A robot arm digital twin utilising reinforcement learning
•The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and evaluation environments as well as the physical equivalency of this digital twin.•We train, using reinforcement learning, a robot arm to perform a...
Saved in:
Published in | Computers & graphics Vol. 95; pp. 106 - 114 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and evaluation environments as well as the physical equivalency of this digital twin.•We train, using reinforcement learning, a robot arm to perform a task in virtual space and then map this learnt behaviour to a physical counterpart whilst illustrating linkages between the halves of the digital twin.
[Display omitted]
For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or “Industry 4.0” and creates an opportunity to deliver significant benefit to both businesses and their stakeholders. Robot arms are one of the most common devices utilised in manufacturing and industrial processes, used for a wide variety of automation tasks on, for example, a factory floor but the effective use of these devices requires AI to be appropriately trained. One approach to support AI training of these devices is the use of a “Digital Twin”. There are, however, a number of challenges that exist within this domain, in particular, success depends upon the ability to collect data of what are considered as observations within the environment and the application of one or many trained AI policies to the task that is to be completed. This project presents a case-study of creating and training a Robot Arm Digital Twin as an approach for AI training in a virtual space and applying this simulation learning within physical space. A virtual space, created using Unity (a contemporary Game Engine), incorporating a virtual robot arm was linked to a physical space, being a 3D printed replica of the virtual space and robot arm. These linked environments were applied to solve a task and provide training for an AI model. The contribution of this work is to provide guidance on training protocols for a digital twin together with details of the necessary architecture to support effective simulation in a virtual space through the use of Tensorflow and hyperparameter tuning. It provides an approach to addressing the mapping of learning in the virtual domain to the physical robot twin. |
---|---|
AbstractList | •The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and evaluation environments as well as the physical equivalency of this digital twin.•We train, using reinforcement learning, a robot arm to perform a task in virtual space and then map this learnt behaviour to a physical counterpart whilst illustrating linkages between the halves of the digital twin.
[Display omitted]
For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or “Industry 4.0” and creates an opportunity to deliver significant benefit to both businesses and their stakeholders. Robot arms are one of the most common devices utilised in manufacturing and industrial processes, used for a wide variety of automation tasks on, for example, a factory floor but the effective use of these devices requires AI to be appropriately trained. One approach to support AI training of these devices is the use of a “Digital Twin”. There are, however, a number of challenges that exist within this domain, in particular, success depends upon the ability to collect data of what are considered as observations within the environment and the application of one or many trained AI policies to the task that is to be completed. This project presents a case-study of creating and training a Robot Arm Digital Twin as an approach for AI training in a virtual space and applying this simulation learning within physical space. A virtual space, created using Unity (a contemporary Game Engine), incorporating a virtual robot arm was linked to a physical space, being a 3D printed replica of the virtual space and robot arm. These linked environments were applied to solve a task and provide training for an AI model. The contribution of this work is to provide guidance on training protocols for a digital twin together with details of the necessary architecture to support effective simulation in a virtual space through the use of Tensorflow and hyperparameter tuning. It provides an approach to addressing the mapping of learning in the virtual domain to the physical robot twin. For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or "Industry 4.0" and creates an opportunity to deliver significant benefit to both businesses and their stakeholders. Robot arms are one of the most common devices utilised in manufacturing and industrial processes, used for a wide variety of automation tasks on, for example, a factory floor but the effective use of these devices requires AI to be appropriately trained. One approach to support AI training of these devices is the use of a "Digital Twin". There are, however, a number of challenges that exist within this domain, in particular, success depends upon the ability to collect data of what are considered as observations within the environment and the application of one or many trained AI policies to the task that is to be completed. This project presents a case-study of creating and training a Robot Arm Digital Twin as an approach for AI training in a virtual space and applying this simulation learning within physical space. A virtual space, created using Unity (a contemporary Game Engine), incorporating a virtual robot arm was linked to a physical space, being a 3D printed replica of the virtual space and robot arm. These linked environments were applied to solve a task and provide training for an AI model. The contribution of this work is to provide guidance on training protocols for a digital twin together with details of the necessary architecture to support effective simulation in a virtual space through the use of Tensorflow and hyperparameter tuning. It provides an approach to addressing the mapping of learning in the virtual domain to the physical robot twin. |
Author | Harvey, Carlo Matulis, Marius |
Author_xml | – sequence: 1 givenname: Marius surname: Matulis fullname: Matulis, Marius email: marius.matulis@mail.bcu.ac.uk organization: DMTLab, Birmingham City University, Curzon Street, Birmingham B4 7XG, United Kingdom – sequence: 2 givenname: Carlo orcidid: 0000-0002-4809-1592 surname: Harvey fullname: Harvey, Carlo email: carlo.harvey@bcu.ac.uk organization: DMTLab, Birmingham City University, Curzon Street, Birmingham B4 7XG, United Kingdom |
BookMark | eNp9kEtLAzEUhYNUsK3-AHcDrmfMYyYPXJXiCwpudB0ySaZkmCY1SRX_vSl15aJw4MLlfPdyzgLMfPAWgFsEGwQRvR8brbYNhhg18Ch0AeaIM1IzytsZmEMoWM1bQa7AIqURQogxbedArKoY-pArFXeVcVuX1VTlb-erQ3aTS85vq2idH0LUdmd9riaroi_ra3A5qCnZm7-5BB9Pj-_rl3rz9vy6Xm1qTSjPNWFGsBZTBnXPuKJCa9r33CiqkICWla0YiOoMbQ3rCOGQ9gK2hBssmCKQLMHd6e4-hs-DTVmO4RB9eSlxh3lX0gteXOzk0jGkFO0gdYmSXfA5KjdJBOWxJznK0pM89iThUaiQ6B-5j26n4s9Z5uHE2BL8y9kok3bWa2tctDpLE9wZ-hfcXoDd |
CitedBy_id | crossref_primary_10_1016_j_conengprac_2022_105271 crossref_primary_10_1007_s12206_021_1201_0 crossref_primary_10_1108_JSTPM_09_2023_0162 crossref_primary_10_1109_COMST_2022_3208773 crossref_primary_10_3390_s24082575 crossref_primary_10_1016_j_jmapro_2023_06_002 crossref_primary_10_1016_j_rcim_2022_102321 crossref_primary_10_3390_s24165248 crossref_primary_10_1007_s00170_023_11064_2 crossref_primary_10_1016_j_cirpj_2022_11_003 crossref_primary_10_1186_s10033_022_00760_x crossref_primary_10_3390_s24175680 crossref_primary_10_3390_s23083938 crossref_primary_10_1007_s10845_023_02278_y crossref_primary_10_1007_s44223_024_00055_2 crossref_primary_10_1109_TII_2021_3090363 crossref_primary_10_1016_j_aei_2024_102592 crossref_primary_10_3390_s24227183 crossref_primary_10_3389_fnbot_2022_913605 crossref_primary_10_3390_app14125208 crossref_primary_10_3390_make6040124 crossref_primary_10_3390_s21196340 crossref_primary_10_1016_j_cirpj_2023_06_011 crossref_primary_10_3390_electronics13101969 crossref_primary_10_1016_j_future_2025_107736 crossref_primary_10_1016_j_jestch_2023_101455 crossref_primary_10_59277_ROMJIST_2025_1_06 crossref_primary_10_16984_saufenbilder_911942 crossref_primary_10_1002_rob_22127 crossref_primary_10_3390_app122312377 crossref_primary_10_1109_JSEN_2022_3213428 crossref_primary_10_1109_OJPEL_2024_3422021 crossref_primary_10_1109_JSAC_2023_3310093 crossref_primary_10_1038_s41598_024_62948_6 crossref_primary_10_1016_j_datak_2024_102304 crossref_primary_10_3390_s24072232 crossref_primary_10_1007_s10845_023_02246_6 crossref_primary_10_1016_j_aei_2023_102141 crossref_primary_10_3390_en16041796 crossref_primary_10_1080_17445302_2023_2238391 crossref_primary_10_1080_08839514_2024_2383101 crossref_primary_10_1080_0951192X_2024_2428683 crossref_primary_10_3390_app11146399 crossref_primary_10_1007_s10845_023_02172_7 crossref_primary_10_1109_JRFID_2022_3207047 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1016_j_cag_2023_10_025 crossref_primary_10_3390_s23010017 crossref_primary_10_1109_ACCESS_2023_3349379 crossref_primary_10_3389_fmtec_2023_1154263 crossref_primary_10_1016_j_nucengdes_2024_113691 crossref_primary_10_1051_e3sconf_202131209002 crossref_primary_10_3390_bdcc7030139 crossref_primary_10_1016_j_aei_2022_101562 crossref_primary_10_1109_JIOT_2022_3153653 crossref_primary_10_1016_j_oceaneng_2024_118070 crossref_primary_10_1016_j_aei_2024_102572 crossref_primary_10_1007_s00170_022_09164_6 crossref_primary_10_1016_j_compstruc_2024_107342 crossref_primary_10_1016_j_cogr_2023_04_003 crossref_primary_10_1088_2631_8695_ad1f14 crossref_primary_10_3389_fbioe_2021_793782 crossref_primary_10_1016_j_jmapro_2023_05_019 crossref_primary_10_3390_s25010006 crossref_primary_10_7736_JKSPE_024_008 crossref_primary_10_1115_1_4067616 crossref_primary_10_3390_s23177602 crossref_primary_10_3390_inventions8040103 crossref_primary_10_1016_j_measurement_2024_115729 crossref_primary_10_3389_fhpcp_2025_1536501 crossref_primary_10_1016_j_cag_2021_05_007 crossref_primary_10_1109_ACCESS_2023_3349247 crossref_primary_10_3390_app14219919 crossref_primary_10_1142_S1793962323410337 crossref_primary_10_1016_j_rcim_2022_102432 crossref_primary_10_3390_electronics14020276 crossref_primary_10_3390_math13020216 crossref_primary_10_1109_JAS_2024_124635 crossref_primary_10_1002_asmb_2923 crossref_primary_10_1038_s41598_024_75112_x |
Cites_doi | 10.2507/28th.daaam.proceedings.106 10.1007/978-3-319-64352-6_29 10.1016/j.promfg.2018.12.020 10.1243/09544054JEM1241 10.1016/j.cirp.2017.05.010 10.1016/j.cirpj.2009.12.001 10.1007/s00170-019-04523-2 10.1016/j.procir.2016.11.152 10.5220/0008880903810386 10.3390/s20123515 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Apr 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Apr 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.cag.2021.01.011 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7684 |
EndPage | 114 |
ExternalDocumentID | 10_1016_j_cag_2021_01_011 S009784932100011X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGSOS AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W K-O KOM LG9 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UHS VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c368t-37d9742670cb78a69cc6bb8da6a190e7cb79f3a5d64d7533806b90438d297a303 |
IEDL.DBID | .~1 |
ISSN | 0097-8493 |
IngestDate | Fri Jul 25 03:03:32 EDT 2025 Tue Jul 01 03:26:53 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Fri Feb 23 02:43:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Robot arm Digital twin Artificial intelligence Reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-37d9742670cb78a69cc6bb8da6a190e7cb79f3a5d64d7533806b90438d297a303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4809-1592 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S009784932100011X-fx1_lrg.jpg |
PQID | 2528501698 |
PQPubID | 2047474 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2528501698 crossref_citationtrail_10_1016_j_cag_2021_01_011 crossref_primary_10_1016_j_cag_2021_01_011 elsevier_sciencedirect_doi_10_1016_j_cag_2021_01_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computers & graphics |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Hassel, Hofmann (bib0009) 2020 Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., et al. Playing atari with deep reinforcement learning. 2013. Matulis M., Harvey C.. 3d printed robot arm, unity, tensorflow and kinect v2 – reinforcement machine learning. Verner, Cuperman, Fang, Reitman, Romm, Balikin (bib0007) 2018 Lillicrap T.P., Hunt J.J., Pritzel A., Heess N., Erez T., Tassa Y., et al. Continuous control with deep reinforcement learning. 2015. Chryssolouris, Mavrikios, Papakostas, Mourtzis, Michalos, Georgoulias (bib0002) 2009; 223 Ojsteršek, Buchmeister (bib0004) 2017 Sutton, McAllester, Singh, Mansour (bib0011) 1999 Liu, Gao, Bi, Shi, Tian (bib0008) 2020; 20 Bengio, Louradour, Collobert, Weston (bib0018) 2009 Havard, Jeanne, Lacomblez, Baudry (bib0001) 2019; 7 . Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O.. Proximal policy optimization algorithms. 2017. Krüger, Wang, Verl, Bauernhansl, Carpanzano, Makris (bib0006) 2017; 66 Juliani A., Berges V.-P., Teng E., Cohen A., Harper J., Elion C., et al. Unity: a general platform for intelligent agents. 2018. Michalos, Makris, Papakostas, Mourtzis, Chryssolouris (bib0005) 2010; 2 Uhlemann, Lehmann, Steinhilper (bib0003) 2017; 61 Barbosa, Shiki, Savazzi (bib0015) 2019; 105 Cao Z., Lin C.-T.. Reinforcement learning from hierarchical critics. 2019. Kousi, Gkournelos, Aivaliotis, Giannoulis, Michalos, Makris (bib0016) 2019; 28 Verner (10.1016/j.cag.2021.01.011_bib0007) 2018 Bengio (10.1016/j.cag.2021.01.011_bib0018) 2009 Liu (10.1016/j.cag.2021.01.011_bib0008) 2020; 20 Kousi (10.1016/j.cag.2021.01.011_sbref0016) 2019; 28 10.1016/j.cag.2021.01.011_bib0019 10.1016/j.cag.2021.01.011_bib0017 Barbosa (10.1016/j.cag.2021.01.011_bib0015) 2019; 105 Krüger (10.1016/j.cag.2021.01.011_bib0006) 2017; 66 Havard (10.1016/j.cag.2021.01.011_bib0001) 2019; 7 Michalos (10.1016/j.cag.2021.01.011_bib0005) 2010; 2 Ojsteršek (10.1016/j.cag.2021.01.011_bib0004) 2017 Hassel (10.1016/j.cag.2021.01.011_bib0009) 2020 Uhlemann (10.1016/j.cag.2021.01.011_sbref0003) 2017; 61 Chryssolouris (10.1016/j.cag.2021.01.011_bib0002) 2009; 223 10.1016/j.cag.2021.01.011_bib0014 10.1016/j.cag.2021.01.011_bib0012 Sutton (10.1016/j.cag.2021.01.011_bib0011) 1999 10.1016/j.cag.2021.01.011_bib0013 10.1016/j.cag.2021.01.011_bib0010 |
References_xml | – volume: 2 start-page: 81 year: 2010 end-page: 91 ident: bib0005 article-title: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach publication-title: CIRP J Manuf SciTechnol – reference: Cao Z., Lin C.-T.. Reinforcement learning from hierarchical critics. 2019. – volume: 223 start-page: 451 year: 2009 end-page: 462 ident: bib0002 article-title: Digital manufacturing: History, perspectives, and outlook publication-title: Proc Inst MechEng Part B – volume: 66 start-page: 707 year: 2017 end-page: 730 ident: bib0006 article-title: Innovative control of assembly systems and lines publication-title: CIRP Ann – start-page: 1057 year: 1999 end-page: 1063 ident: bib0011 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proceedings of the 12th international conference on neural information processing systems – reference: Lillicrap T.P., Hunt J.J., Pritzel A., Heess N., Erez T., Tassa Y., et al. Continuous control with deep reinforcement learning. 2015. – reference: . – volume: 61 start-page: 335 year: 2017 end-page: 340 ident: bib0003 article-title: The digital twin: Realizing the cyber-physical production system for industry 4.0 publication-title: Procedia CIRP – reference: Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., et al. Playing atari with deep reinforcement learning. 2013. – reference: Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O.. Proximal policy optimization algorithms. 2017. – start-page: 41 year: 2009 end-page: 48 ident: bib0018 article-title: Curriculum learning publication-title: Proceedings of the 26th annual international conference on machine learning – reference: Juliani A., Berges V.-P., Teng E., Cohen A., Harper J., Elion C., et al. Unity: a general platform for intelligent agents. 2018. – reference: Matulis M., Harvey C.. 3d printed robot arm, unity, tensorflow and kinect v2 – reinforcement machine learning. – volume: 7 start-page: 472 year: 2019 end-page: 489 ident: bib0001 article-title: Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations publication-title: Prod Manuf Res – volume: 20 start-page: 3515 year: 2020 ident: bib0008 article-title: A multitasking-oriented robot arm motion planning scheme based on deep reinforcement learning and twin synchro-control publication-title: Sensors – year: 2020 ident: bib0009 article-title: Reinforcement learning of robot behavior based on a digital twin publication-title: Proceedings of the 9th international conference on pattern recognition applications and methods, ICPRAM 2020 – volume: 28 start-page: 121 year: 2019 end-page: 126 ident: bib0016 article-title: Digital twin for adaptation of robots behavior in flexible robotic assembly lines publication-title: Procedia Manuf – start-page: 307 year: 2018 end-page: 314 ident: bib0007 article-title: Robot online learning through digital twin experiments: a weightlifting project publication-title: Online engineering & Internet of Things – start-page: 0750 year: 2017 end-page: 0758 ident: bib0004 article-title: Use of simulation software environments for the purpose of production optimization publication-title: Proceedings of the 28th DAAAM international symposium – volume: 105 start-page: 2707 year: 2019 end-page: 2720 ident: bib0015 article-title: Digitalization of a standard robot arm toward 4th industrial revolution publication-title: Int J Adv ManufTechnol – volume: 7 start-page: 472 issue: 1 year: 2019 ident: 10.1016/j.cag.2021.01.011_bib0001 article-title: Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations publication-title: Prod Manuf Res – start-page: 0750 year: 2017 ident: 10.1016/j.cag.2021.01.011_bib0004 article-title: Use of simulation software environments for the purpose of production optimization doi: 10.2507/28th.daaam.proceedings.106 – start-page: 1057 year: 1999 ident: 10.1016/j.cag.2021.01.011_bib0011 article-title: Policy gradient methods for reinforcement learning with function approximation – start-page: 307 year: 2018 ident: 10.1016/j.cag.2021.01.011_bib0007 article-title: Robot online learning through digital twin experiments: a weightlifting project doi: 10.1007/978-3-319-64352-6_29 – ident: 10.1016/j.cag.2021.01.011_bib0012 – ident: 10.1016/j.cag.2021.01.011_bib0013 – start-page: 41 year: 2009 ident: 10.1016/j.cag.2021.01.011_bib0018 article-title: Curriculum learning – ident: 10.1016/j.cag.2021.01.011_bib0010 – volume: 28 start-page: 121 year: 2019 ident: 10.1016/j.cag.2021.01.011_sbref0016 article-title: Digital twin for adaptation of robots behavior in flexible robotic assembly lines publication-title: Procedia Manuf doi: 10.1016/j.promfg.2018.12.020 – volume: 223 start-page: 451 issue: 5 year: 2009 ident: 10.1016/j.cag.2021.01.011_bib0002 article-title: Digital manufacturing: History, perspectives, and outlook publication-title: Proc Inst MechEng Part B doi: 10.1243/09544054JEM1241 – ident: 10.1016/j.cag.2021.01.011_bib0014 – volume: 66 start-page: 707 issue: 2 year: 2017 ident: 10.1016/j.cag.2021.01.011_bib0006 article-title: Innovative control of assembly systems and lines publication-title: CIRP Ann doi: 10.1016/j.cirp.2017.05.010 – volume: 2 start-page: 81 issue: 2 year: 2010 ident: 10.1016/j.cag.2021.01.011_bib0005 article-title: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach publication-title: CIRP J Manuf SciTechnol doi: 10.1016/j.cirpj.2009.12.001 – volume: 105 start-page: 2707 year: 2019 ident: 10.1016/j.cag.2021.01.011_bib0015 article-title: Digitalization of a standard robot arm toward 4th industrial revolution publication-title: Int J Adv ManufTechnol doi: 10.1007/s00170-019-04523-2 – ident: 10.1016/j.cag.2021.01.011_bib0019 – ident: 10.1016/j.cag.2021.01.011_bib0017 – volume: 61 start-page: 335 year: 2017 ident: 10.1016/j.cag.2021.01.011_sbref0003 article-title: The digital twin: Realizing the cyber-physical production system for industry 4.0 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.152 – year: 2020 ident: 10.1016/j.cag.2021.01.011_bib0009 article-title: Reinforcement learning of robot behavior based on a digital twin doi: 10.5220/0008880903810386 – volume: 20 start-page: 3515 issue: 12 year: 2020 ident: 10.1016/j.cag.2021.01.011_bib0008 article-title: A multitasking-oriented robot arm motion planning scheme based on deep reinforcement learning and twin synchro-control publication-title: Sensors doi: 10.3390/s20123515 |
SSID | ssj0002264 |
Score | 2.5583344 |
Snippet | •The manuscript investigates a digital twin of a robot arm typical of manufacturing processes.•This explores the virtual construction of the training and... For many industry contexts, the implementation of Artificial Intelligence (AI) has contributed to what has become known as the fourth industrial revolution or... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | Artificial intelligence Digital twin Digital twins Domains Industrial applications Learning Reinforcement learning Robot arm Robot arms Robots Three dimensional printing Training |
Title | A robot arm digital twin utilising reinforcement learning |
URI | https://dx.doi.org/10.1016/j.cag.2021.01.011 https://www.proquest.com/docview/2528501698 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuJ0jhw8CXVtkybpcQzHVNzJwW6hSbNRmduoFW_-7b7XD79AD0IvDUkoL-n7SN7v9wi5CATEDFw6Tznpe9ykcw9JjrwU0QjWMMF8BCffT8R4ym9n0axFhg0WBtMqa91f6fRSW9ct_Vqa_U2WIcYXIiAeIwgFHZsZIti5xF1-9faZ5oFA0YqJErQx9G5uNsscL5ssIEQMg5K5Mwh-s00_tHRpekZ7ZLf2Gemg-qx90nKrA7LzhUnwkMQDmq_NuqBJ_kTTbIGlQGjxmq0obKxlhgcCNHclS6otDwRpXS5icUSmo-uH4dirqyJ4lglVgEZIIQYIhfStkSoRsbXCGJUmIgHj7iS0xnOWRKngKcQiTPnCxHjfl4axTMBiHZP2ar1yJ4QmKmCWKRuFzvIAprAysjZ2zApwk4TfIX4jD21rynCsXLHUTW7YowYRahSh9vEJOuTyY8im4sv4qzNvhKy_LboGff7XsG6zILr-4551GIUqQmoZdfq_Wc_INr5VWTld0i7yF3cODkdheuWO6pGtwc3dePIOO1TSCQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh6YkEKTOHGcsUJUBdpOrdTNSmy3CippFYLY-O3c5cFLogNSJseOorP93Z199x0hVw4Hn8ELjCVMYFterGcWkhxZGrMRVMw4szE5eTji_Yn3MPWnDXJb58JgWGWF_SWmF2hdtXQqaXZWSYI5vuABeSEmoaBhM90gmx5sXyxjcPP-FeeBmaIlFSXAMXSvrzaLIC8VzcFHdJ2CutNx_lJOv2C60D29PbJbGY20W_7XPmmY9IDsfKMSPCRhl2bLeJnTKHumOpljLRCavyUphZW1SPBEgGamoElVxYkgrepFzI_IpHc3vu1bVVkESzEucoAEDU6AywNbxYGIeKgUj2OhIx6BdjcBtIYzFvmaexqcESZsHod44afdMIhAZR2TZrpMzQmhkXCYYkL5rlGeA59Qga9UaJjiYCdxu0XsWh5SVZzhWLpiIevgsCcJIpQoQmnj47TI9eeQVUmYsa6zVwtZ_ph1CYC-bli7nhBZbbkX6fqu8JFbRpz-76uXZKs_Hg7k4H70eEa28U0ZotMmzTx7NedgfeTxRbG6PgA00dOX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robot+arm+digital+twin+utilising+reinforcement+learning&rft.jtitle=Computers+%26+graphics&rft.au=Matulis%2C+Marius&rft.au=Harvey%2C+Carlo&rft.date=2021-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0097-8493&rft.eissn=1873-7684&rft.volume=95&rft.spage=106&rft_id=info:doi/10.1016%2Fj.cag.2021.01.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon |