A robot arm digital twin utilising reinforcement learning

•The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and evaluation environments as well as the physical equivalency of this digital twin.•We train, using reinforcement learning, a robot arm to perform a...

Full description

Saved in:
Bibliographic Details
Published inComputers & graphics Vol. 95; pp. 106 - 114
Main Authors Matulis, Marius, Harvey, Carlo
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and evaluation environments as well as the physical equivalency of this digital twin.•We train, using reinforcement learning, a robot arm to perform a task in virtual space and then map this learnt behaviour to a physical counterpart whilst illustrating linkages between the halves of the digital twin. [Display omitted] For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or “Industry 4.0” and creates an opportunity to deliver significant benefit to both businesses and their stakeholders. Robot arms are one of the most common devices utilised in manufacturing and industrial processes, used for a wide variety of automation tasks on, for example, a factory floor but the effective use of these devices requires AI to be appropriately trained. One approach to support AI training of these devices is the use of a “Digital Twin”. There are, however, a number of challenges that exist within this domain, in particular, success depends upon the ability to collect data of what are considered as observations within the environment and the application of one or many trained AI policies to the task that is to be completed. This project presents a case-study of creating and training a Robot Arm Digital Twin as an approach for AI training in a virtual space and applying this simulation learning within physical space. A virtual space, created using Unity (a contemporary Game Engine), incorporating a virtual robot arm was linked to a physical space, being a 3D printed replica of the virtual space and robot arm. These linked environments were applied to solve a task and provide training for an AI model. The contribution of this work is to provide guidance on training protocols for a digital twin together with details of the necessary architecture to support effective simulation in a virtual space through the use of Tensorflow and hyperparameter tuning. It provides an approach to addressing the mapping of learning in the virtual domain to the physical robot twin.
AbstractList •The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and evaluation environments as well as the physical equivalency of this digital twin.•We train, using reinforcement learning, a robot arm to perform a task in virtual space and then map this learnt behaviour to a physical counterpart whilst illustrating linkages between the halves of the digital twin. [Display omitted] For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or “Industry 4.0” and creates an opportunity to deliver significant benefit to both businesses and their stakeholders. Robot arms are one of the most common devices utilised in manufacturing and industrial processes, used for a wide variety of automation tasks on, for example, a factory floor but the effective use of these devices requires AI to be appropriately trained. One approach to support AI training of these devices is the use of a “Digital Twin”. There are, however, a number of challenges that exist within this domain, in particular, success depends upon the ability to collect data of what are considered as observations within the environment and the application of one or many trained AI policies to the task that is to be completed. This project presents a case-study of creating and training a Robot Arm Digital Twin as an approach for AI training in a virtual space and applying this simulation learning within physical space. A virtual space, created using Unity (a contemporary Game Engine), incorporating a virtual robot arm was linked to a physical space, being a 3D printed replica of the virtual space and robot arm. These linked environments were applied to solve a task and provide training for an AI model. The contribution of this work is to provide guidance on training protocols for a digital twin together with details of the necessary architecture to support effective simulation in a virtual space through the use of Tensorflow and hyperparameter tuning. It provides an approach to addressing the mapping of learning in the virtual domain to the physical robot twin.
For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or "Industry 4.0" and creates an opportunity to deliver significant benefit to both businesses and their stakeholders. Robot arms are one of the most common devices utilised in manufacturing and industrial processes, used for a wide variety of automation tasks on, for example, a factory floor but the effective use of these devices requires AI to be appropriately trained. One approach to support AI training of these devices is the use of a "Digital Twin". There are, however, a number of challenges that exist within this domain, in particular, success depends upon the ability to collect data of what are considered as observations within the environment and the application of one or many trained AI policies to the task that is to be completed. This project presents a case-study of creating and training a Robot Arm Digital Twin as an approach for AI training in a virtual space and applying this simulation learning within physical space. A virtual space, created using Unity (a contemporary Game Engine), incorporating a virtual robot arm was linked to a physical space, being a 3D printed replica of the virtual space and robot arm. These linked environments were applied to solve a task and provide training for an AI model. The contribution of this work is to provide guidance on training protocols for a digital twin together with details of the necessary architecture to support effective simulation in a virtual space through the use of Tensorflow and hyperparameter tuning. It provides an approach to addressing the mapping of learning in the virtual domain to the physical robot twin.
Author Harvey, Carlo
Matulis, Marius
Author_xml – sequence: 1
  givenname: Marius
  surname: Matulis
  fullname: Matulis, Marius
  email: marius.matulis@mail.bcu.ac.uk
  organization: DMTLab, Birmingham City University, Curzon Street, Birmingham B4 7XG, United Kingdom
– sequence: 2
  givenname: Carlo
  orcidid: 0000-0002-4809-1592
  surname: Harvey
  fullname: Harvey, Carlo
  email: carlo.harvey@bcu.ac.uk
  organization: DMTLab, Birmingham City University, Curzon Street, Birmingham B4 7XG, United Kingdom
BookMark eNp9kEtLAzEUhYNUsK3-AHcDrmfMYyYPXJXiCwpudB0ySaZkmCY1SRX_vSl15aJw4MLlfPdyzgLMfPAWgFsEGwQRvR8brbYNhhg18Ch0AeaIM1IzytsZmEMoWM1bQa7AIqURQogxbedArKoY-pArFXeVcVuX1VTlb-erQ3aTS85vq2idH0LUdmd9riaroi_ra3A5qCnZm7-5BB9Pj-_rl3rz9vy6Xm1qTSjPNWFGsBZTBnXPuKJCa9r33CiqkICWla0YiOoMbQ3rCOGQ9gK2hBssmCKQLMHd6e4-hs-DTVmO4RB9eSlxh3lX0gteXOzk0jGkFO0gdYmSXfA5KjdJBOWxJznK0pM89iThUaiQ6B-5j26n4s9Z5uHE2BL8y9kok3bWa2tctDpLE9wZ-hfcXoDd
CitedBy_id crossref_primary_10_1016_j_conengprac_2022_105271
crossref_primary_10_1007_s12206_021_1201_0
crossref_primary_10_1108_JSTPM_09_2023_0162
crossref_primary_10_1109_COMST_2022_3208773
crossref_primary_10_3390_s24082575
crossref_primary_10_1016_j_jmapro_2023_06_002
crossref_primary_10_1016_j_rcim_2022_102321
crossref_primary_10_3390_s24165248
crossref_primary_10_1007_s00170_023_11064_2
crossref_primary_10_1016_j_cirpj_2022_11_003
crossref_primary_10_1186_s10033_022_00760_x
crossref_primary_10_3390_s24175680
crossref_primary_10_3390_s23083938
crossref_primary_10_1007_s10845_023_02278_y
crossref_primary_10_1007_s44223_024_00055_2
crossref_primary_10_1109_TII_2021_3090363
crossref_primary_10_1016_j_aei_2024_102592
crossref_primary_10_3390_s24227183
crossref_primary_10_3389_fnbot_2022_913605
crossref_primary_10_3390_app14125208
crossref_primary_10_3390_make6040124
crossref_primary_10_3390_s21196340
crossref_primary_10_1016_j_cirpj_2023_06_011
crossref_primary_10_3390_electronics13101969
crossref_primary_10_1016_j_future_2025_107736
crossref_primary_10_1016_j_jestch_2023_101455
crossref_primary_10_59277_ROMJIST_2025_1_06
crossref_primary_10_16984_saufenbilder_911942
crossref_primary_10_1002_rob_22127
crossref_primary_10_3390_app122312377
crossref_primary_10_1109_JSEN_2022_3213428
crossref_primary_10_1109_OJPEL_2024_3422021
crossref_primary_10_1109_JSAC_2023_3310093
crossref_primary_10_1038_s41598_024_62948_6
crossref_primary_10_1016_j_datak_2024_102304
crossref_primary_10_3390_s24072232
crossref_primary_10_1007_s10845_023_02246_6
crossref_primary_10_1016_j_aei_2023_102141
crossref_primary_10_3390_en16041796
crossref_primary_10_1080_17445302_2023_2238391
crossref_primary_10_1080_08839514_2024_2383101
crossref_primary_10_1080_0951192X_2024_2428683
crossref_primary_10_3390_app11146399
crossref_primary_10_1007_s10845_023_02172_7
crossref_primary_10_1109_JRFID_2022_3207047
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_cag_2023_10_025
crossref_primary_10_3390_s23010017
crossref_primary_10_1109_ACCESS_2023_3349379
crossref_primary_10_3389_fmtec_2023_1154263
crossref_primary_10_1016_j_nucengdes_2024_113691
crossref_primary_10_1051_e3sconf_202131209002
crossref_primary_10_3390_bdcc7030139
crossref_primary_10_1016_j_aei_2022_101562
crossref_primary_10_1109_JIOT_2022_3153653
crossref_primary_10_1016_j_oceaneng_2024_118070
crossref_primary_10_1016_j_aei_2024_102572
crossref_primary_10_1007_s00170_022_09164_6
crossref_primary_10_1016_j_compstruc_2024_107342
crossref_primary_10_1016_j_cogr_2023_04_003
crossref_primary_10_1088_2631_8695_ad1f14
crossref_primary_10_3389_fbioe_2021_793782
crossref_primary_10_1016_j_jmapro_2023_05_019
crossref_primary_10_3390_s25010006
crossref_primary_10_7736_JKSPE_024_008
crossref_primary_10_1115_1_4067616
crossref_primary_10_3390_s23177602
crossref_primary_10_3390_inventions8040103
crossref_primary_10_1016_j_measurement_2024_115729
crossref_primary_10_3389_fhpcp_2025_1536501
crossref_primary_10_1016_j_cag_2021_05_007
crossref_primary_10_1109_ACCESS_2023_3349247
crossref_primary_10_3390_app14219919
crossref_primary_10_1142_S1793962323410337
crossref_primary_10_1016_j_rcim_2022_102432
crossref_primary_10_3390_electronics14020276
crossref_primary_10_3390_math13020216
crossref_primary_10_1109_JAS_2024_124635
crossref_primary_10_1002_asmb_2923
crossref_primary_10_1038_s41598_024_75112_x
Cites_doi 10.2507/28th.daaam.proceedings.106
10.1007/978-3-319-64352-6_29
10.1016/j.promfg.2018.12.020
10.1243/09544054JEM1241
10.1016/j.cirp.2017.05.010
10.1016/j.cirpj.2009.12.001
10.1007/s00170-019-04523-2
10.1016/j.procir.2016.11.152
10.5220/0008880903810386
10.3390/s20123515
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Apr 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Apr 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cag.2021.01.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7684
EndPage 114
ExternalDocumentID 10_1016_j_cag_2021_01_011
S009784932100011X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGSOS
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LG9
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-37d9742670cb78a69cc6bb8da6a190e7cb79f3a5d64d7533806b90438d297a303
IEDL.DBID .~1
ISSN 0097-8493
IngestDate Fri Jul 25 03:03:32 EDT 2025
Tue Jul 01 03:26:53 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Fri Feb 23 02:43:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Robot arm
Digital twin
Artificial intelligence
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-37d9742670cb78a69cc6bb8da6a190e7cb79f3a5d64d7533806b90438d297a303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4809-1592
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S009784932100011X-fx1_lrg.jpg
PQID 2528501698
PQPubID 2047474
PageCount 9
ParticipantIDs proquest_journals_2528501698
crossref_citationtrail_10_1016_j_cag_2021_01_011
crossref_primary_10_1016_j_cag_2021_01_011
elsevier_sciencedirect_doi_10_1016_j_cag_2021_01_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & graphics
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Hassel, Hofmann (bib0009) 2020
Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., et al. Playing atari with deep reinforcement learning. 2013.
Matulis M., Harvey C.. 3d printed robot arm, unity, tensorflow and kinect v2 – reinforcement machine learning.
Verner, Cuperman, Fang, Reitman, Romm, Balikin (bib0007) 2018
Lillicrap T.P., Hunt J.J., Pritzel A., Heess N., Erez T., Tassa Y., et al. Continuous control with deep reinforcement learning. 2015.
Chryssolouris, Mavrikios, Papakostas, Mourtzis, Michalos, Georgoulias (bib0002) 2009; 223
Ojsteršek, Buchmeister (bib0004) 2017
Sutton, McAllester, Singh, Mansour (bib0011) 1999
Liu, Gao, Bi, Shi, Tian (bib0008) 2020; 20
Bengio, Louradour, Collobert, Weston (bib0018) 2009
Havard, Jeanne, Lacomblez, Baudry (bib0001) 2019; 7
.
Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O.. Proximal policy optimization algorithms. 2017.
Krüger, Wang, Verl, Bauernhansl, Carpanzano, Makris (bib0006) 2017; 66
Juliani A., Berges V.-P., Teng E., Cohen A., Harper J., Elion C., et al. Unity: a general platform for intelligent agents. 2018.
Michalos, Makris, Papakostas, Mourtzis, Chryssolouris (bib0005) 2010; 2
Uhlemann, Lehmann, Steinhilper (bib0003) 2017; 61
Barbosa, Shiki, Savazzi (bib0015) 2019; 105
Cao Z., Lin C.-T.. Reinforcement learning from hierarchical critics. 2019.
Kousi, Gkournelos, Aivaliotis, Giannoulis, Michalos, Makris (bib0016) 2019; 28
Verner (10.1016/j.cag.2021.01.011_bib0007) 2018
Bengio (10.1016/j.cag.2021.01.011_bib0018) 2009
Liu (10.1016/j.cag.2021.01.011_bib0008) 2020; 20
Kousi (10.1016/j.cag.2021.01.011_sbref0016) 2019; 28
10.1016/j.cag.2021.01.011_bib0019
10.1016/j.cag.2021.01.011_bib0017
Barbosa (10.1016/j.cag.2021.01.011_bib0015) 2019; 105
Krüger (10.1016/j.cag.2021.01.011_bib0006) 2017; 66
Havard (10.1016/j.cag.2021.01.011_bib0001) 2019; 7
Michalos (10.1016/j.cag.2021.01.011_bib0005) 2010; 2
Ojsteršek (10.1016/j.cag.2021.01.011_bib0004) 2017
Hassel (10.1016/j.cag.2021.01.011_bib0009) 2020
Uhlemann (10.1016/j.cag.2021.01.011_sbref0003) 2017; 61
Chryssolouris (10.1016/j.cag.2021.01.011_bib0002) 2009; 223
10.1016/j.cag.2021.01.011_bib0014
10.1016/j.cag.2021.01.011_bib0012
Sutton (10.1016/j.cag.2021.01.011_bib0011) 1999
10.1016/j.cag.2021.01.011_bib0013
10.1016/j.cag.2021.01.011_bib0010
References_xml – volume: 2
  start-page: 81
  year: 2010
  end-page: 91
  ident: bib0005
  article-title: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach
  publication-title: CIRP J Manuf SciTechnol
– reference: Cao Z., Lin C.-T.. Reinforcement learning from hierarchical critics. 2019.
– volume: 223
  start-page: 451
  year: 2009
  end-page: 462
  ident: bib0002
  article-title: Digital manufacturing: History, perspectives, and outlook
  publication-title: Proc Inst MechEng Part B
– volume: 66
  start-page: 707
  year: 2017
  end-page: 730
  ident: bib0006
  article-title: Innovative control of assembly systems and lines
  publication-title: CIRP Ann
– start-page: 1057
  year: 1999
  end-page: 1063
  ident: bib0011
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proceedings of the 12th international conference on neural information processing systems
– reference: Lillicrap T.P., Hunt J.J., Pritzel A., Heess N., Erez T., Tassa Y., et al. Continuous control with deep reinforcement learning. 2015.
– reference: .
– volume: 61
  start-page: 335
  year: 2017
  end-page: 340
  ident: bib0003
  article-title: The digital twin: Realizing the cyber-physical production system for industry 4.0
  publication-title: Procedia CIRP
– reference: Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., et al. Playing atari with deep reinforcement learning. 2013.
– reference: Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O.. Proximal policy optimization algorithms. 2017.
– start-page: 41
  year: 2009
  end-page: 48
  ident: bib0018
  article-title: Curriculum learning
  publication-title: Proceedings of the 26th annual international conference on machine learning
– reference: Juliani A., Berges V.-P., Teng E., Cohen A., Harper J., Elion C., et al. Unity: a general platform for intelligent agents. 2018.
– reference: Matulis M., Harvey C.. 3d printed robot arm, unity, tensorflow and kinect v2 – reinforcement machine learning.
– volume: 7
  start-page: 472
  year: 2019
  end-page: 489
  ident: bib0001
  article-title: Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations
  publication-title: Prod Manuf Res
– volume: 20
  start-page: 3515
  year: 2020
  ident: bib0008
  article-title: A multitasking-oriented robot arm motion planning scheme based on deep reinforcement learning and twin synchro-control
  publication-title: Sensors
– year: 2020
  ident: bib0009
  article-title: Reinforcement learning of robot behavior based on a digital twin
  publication-title: Proceedings of the 9th international conference on pattern recognition applications and methods, ICPRAM 2020
– volume: 28
  start-page: 121
  year: 2019
  end-page: 126
  ident: bib0016
  article-title: Digital twin for adaptation of robots behavior in flexible robotic assembly lines
  publication-title: Procedia Manuf
– start-page: 307
  year: 2018
  end-page: 314
  ident: bib0007
  article-title: Robot online learning through digital twin experiments: a weightlifting project
  publication-title: Online engineering & Internet of Things
– start-page: 0750
  year: 2017
  end-page: 0758
  ident: bib0004
  article-title: Use of simulation software environments for the purpose of production optimization
  publication-title: Proceedings of the 28th DAAAM international symposium
– volume: 105
  start-page: 2707
  year: 2019
  end-page: 2720
  ident: bib0015
  article-title: Digitalization of a standard robot arm toward 4th industrial revolution
  publication-title: Int J Adv ManufTechnol
– volume: 7
  start-page: 472
  issue: 1
  year: 2019
  ident: 10.1016/j.cag.2021.01.011_bib0001
  article-title: Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations
  publication-title: Prod Manuf Res
– start-page: 0750
  year: 2017
  ident: 10.1016/j.cag.2021.01.011_bib0004
  article-title: Use of simulation software environments for the purpose of production optimization
  doi: 10.2507/28th.daaam.proceedings.106
– start-page: 1057
  year: 1999
  ident: 10.1016/j.cag.2021.01.011_bib0011
  article-title: Policy gradient methods for reinforcement learning with function approximation
– start-page: 307
  year: 2018
  ident: 10.1016/j.cag.2021.01.011_bib0007
  article-title: Robot online learning through digital twin experiments: a weightlifting project
  doi: 10.1007/978-3-319-64352-6_29
– ident: 10.1016/j.cag.2021.01.011_bib0012
– ident: 10.1016/j.cag.2021.01.011_bib0013
– start-page: 41
  year: 2009
  ident: 10.1016/j.cag.2021.01.011_bib0018
  article-title: Curriculum learning
– ident: 10.1016/j.cag.2021.01.011_bib0010
– volume: 28
  start-page: 121
  year: 2019
  ident: 10.1016/j.cag.2021.01.011_sbref0016
  article-title: Digital twin for adaptation of robots behavior in flexible robotic assembly lines
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2018.12.020
– volume: 223
  start-page: 451
  issue: 5
  year: 2009
  ident: 10.1016/j.cag.2021.01.011_bib0002
  article-title: Digital manufacturing: History, perspectives, and outlook
  publication-title: Proc Inst MechEng Part B
  doi: 10.1243/09544054JEM1241
– ident: 10.1016/j.cag.2021.01.011_bib0014
– volume: 66
  start-page: 707
  issue: 2
  year: 2017
  ident: 10.1016/j.cag.2021.01.011_bib0006
  article-title: Innovative control of assembly systems and lines
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2017.05.010
– volume: 2
  start-page: 81
  issue: 2
  year: 2010
  ident: 10.1016/j.cag.2021.01.011_bib0005
  article-title: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach
  publication-title: CIRP J Manuf SciTechnol
  doi: 10.1016/j.cirpj.2009.12.001
– volume: 105
  start-page: 2707
  year: 2019
  ident: 10.1016/j.cag.2021.01.011_bib0015
  article-title: Digitalization of a standard robot arm toward 4th industrial revolution
  publication-title: Int J Adv ManufTechnol
  doi: 10.1007/s00170-019-04523-2
– ident: 10.1016/j.cag.2021.01.011_bib0019
– ident: 10.1016/j.cag.2021.01.011_bib0017
– volume: 61
  start-page: 335
  year: 2017
  ident: 10.1016/j.cag.2021.01.011_sbref0003
  article-title: The digital twin: Realizing the cyber-physical production system for industry 4.0
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.11.152
– year: 2020
  ident: 10.1016/j.cag.2021.01.011_bib0009
  article-title: Reinforcement learning of robot behavior based on a digital twin
  doi: 10.5220/0008880903810386
– volume: 20
  start-page: 3515
  issue: 12
  year: 2020
  ident: 10.1016/j.cag.2021.01.011_bib0008
  article-title: A multitasking-oriented robot arm motion planning scheme based on deep reinforcement learning and twin synchro-control
  publication-title: Sensors
  doi: 10.3390/s20123515
SSID ssj0002264
Score 2.5583344
Snippet •The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and...
For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms Artificial intelligence
Digital twin
Digital twins
Domains
Industrial applications
Learning
Reinforcement learning
Robot arm
Robot arms
Robots
Three dimensional printing
Training
Title A robot arm digital twin utilising reinforcement learning
URI https://dx.doi.org/10.1016/j.cag.2021.01.011
https://www.proquest.com/docview/2528501698
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuJ0jhw8CXVtkybpcQzHVNzJwW6hSbNRmduoFW_-7b7XD79AD0IvDUkoL-n7SN7v9wi5CATEDFw6Tznpe9ykcw9JjrwU0QjWMMF8BCffT8R4ym9n0axFhg0WBtMqa91f6fRSW9ct_Vqa_U2WIcYXIiAeIwgFHZsZIti5xF1-9faZ5oFA0YqJErQx9G5uNsscL5ssIEQMg5K5Mwh-s00_tHRpekZ7ZLf2Gemg-qx90nKrA7LzhUnwkMQDmq_NuqBJ_kTTbIGlQGjxmq0obKxlhgcCNHclS6otDwRpXS5icUSmo-uH4dirqyJ4lglVgEZIIQYIhfStkSoRsbXCGJUmIgHj7iS0xnOWRKngKcQiTPnCxHjfl4axTMBiHZP2ar1yJ4QmKmCWKRuFzvIAprAysjZ2zApwk4TfIX4jD21rynCsXLHUTW7YowYRahSh9vEJOuTyY8im4sv4qzNvhKy_LboGff7XsG6zILr-4551GIUqQmoZdfq_Wc_INr5VWTld0i7yF3cODkdheuWO6pGtwc3dePIOO1TSCQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh6YkEKTOHGcsUJUBdpOrdTNSmy3CippFYLY-O3c5cFLogNSJseOorP93Z199x0hVw4Hn8ELjCVMYFterGcWkhxZGrMRVMw4szE5eTji_Yn3MPWnDXJb58JgWGWF_SWmF2hdtXQqaXZWSYI5vuABeSEmoaBhM90gmx5sXyxjcPP-FeeBmaIlFSXAMXSvrzaLIC8VzcFHdJ2CutNx_lJOv2C60D29PbJbGY20W_7XPmmY9IDsfKMSPCRhl2bLeJnTKHumOpljLRCavyUphZW1SPBEgGamoElVxYkgrepFzI_IpHc3vu1bVVkESzEucoAEDU6AywNbxYGIeKgUj2OhIx6BdjcBtIYzFvmaexqcESZsHod44afdMIhAZR2TZrpMzQmhkXCYYkL5rlGeA59Qga9UaJjiYCdxu0XsWh5SVZzhWLpiIevgsCcJIpQoQmnj47TI9eeQVUmYsa6zVwtZ_ph1CYC-bli7nhBZbbkX6fqu8JFbRpz-76uXZKs_Hg7k4H70eEa28U0ZotMmzTx7NedgfeTxRbG6PgA00dOX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robot+arm+digital+twin+utilising+reinforcement+learning&rft.jtitle=Computers+%26+graphics&rft.au=Matulis%2C+Marius&rft.au=Harvey%2C+Carlo&rft.date=2021-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0097-8493&rft.eissn=1873-7684&rft.volume=95&rft.spage=106&rft_id=info:doi/10.1016%2Fj.cag.2021.01.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon