-Cp1JqFQpe1GvIJtOadZvUJCvorzelnjx0LjOH95lhnik6t84CQjcEFwST-q4verUvKKa0IKlqfIYmBHOc04bU52iCMSU555xcomkIPca4rcp2gt7m2RYseDmYH9DZchzAG2nztdx6abdpzLQJytlo7OjGkK1kSnwYm-0gvjudbZzPYoqGvfMx23vXDbALV-hiI4cA1399hl4fli-Lx3z9vHpazNe5YnUbc6Y7plrddU0JlWw7IMAl6LLEpeZkkx5hsqsqSiRraclVq6hsaQWsKjvJOGMzdHvcmw5_jhCi6N3obTopaM0pbThueEqRY0p5F4KHjdh7s5P-WxAsDvpEL5I-cdAnjvoS0_xjlIkymmTCSzOcJO-PJKTHvwx4EZQBq0AbDyoK7cwJ-hcX44yk
CitedBy_id crossref_primary_10_1016_j_jcp_2023_112682
crossref_primary_10_1016_j_jcp_2024_113053
Cites_doi 10.1090/mcom/3417
10.1016/j.jcp.2014.05.033
10.1016/j.jcp.2016.07.021
10.1007/s10915-017-0554-0
10.1016/j.jcp.2010.08.016
10.1016/j.jcp.2013.06.026
10.1016/j.jcp.2009.12.030
10.1137/0733033
10.1006/jcph.2001.6932
10.1016/0309-1708(90)90041-2
10.1006/jcph.1996.0130
10.1016/j.jcp.2012.01.030
10.1137/140965326
10.1016/0375-9601(90)90092-3
10.1137/19M1268008
10.1090/mcom/3126
10.1016/j.jcp.2021.110392
10.1051/m2an/2018069
10.1016/S0309-1708(02)00104-5
10.1006/jcph.1999.6239
10.1016/0167-2789(90)90019-L
10.1016/0021-9991(88)90177-5
10.1016/j.jcp.2011.07.018
10.1016/j.jcp.2017.10.048
10.1002/num.20223
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright Elsevier Science Ltd. Sep 1, 2022
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Sep 1, 2022
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2022.111160
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2022_111160
S0021999122002224
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-18-1-0257
  funderid: https://doi.org/10.13039/100000181
– fundername: University of Delaware
  funderid: https://doi.org/10.13039/100006094
– fundername: NSF
  grantid: NSF-DMS-1818924; NSF-DMS-2111253
  funderid: https://doi.org/10.13039/100000001
– fundername: China Scholarship Council
  grantid: CSC NO.201906340216
  funderid: https://doi.org/10.13039/501100004543
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EJD
FGOYB
G-2
HLZ
HME
HMV
HZ~
NDZJH
R2-
RIG
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
7SC
7SP
7U5
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-3db3c8dbb74e5a8be1e9aed4404d91f1113ab5521a38249c8c2a825e354ba3933
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Fri Jul 25 05:35:32 EDT 2025
Tue Jul 01 01:54:55 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Sun Apr 06 06:53:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Discontinuous Galerkin
Characteristics method
Discrete geometric conservation law
Maximum principle preserving
Eulerian-Lagrangian
Mass conservative
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-3db3c8dbb74e5a8be1e9aed4404d91f1113ab5521a38249c8c2a825e354ba3933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8842-8698
OpenAccessLink https://doi.org/10.1016/j.jcp.2022.111160
PQID 2692279079
PQPubID 2047462
ParticipantIDs proquest_journals_2692279079
crossref_primary_10_1016_j_jcp_2022_111160
crossref_citationtrail_10_1016_j_jcp_2022_111160
elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Klingenberg, Schnücke, Xia (br0150) 2017; 86
Cai, Qiu, Yang (br0050) 2021; 439
Xiong, Qiu, Xu (br0220) 2013; 252
Jiang, Shu (br0140) 1996; 126
Zhou, Xia, Shu (br0280) 2019; 53
Shu, Osher (br0190) 1988; 77
Zhang, Shu (br0270) 2010; 229
Cai, Guo, Qiu (br0020) 2018; 354
Cai, Guo, Qiu (br0010) 2017; 73
Xiong, Qiu, Xu (br0230) 2015; 37
Hairer, Lubich, Wanner (br0110) 2006; vol. 31
Xiong, Qiu, Xu, Christlieb (br0240) 2014; 273
Forest, Ruth (br0090) 1990; 43
LeVeque (br0160) 1996; 33
Yoshida (br0250) 1990; 150
Cai, Qiu, Qiu (br0040) 2016; 323
Wang, Ewing, Qin, Lyons, Al-Lawatia, Man (br0200) 1999; 152
Hong, Xia (br0120) 2020; 58
Russell, Celia (br0180) 2002; 25
Fu, Schnücke, Xia (br0100) 2019; 88
Cai, Guo, Qiu (br0030) 2020
Celia, Russell, Herrera, Ewing (br0060) 1990; 13
Zhang, Shu (br0260) 2010; 229
Cockburn, Shu TVB (br0070) 1989; 52
Farhat, Geuzaine, Grandmont (br0080) 2001; 174
Wang, Wang, Al-Lawatia (br0210) 2007; 23
Qiu, Shu (br0170) 2011; 230
Huang, Arbogast, Qiu (br0130) 2012; 231
Hong (10.1016/j.jcp.2022.111160_br0120) 2020; 58
Russell (10.1016/j.jcp.2022.111160_br0180) 2002; 25
Celia (10.1016/j.jcp.2022.111160_br0060) 1990; 13
Klingenberg (10.1016/j.jcp.2022.111160_br0150) 2017; 86
Zhang (10.1016/j.jcp.2022.111160_br0270) 2010; 229
Cai (10.1016/j.jcp.2022.111160_br0040) 2016; 323
Cai (10.1016/j.jcp.2022.111160_br0020) 2018; 354
Huang (10.1016/j.jcp.2022.111160_br0130) 2012; 231
Zhang (10.1016/j.jcp.2022.111160_br0260) 2010; 229
Xiong (10.1016/j.jcp.2022.111160_br0220) 2013; 252
Wang (10.1016/j.jcp.2022.111160_br0200) 1999; 152
Yoshida (10.1016/j.jcp.2022.111160_br0250) 1990; 150
Forest (10.1016/j.jcp.2022.111160_br0090) 1990; 43
Cockburn (10.1016/j.jcp.2022.111160_br0070) 1989; 52
Fu (10.1016/j.jcp.2022.111160_br0100) 2019; 88
LeVeque (10.1016/j.jcp.2022.111160_br0160) 1996; 33
Shu (10.1016/j.jcp.2022.111160_br0190) 1988; 77
Jiang (10.1016/j.jcp.2022.111160_br0140) 1996; 126
Cai (10.1016/j.jcp.2022.111160_br0010) 2017; 73
Xiong (10.1016/j.jcp.2022.111160_br0240) 2014; 273
Hairer (10.1016/j.jcp.2022.111160_br0110) 2006; vol. 31
Zhou (10.1016/j.jcp.2022.111160_br0280) 2019; 53
Cai (10.1016/j.jcp.2022.111160_br0050) 2021; 439
Wang (10.1016/j.jcp.2022.111160_br0210) 2007; 23
Xiong (10.1016/j.jcp.2022.111160_br0230) 2015; 37
Cai (10.1016/j.jcp.2022.111160_br0030) 2020
Farhat (10.1016/j.jcp.2022.111160_br0080) 2001; 174
Qiu (10.1016/j.jcp.2022.111160_br0170) 2011; 230
References_xml – volume: 13
  start-page: 187
  year: 1990
  end-page: 206
  ident: br0060
  article-title: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation
  publication-title: Adv. Water Resour.
– volume: 52
  start-page: 411
  year: 1989
  end-page: 435
  ident: br0070
  article-title: Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework
  publication-title: Math. Comput.
– volume: 439
  year: 2021
  ident: br0050
  article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics
  publication-title: J. Comput. Phys.
– volume: 43
  start-page: 105
  year: 1990
  end-page: 117
  ident: br0090
  article-title: Fourth-order symplectic integration
  publication-title: Physica D
– volume: 174
  start-page: 669
  year: 2001
  end-page: 694
  ident: br0080
  article-title: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids
  publication-title: J. Comput. Phys.
– volume: 88
  start-page: 2221
  year: 2019
  end-page: 2255
  ident: br0100
  article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes
  publication-title: Math. Comput.
– volume: 150
  start-page: 262
  year: 1990
  end-page: 268
  ident: br0250
  article-title: Construction of higher order symplectic integrators
  publication-title: Phys. Lett. A
– volume: 229
  start-page: 8918
  year: 2010
  end-page: 8934
  ident: br0270
  article-title: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
  publication-title: J. Comput. Phys.
– volume: 77
  start-page: 439
  year: 1988
  end-page: 471
  ident: br0190
  article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes
  publication-title: J. Comput. Phys.
– volume: 323
  start-page: 95
  year: 2016
  end-page: 114
  ident: br0040
  article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 86
  start-page: 1203
  year: 2017
  end-page: 1232
  ident: br0150
  article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension
  publication-title: Math. Comput.
– volume: 231
  start-page: 4028
  year: 2012
  end-page: 4052
  ident: br0130
  article-title: An Eulerian–Lagrangian WENO finite volume scheme for advection problems
  publication-title: J. Comput. Phys.
– volume: vol. 31
  year: 2006
  ident: br0110
  article-title: Structure-preserving algorithms for ordinary differential equations
  publication-title: Geometric Numerical Integration
– volume: 25
  start-page: 1215
  year: 2002
  end-page: 1231
  ident: br0180
  article-title: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM)
  publication-title: Adv. Water Resour.
– volume: 273
  start-page: 618
  year: 2014
  end-page: 639
  ident: br0240
  article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
– volume: 73
  start-page: 514
  year: 2017
  end-page: 542
  ident: br0010
  article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations
  publication-title: J. Sci. Comput.
– start-page: 1
  year: 2020
  end-page: 31
  ident: br0030
  article-title: Comparison of semi-Lagrangian discontinuous Galerkin schemes for linear and nonlinear transport simulations
  publication-title: Commun. Appl. Math. Comput. Sci.
– volume: 126
  start-page: 202
  year: 1996
  end-page: 228
  ident: br0140
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
– volume: 58
  start-page: 125
  year: 2020
  end-page: 152
  ident: br0120
  article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for hyperbolic equations involving
  publication-title: SIAM J. Numer. Anal.
– volume: 252
  start-page: 310
  year: 2013
  end-page: 331
  ident: br0220
  article-title: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows
  publication-title: J. Comput. Phys.
– volume: 230
  start-page: 8386
  year: 2011
  end-page: 8409
  ident: br0170
  article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 3091
  year: 2010
  end-page: 3120
  ident: br0260
  article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws
  publication-title: J. Comput. Phys.
– volume: 354
  start-page: 529
  year: 2018
  end-page: 551
  ident: br0020
  article-title: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting
  publication-title: J. Comput. Phys.
– volume: 33
  start-page: 627
  year: 1996
  end-page: 665
  ident: br0160
  article-title: High-resolution conservative algorithms for advection in incompressible flow
  publication-title: SIAM J. Numer. Anal.
– volume: 37
  start-page: 583
  year: 2015
  end-page: 608
  ident: br0230
  article-title: High order maximum principle preserving discontinuous Galerkin method for convection-diffusion equations
  publication-title: SIAM J. Sci. Comput.
– volume: 152
  start-page: 120
  year: 1999
  end-page: 163
  ident: br0200
  article-title: A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations
  publication-title: J. Comput. Phys.
– volume: 23
  start-page: 1343
  year: 2007
  end-page: 1367
  ident: br0210
  article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 53
  start-page: 105
  year: 2019
  end-page: 144
  ident: br0280
  article-title: Stability analysis and error estimates of arbitrary Lagrangian Eulerian discontinuous Galerkin method coupled with Runge Kutta time-marching for linear conservation laws
  publication-title: ESAIM: Math. Model. Numer. Anal.
– volume: 88
  start-page: 2221
  year: 2019
  ident: 10.1016/j.jcp.2022.111160_br0100
  article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3417
– volume: 273
  start-page: 618
  year: 2014
  ident: 10.1016/j.jcp.2022.111160_br0240
  article-title: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.05.033
– volume: 323
  start-page: 95
  year: 2016
  ident: 10.1016/j.jcp.2022.111160_br0040
  article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.07.021
– volume: 73
  start-page: 514
  issue: 2–3
  year: 2017
  ident: 10.1016/j.jcp.2022.111160_br0010
  article-title: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0554-0
– volume: 229
  start-page: 8918
  year: 2010
  ident: 10.1016/j.jcp.2022.111160_br0270
  article-title: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.08.016
– volume: vol. 31
  year: 2006
  ident: 10.1016/j.jcp.2022.111160_br0110
  article-title: Structure-preserving algorithms for ordinary differential equations
– volume: 252
  start-page: 310
  year: 2013
  ident: 10.1016/j.jcp.2022.111160_br0220
  article-title: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.06.026
– volume: 229
  start-page: 3091
  issue: 9
  year: 2010
  ident: 10.1016/j.jcp.2022.111160_br0260
  article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.030
– volume: 33
  start-page: 627
  issue: 2
  year: 1996
  ident: 10.1016/j.jcp.2022.111160_br0160
  article-title: High-resolution conservative algorithms for advection in incompressible flow
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0733033
– volume: 174
  start-page: 669
  issue: 2
  year: 2001
  ident: 10.1016/j.jcp.2022.111160_br0080
  article-title: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6932
– volume: 13
  start-page: 187
  issue: 4
  year: 1990
  ident: 10.1016/j.jcp.2022.111160_br0060
  article-title: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation
  publication-title: Adv. Water Resour.
  doi: 10.1016/0309-1708(90)90041-2
– volume: 126
  start-page: 202
  issue: 1
  year: 1996
  ident: 10.1016/j.jcp.2022.111160_br0140
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0130
– volume: 231
  start-page: 4028
  issue: 11
  year: 2012
  ident: 10.1016/j.jcp.2022.111160_br0130
  article-title: An Eulerian–Lagrangian WENO finite volume scheme for advection problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.01.030
– volume: 37
  start-page: 583
  issue: 2
  year: 2015
  ident: 10.1016/j.jcp.2022.111160_br0230
  article-title: High order maximum principle preserving discontinuous Galerkin method for convection-diffusion equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140965326
– start-page: 1
  year: 2020
  ident: 10.1016/j.jcp.2022.111160_br0030
  article-title: Comparison of semi-Lagrangian discontinuous Galerkin schemes for linear and nonlinear transport simulations
  publication-title: Commun. Appl. Math. Comput. Sci.
– volume: 150
  start-page: 262
  issue: 5–7
  year: 1990
  ident: 10.1016/j.jcp.2022.111160_br0250
  article-title: Construction of higher order symplectic integrators
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(90)90092-3
– volume: 58
  start-page: 125
  issue: 1
  year: 2020
  ident: 10.1016/j.jcp.2022.111160_br0120
  article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for hyperbolic equations involving δ-singularities
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/19M1268008
– volume: 86
  start-page: 1203
  issue: 305
  year: 2017
  ident: 10.1016/j.jcp.2022.111160_br0150
  article-title: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3126
– volume: 439
  year: 2021
  ident: 10.1016/j.jcp.2022.111160_br0050
  article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110392
– volume: 53
  start-page: 105
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2022.111160_br0280
  article-title: Stability analysis and error estimates of arbitrary Lagrangian Eulerian discontinuous Galerkin method coupled with Runge Kutta time-marching for linear conservation laws
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2018069
– volume: 25
  start-page: 1215
  issue: 8
  year: 2002
  ident: 10.1016/j.jcp.2022.111160_br0180
  article-title: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM)
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(02)00104-5
– volume: 152
  start-page: 120
  issue: 1
  year: 1999
  ident: 10.1016/j.jcp.2022.111160_br0200
  article-title: A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6239
– volume: 43
  start-page: 105
  issue: 1
  year: 1990
  ident: 10.1016/j.jcp.2022.111160_br0090
  article-title: Fourth-order symplectic integration
  publication-title: Physica D
  doi: 10.1016/0167-2789(90)90019-L
– volume: 77
  start-page: 439
  issue: 2
  year: 1988
  ident: 10.1016/j.jcp.2022.111160_br0190
  article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90177-5
– volume: 230
  start-page: 8386
  issue: 23
  year: 2011
  ident: 10.1016/j.jcp.2022.111160_br0170
  article-title: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.07.018
– volume: 354
  start-page: 529
  year: 2018
  ident: 10.1016/j.jcp.2022.111160_br0020
  article-title: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.048
– volume: 52
  start-page: 411
  issue: 186
  year: 1989
  ident: 10.1016/j.jcp.2022.111160_br0070
  article-title: Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework
  publication-title: Math. Comput.
– volume: 23
  start-page: 1343
  issue: 6
  year: 2007
  ident: 10.1016/j.jcp.2022.111160_br0210
  article-title: An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20223
SSID ssj0008548
Score 2.418504
Snippet We propose a generalized Eulerian-Lagrangian (GEL) discontinuous Galerkin (DG) method. The method is a generalization of the Eulerian-Lagrangian (EL) DG method...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111160
SubjectTerms Characteristics method
Computational physics
Conservation laws
Discontinuous Galerkin
Discrete geometric conservation law
Eulerian-Lagrangian
Freezing
Galerkin method
Hyperbolic systems
Mass conservative
Maximum principle
Maximum principle preserving
Method of lines
Runge-Kutta method
Stability
Velocity distribution
Title A generalized Eulerian-Lagrangian discontinuous Galerkin method for transport problems
URI https://dx.doi.org/10.1016/j.jcp.2022.111160
https://www.proquest.com/docview/2692279079
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhQK8sCEFNo4TmKPVdVSXp0o6mbFjlu1qtKKpgsDv527xAGBUAe2POwoOp-_u0vuviPkmkkbG5u2vdCYyONiIgEHtfCM4cb6Nkx10SXieRgNRvxhHI5rpFvVwmBapcP-EtMLtHZXWk6ardVshjW-DGvofcaKik7kBOU8Ri2__fhO8xAhL9EYUxFgdPVns8jxmhukrGSsAI6CpfJP2_QLpQvT0z8ge85npJ3ytQ5JzWZHZN_5j9TtzvUxee3QackiPXuHG73NAtUr856SKVikKRxSLMJdYnOIDUT89A6sA34rp2UfaQoOLM0rtnPqes2sT8io33vpDjzXN8EzQSRyL0h1YESqdcxtmAgNMpeJTZEJMJX-BJvLJzoEu50EAqIvIwxLIFC0Qch1EsggOCX1bJnZM0ItxleC6YhHhmuZSPCWIutrcLuiCTgrDdKuJKaMIxXH3hYLVWWPzRUIWaGQVSnkBrn5mrIqGTW2DebVMqgfaqEA8bdNa1ZLptyeXCsWSaRLbMfy_H9PvSC7eFZmmDVJPX_b2EtwSXJ9VejcFdnp3D8Ohp-Gqt-V
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxFF7cGTyYR13ViPhICowAkMt2btCoGQQWRcPPi3-97WaTSGg7dlbZfltf3e6_be9xFyx4RpaBPXHV_rwOHhRAAOqtDRmmvjGj9WmUpEfxB0R_x57I9LpFXUwmBapcX-HNMztLZ3ataatdVshjW-DGvoXcayik6-Q3Y5bF-UMXj4-M7zCH2ewzHmIkD34tdmluQ118hZyViGHBlN5Z_O6RdMZ76nc0QObNBIm_l7HZOSSU7IoQ0gqd2e61Py2qTTnEZ69g4N7c0C11fi9KIpuKQpXFKswl2iOsQGjvz0EdwDfiynuZA0hQiWpgXdObViM-szMuq0h62uY4UTHO0FYep4sfJ0GCvV4MaPQgVGF5GJkQowFu4E1eUj5YPjjsBcXOhQswhOisbzuYo84XnnpJwsE3NBqMEDVshUwAPNlYgEhEuBcRXEXcEEopUKqRcWk9qyiqO4xUIW6WNzCUaWaGSZG7lC7r-GrHJKjW2deTEN8se6kAD524ZViymTdlOuJQsE8iXWG-Lyf0-9JXvdYb8ne0-Dlyuyjy15ulmVlNO3jbmG-CRVN9n6-wS9f-Ej
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+Eulerian-Lagrangian+discontinuous+Galerkin+method+for+transport+problems&rft.jtitle=Journal+of+computational+physics&rft.au=Hong%2C+Xue&rft.au=Qiu%2C+Jing-Mei&rft.date=2022-09-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.volume=464&rft_id=info:doi/10.1016%2Fj.jcp.2022.111160&rft.externalDocID=S0021999122002224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon