Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems
Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals an...
Saved in:
Published in | Journal of sound and vibration Vol. 400; pp. 606 - 625 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
21.07.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future. |
---|---|
AbstractList | Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future. |
Author | Carolan, D. Vahdati, M. Tebbutt, J.A. Dear, J.P. |
Author_xml | – sequence: 1 givenname: J.A. surname: Tebbutt fullname: Tebbutt, J.A. email: j.tebbutt13@imperial.ac.uk organization: Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK – sequence: 2 givenname: M. surname: Vahdati fullname: Vahdati, M. email: m.vahdati@imperial.ac.uk organization: Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK – sequence: 3 givenname: D. surname: Carolan fullname: Carolan, D. email: declan.carolan@ucd.ie organization: Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK – sequence: 4 givenname: J.P. surname: Dear fullname: Dear, J.P. email: j.dear@imperial.ac.uk organization: Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK |
BookMark | eNp9UU2LFDEUDLKCs6s_wFvAc7cvnfQXnmTRXWHRi4K3kEledtJ0J2OSHhn_if_WtOPJw8KDwEtVParqmlz54JGQ1wxqBqx7O9VTOtUNsL4GUUPTPCM7BmNbDW03XJEdlFUlOvj-glynNAHAKLjYkd-f1wWj02qmzp8wZfeosguellFlYlRnGiy9x3k5hDn_ohFT8CqHmKgNkeYDlpVZ9YVl6eJ0DNWxwNIakf5URbVo0yUYjJuooXbN29fBPR6qdEQ0NCo307x6jzNN55RxSS_Jc6vmhK_-vTfk28cPX2_vq4cvd59u3z9UmndDrjg3gvdDx5W1bD9yAWzfj0IbYMYyMdjW4MB0q0XPBY5GNG3HgTNhlNrrQfEb8uaie4zhx1oSkFNYoy8nZQMdA96VBAuKXVDFXEoRrTxGt6h4lgzk1oCcZGlAbg1IELLEXTj9fxzt8t908-b3Sea7CxOL8ZPDKJN26DUaF1FnaYJ7gv0H2bamaQ |
CitedBy_id | crossref_primary_10_3390_app14167208 crossref_primary_10_1007_s12206_023_0122_5 crossref_primary_10_1016_j_jweia_2024_105956 crossref_primary_10_1016_j_tust_2024_106016 crossref_primary_10_1016_j_jweia_2022_105031 crossref_primary_10_1016_j_tust_2024_105703 crossref_primary_10_3390_app13053124 crossref_primary_10_1016_j_buildenv_2018_01_045 crossref_primary_10_1016_j_jweia_2022_104998 crossref_primary_10_1063_5_0231438 crossref_primary_10_1115_1_4041111 crossref_primary_10_1016_j_tust_2021_104120 crossref_primary_10_1063_5_0245283 crossref_primary_10_1063_5_0255132 crossref_primary_10_1063_5_0260612 crossref_primary_10_1016_j_ast_2018_08_009 crossref_primary_10_1177_09544097221080368 crossref_primary_10_1016_j_buildenv_2024_111166 crossref_primary_10_1007_s11771_023_5434_1 crossref_primary_10_1299_mej_18_00478 |
Cites_doi | 10.1016/j.procs.2015.11.007 10.1016/j.wavemoti.2015.02.005 10.1016/j.jsv.2004.06.044 10.1299/jsmeb.40.51 10.1243/PIME_PROC_1996_210_324_02 10.1017/S0022112091002203 10.1017/S0022112092002969 10.1109/4235.996017 10.1063/1.168744 10.1016/0021-9991(83)90136-5 10.1016/j.jcp.2013.11.036 10.1121/1.1907235 10.1006/jsvi.1998.2006 10.1006/jcph.1994.1187 10.1680/eacm.2008.161.3.107 10.1137/S1064827594276424 10.1016/j.jcp.2016.01.038 10.1006/jcph.2000.6459 10.1016/j.cageo.2012.03.008 10.1006/jsvi.2000.3106 10.1007/978-3-319-16874-6 10.1243/09544097JRRT294 10.1103/PhysRev.73.383 10.1007/s11075-008-9193-8 10.1098/rspa.1937.0150 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright Elsevier Science Ltd. Jul 21, 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright Elsevier Science Ltd. Jul 21, 2017 |
DBID | 6I. AAFTH AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.jsv.2017.04.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1095-8568 |
EndPage | 625 |
ExternalDocumentID | 10_1016_j_jsv_2017_04_022 S0022460X17303280 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DM4 E.L EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM LG5 M24 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHPGS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE NDZJH R2- SEW SMS SPG SSH T9H VOH WUQ ZY4 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c368t-33d437863aff1b93401b794cd01df148f5de81c5c4734e9d425630314daabc8a3 |
IEDL.DBID | .~1 |
ISSN | 0022-460X |
IngestDate | Fri Jul 25 03:23:05 EDT 2025 Tue Jul 01 03:32:07 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Fri Feb 23 02:11:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Micro-pressure waves Non-linear acoustics Shock-capturing schemes Train-tunnel aero-acoustics Optimization |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-33d437863aff1b93401b794cd01df148f5de81c5c4734e9d425630314daabc8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022460X17303280 |
PQID | 2061036568 |
PQPubID | 2047461 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2061036568 crossref_primary_10_1016_j_jsv_2017_04_022 crossref_citationtrail_10_1016_j_jsv_2017_04_022 elsevier_sciencedirect_doi_10_1016_j_jsv_2017_04_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-21 |
PublicationDateYYYYMMDD | 2017-07-21 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of sound and vibration |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | and Matlab, Vol. 113, Springer, 2015. Kurganov, Tadmor (bib32) 2000; 160 C.F. Colebrook, C.M. White, Experiments with Fluid Friction in Roughened Pipes, Proceedings of the Royal Society of London 161 (906) (1937) 367-381. Mashimo, Nakatsu, Aoki, Matsuo (bib24) 1997; 40 Liu, Osher, Chan (bib19) 1994; 115 S. Ozawa, T. Maeda, Tunnel entrance hoods for reduction of micro-pressure wave, Railway Technical Research Institute, Quarterly Reports 29 (3). HS2 Ltd, D7: Tunnel Construction and Methodology, Tech. rep., HS2 Ltd., London (2015). Cannavó (bib28) 2012; 44 MATLAB, version 9.0.0.341360 (R2016a), The MathWorks Inc., Natick, Massachusetts, United States, 2016. Hara (bib2) 1961; 4 A.D. Quinn, M. Hayward, C.J. Baker, F. Schmid, J.A. Priest, W. Powrie, A full-scale experimental and modelling study of ballast flight under high-speed trains, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 224 (2) (2010) 61-74. Harten (bib18) 1983; 49 Munjal (bib10) 1987 Miura, Takai, Uchida, Fukada (bib7) 1998; 2 Acker, de R. Borges, Costa (bib20) 2016; 313 Weller, Tabor (bib29) 1998; 12 Ingard (bib12) 1953; 25 Sugimoto (bib14) 1991; 225 Kraposhin, Bovtrikova, Strijhak (bib30) 2015; 66 A. Yamamoto, Micro-pressure wave radiated from tunnel exit, in: Preprint of the spring meeting of physical society of Japan, 1977. A. Vardy, Aerodynamic drag on trains in tunnels part 1: synthesis and definitions, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 210 (1) (1996) 29-38. Lombard, Mercier (bib9) 2014; 259 Ji (bib13) 2005; 283 Richoux, Lombard, Mercier (bib17) 2015; 56 S. Ozawa, T. Maeda, T. Matsumura, K. Uchida, Effect of Ballast on Pressure Wave Propagating through Tunnel, Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicles 2 (1993) 299-304. Sugimoto (bib1) 1992; 244 Shampine, Reichelt (bib21) 1997; 18 A.E. Vardy, Generation and alleviation of sonic booms from rail tunnels, Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 161 (3) (2008) 107-119. Ferziger, Peric (bib34) 2012 Aoki, Vardy, Brown (bib25) 1999; 220 Deb, Pratap, Agarwal, Meyarivan (bib27) 2002; 6 Diethelm (bib16) 2008; 47 Vardy, Brown (bib5) 2000; 238 Levine, Schwinger (bib11) 1948; 73 F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM Vardy (10.1016/j.jsv.2017.04.022_bib5) 2000; 238 Ji (10.1016/j.jsv.2017.04.022_bib13) 2005; 283 Liu (10.1016/j.jsv.2017.04.022_bib19) 1994; 115 Cannavó (10.1016/j.jsv.2017.04.022_bib28) 2012; 44 Hara (10.1016/j.jsv.2017.04.022_bib2) 1961; 4 Deb (10.1016/j.jsv.2017.04.022_bib27) 2002; 6 10.1016/j.jsv.2017.04.022_bib8 Lombard (10.1016/j.jsv.2017.04.022_bib9) 2014; 259 Weller (10.1016/j.jsv.2017.04.022_bib29) 1998; 12 10.1016/j.jsv.2017.04.022_bib6 10.1016/j.jsv.2017.04.022_bib4 10.1016/j.jsv.2017.04.022_bib3 Sugimoto (10.1016/j.jsv.2017.04.022_bib1) 1992; 244 10.1016/j.jsv.2017.04.022_bib22 Ingard (10.1016/j.jsv.2017.04.022_bib12) 1953; 25 Acker (10.1016/j.jsv.2017.04.022_bib20) 2016; 313 10.1016/j.jsv.2017.04.022_bib26 10.1016/j.jsv.2017.04.022_bib23 Munjal (10.1016/j.jsv.2017.04.022_bib10) 1987 Levine (10.1016/j.jsv.2017.04.022_bib11) 1948; 73 Miura (10.1016/j.jsv.2017.04.022_bib7) 1998; 2 Aoki (10.1016/j.jsv.2017.04.022_bib25) 1999; 220 Mashimo (10.1016/j.jsv.2017.04.022_bib24) 1997; 40 Diethelm (10.1016/j.jsv.2017.04.022_bib16) 2008; 47 Harten (10.1016/j.jsv.2017.04.022_bib18) 1983; 49 Sugimoto (10.1016/j.jsv.2017.04.022_bib14) 1991; 225 Richoux (10.1016/j.jsv.2017.04.022_bib17) 2015; 56 Shampine (10.1016/j.jsv.2017.04.022_bib21) 1997; 18 10.1016/j.jsv.2017.04.022_bib33 10.1016/j.jsv.2017.04.022_bib31 Ferziger (10.1016/j.jsv.2017.04.022_bib34) 2012 Kurganov (10.1016/j.jsv.2017.04.022_bib32) 2000; 160 10.1016/j.jsv.2017.04.022_bib15 Kraposhin (10.1016/j.jsv.2017.04.022_bib30) 2015; 66 |
References_xml | – volume: 283 start-page: 1180 year: 2005 end-page: 1186 ident: bib13 article-title: Acoustic length correction of closed cylindrical side-branched tube publication-title: J. Sound Vib. – volume: 115 start-page: 200 year: 1994 end-page: 212 ident: bib19 article-title: Weighted essentially non-oscillatory schemes publication-title: J. Comput. Phys. – volume: 313 start-page: 726 year: 2016 end-page: 753 ident: bib20 article-title: An improved WENO-Z scheme publication-title: J. Comput. Phys. – volume: 73 start-page: 383 year: 1948 ident: bib11 article-title: On the radiation of sound from an unflanged circular pipe publication-title: Phys. Rev. – year: 2012 ident: bib34 article-title: Computational Methods for Fluid Dynamics – volume: 2 start-page: 38 year: 1998 end-page: 45 ident: bib7 article-title: The mechanism of railway tracks publication-title: Jpn. Railw. Transp. Rev. – reference: S. Ozawa, T. Maeda, Tunnel entrance hoods for reduction of micro-pressure wave, Railway Technical Research Institute, Quarterly Reports 29 (3). – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib27 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. – volume: 18 start-page: 1 year: 1997 end-page: 22 ident: bib21 article-title: The matlab ODE suite publication-title: SIAM J. Sci. Comput. – volume: 220 start-page: 921 year: 1999 end-page: 940 ident: bib25 article-title: Passive alleviation of micro-pressure waves from tunnel portals publication-title: J. Sound Vib. – volume: 56 start-page: 85 year: 2015 end-page: 99 ident: bib17 article-title: Generation of acoustic solitary waves in a lattice of Helmholtz resonators publication-title: Wave Motion – volume: 12 start-page: 620 year: 1998 end-page: 631 ident: bib29 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. – volume: 160 start-page: 241 year: 2000 end-page: 282 ident: bib32 article-title: New High-Resolution central schemes for nonlinear conservation laws and convection-diffusion equations publication-title: J. Comput. Phys. – volume: 49 start-page: 357 year: 1983 end-page: 393 ident: bib18 article-title: High resolution schemes for hyperbolic conservation laws publication-title: J. Comput. Phys. – reference: A. Vardy, Aerodynamic drag on trains in tunnels part 1: synthesis and definitions, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 210 (1) (1996) 29-38. – reference: F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM – reference: and Matlab, Vol. 113, Springer, 2015. – volume: 4 start-page: 547 year: 1961 end-page: 553 ident: bib2 article-title: Aerodynamic force acting on high speed train at tunnel entrance publication-title: Trans. Jpn. Soc. Mech. Eng. – reference: A.E. Vardy, Generation and alleviation of sonic booms from rail tunnels, Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 161 (3) (2008) 107-119. – volume: 225 start-page: 631 year: 1991 end-page: 653 ident: bib14 article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves publication-title: J. Fluid Mech. – reference: HS2 Ltd, D7: Tunnel Construction and Methodology, Tech. rep., HS2 Ltd., London (2015). – volume: 259 start-page: 421 year: 2014 end-page: 443 ident: bib9 article-title: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators publication-title: J. Comput. Phys. – reference: A.D. Quinn, M. Hayward, C.J. Baker, F. Schmid, J.A. Priest, W. Powrie, A full-scale experimental and modelling study of ballast flight under high-speed trains, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 224 (2) (2010) 61-74. – year: 1987 ident: bib10 article-title: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design – reference: S. Ozawa, T. Maeda, T. Matsumura, K. Uchida, Effect of Ballast on Pressure Wave Propagating through Tunnel, Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicles 2 (1993) 299-304. – reference: C.F. Colebrook, C.M. White, Experiments with Fluid Friction in Roughened Pipes, Proceedings of the Royal Society of London 161 (906) (1937) 367-381. – volume: 244 start-page: 55 year: 1992 end-page: 78 ident: bib1 article-title: Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators publication-title: J. Fluid Mech. – volume: 66 start-page: 43 year: 2015 end-page: 52 ident: bib30 article-title: Adaptation of kurganov-tadmor numerical scheme for applying in combination with the piso method in numerical simulation of flows in a wide range of mach numbers publication-title: Procedia Comput. Sci. – volume: 238 start-page: 595 year: 2000 end-page: 615 ident: bib5 article-title: Influence of ballast on wave steepening in tunnels publication-title: J. Sound Vib. – volume: 44 start-page: 52 year: 2012 end-page: 59 ident: bib28 article-title: Sensitivity analysis for volcanic source modeling quality assessment and model selection publication-title: Comput. Geosci. – volume: 25 start-page: 1 year: 1953 end-page: 4 ident: bib12 article-title: On the theory and design of acoustic resonators publication-title: J. Acoust. Soc. Am. – volume: 40 start-page: 51 year: 1997 end-page: 57 ident: bib24 article-title: Attenuation and distortion of a compression wave propagating in a high-speed railway tunnel publication-title: JSME Int. J. Ser. B – volume: 47 start-page: 361 year: 2008 end-page: 390 ident: bib16 article-title: An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives publication-title: Numer. Algorithms – reference: MATLAB, version 9.0.0.341360 (R2016a), The MathWorks Inc., Natick, Massachusetts, United States, 2016. – reference: A. Yamamoto, Micro-pressure wave radiated from tunnel exit, in: Preprint of the spring meeting of physical society of Japan, 1977. – volume: 66 start-page: 43 year: 2015 ident: 10.1016/j.jsv.2017.04.022_bib30 article-title: Adaptation of kurganov-tadmor numerical scheme for applying in combination with the piso method in numerical simulation of flows in a wide range of mach numbers publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.11.007 – volume: 56 start-page: 85 year: 2015 ident: 10.1016/j.jsv.2017.04.022_bib17 article-title: Generation of acoustic solitary waves in a lattice of Helmholtz resonators publication-title: Wave Motion doi: 10.1016/j.wavemoti.2015.02.005 – volume: 283 start-page: 1180 issue: 3 year: 2005 ident: 10.1016/j.jsv.2017.04.022_bib13 article-title: Acoustic length correction of closed cylindrical side-branched tube publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2004.06.044 – volume: 40 start-page: 51 issue: 1 year: 1997 ident: 10.1016/j.jsv.2017.04.022_bib24 article-title: Attenuation and distortion of a compression wave propagating in a high-speed railway tunnel publication-title: JSME Int. J. Ser. B doi: 10.1299/jsmeb.40.51 – volume: 2 start-page: 38 issue: March year: 1998 ident: 10.1016/j.jsv.2017.04.022_bib7 article-title: The mechanism of railway tracks publication-title: Jpn. Railw. Transp. Rev. – ident: 10.1016/j.jsv.2017.04.022_bib3 doi: 10.1243/PIME_PROC_1996_210_324_02 – volume: 225 start-page: 631 year: 1991 ident: 10.1016/j.jsv.2017.04.022_bib14 article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves publication-title: J. Fluid Mech. doi: 10.1017/S0022112091002203 – volume: 244 start-page: 55 year: 1992 ident: 10.1016/j.jsv.2017.04.022_bib1 article-title: Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators publication-title: J. Fluid Mech. doi: 10.1017/S0022112092002969 – year: 2012 ident: 10.1016/j.jsv.2017.04.022_bib34 – ident: 10.1016/j.jsv.2017.04.022_bib22 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.jsv.2017.04.022_bib27 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.996017 – volume: 12 start-page: 620 issue: 6 year: 1998 ident: 10.1016/j.jsv.2017.04.022_bib29 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. doi: 10.1063/1.168744 – year: 1987 ident: 10.1016/j.jsv.2017.04.022_bib10 – ident: 10.1016/j.jsv.2017.04.022_bib15 – volume: 49 start-page: 357 year: 1983 ident: 10.1016/j.jsv.2017.04.022_bib18 article-title: High resolution schemes for hyperbolic conservation laws publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(83)90136-5 – volume: 259 start-page: 421 year: 2014 ident: 10.1016/j.jsv.2017.04.022_bib9 article-title: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.11.036 – volume: 25 start-page: 1 issue: 6 year: 1953 ident: 10.1016/j.jsv.2017.04.022_bib12 article-title: On the theory and design of acoustic resonators publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1907235 – volume: 220 start-page: 921 issue: 5 year: 1999 ident: 10.1016/j.jsv.2017.04.022_bib25 article-title: Passive alleviation of micro-pressure waves from tunnel portals publication-title: J. Sound Vib. doi: 10.1006/jsvi.1998.2006 – ident: 10.1016/j.jsv.2017.04.022_bib6 – ident: 10.1016/j.jsv.2017.04.022_bib4 – volume: 115 start-page: 200 year: 1994 ident: 10.1016/j.jsv.2017.04.022_bib19 article-title: Weighted essentially non-oscillatory schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1187 – ident: 10.1016/j.jsv.2017.04.022_bib26 doi: 10.1680/eacm.2008.161.3.107 – volume: 18 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.jsv.2017.04.022_bib21 article-title: The matlab ODE suite publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827594276424 – volume: 4 start-page: 547 year: 1961 ident: 10.1016/j.jsv.2017.04.022_bib2 article-title: Aerodynamic force acting on high speed train at tunnel entrance publication-title: Trans. Jpn. Soc. Mech. Eng. – volume: 313 start-page: 726 year: 2016 ident: 10.1016/j.jsv.2017.04.022_bib20 article-title: An improved WENO-Z scheme publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.01.038 – volume: 160 start-page: 241 issue: 1 year: 2000 ident: 10.1016/j.jsv.2017.04.022_bib32 article-title: New High-Resolution central schemes for nonlinear conservation laws and convection-diffusion equations publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6459 – volume: 44 start-page: 52 year: 2012 ident: 10.1016/j.jsv.2017.04.022_bib28 article-title: Sensitivity analysis for volcanic source modeling quality assessment and model selection publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.03.008 – volume: 238 start-page: 595 issue: 4 year: 2000 ident: 10.1016/j.jsv.2017.04.022_bib5 article-title: Influence of ballast on wave steepening in tunnels publication-title: J. Sound Vib. doi: 10.1006/jsvi.2000.3106 – ident: 10.1016/j.jsv.2017.04.022_bib23 – ident: 10.1016/j.jsv.2017.04.022_bib31 doi: 10.1007/978-3-319-16874-6 – ident: 10.1016/j.jsv.2017.04.022_bib8 doi: 10.1243/09544097JRRT294 – volume: 73 start-page: 383 issue: 4 year: 1948 ident: 10.1016/j.jsv.2017.04.022_bib11 article-title: On the radiation of sound from an unflanged circular pipe publication-title: Phys. Rev. doi: 10.1103/PhysRev.73.383 – volume: 47 start-page: 361 issue: 4 year: 2008 ident: 10.1016/j.jsv.2017.04.022_bib16 article-title: An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives publication-title: Numer. Algorithms doi: 10.1007/s11075-008-9193-8 – ident: 10.1016/j.jsv.2017.04.022_bib33 doi: 10.1098/rspa.1937.0150 |
SSID | ssj0009434 |
Score | 2.3430457 |
Snippet | Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 606 |
SubjectTerms | Acoustics Arrays Background noise Design optimization Elastic waves Genetic algorithms Geometric constraints Helmholtz equations Helmholtz resonators High speed rail Mathematical models Micro-pressure waves Multiple objective analysis Non-linear acoustics Nonlinear systems Optimization Railway tunnels Shock waves Shock-capturing schemes Sound propagation Sound waves Train-tunnel aero-acoustics Tunnels Vibration analysis Wave propagation |
Title | Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems |
URI | https://dx.doi.org/10.1016/j.jsv.2017.04.022 https://www.proquest.com/docview/2061036568 |
Volume | 400 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KRfAirrjUMgdPQmyTmSbpsRRLVezJQm_DZBZo6UYWRQ_-D_-t72WxKNiDkEuSmUeY9-Ytk2--IeRa6dAzgfQd3NfocM-GjkQmzMAzOuISTETh5uSnkT8c84dJZ1Ij_WovDMIqS99f-PTcW5dPWuVottbTKe7xRTK09sQFI2VeiHU75wFa-e3HBuaB_GcVYzi2rv5s5hivWfKC6K4gZzv1vL9i0y8vnYeewQHZL3NG2is-65DUzPKI7ObYTZUck89RVvx2mdPphjVjtaRwSbjiWL7RlaUQYRbg69J3CiU2Lpqv4oRCzkohB4RHuuCRxZYLROk5OUQ2iw19lSAVZNNFfnAaCNW04CKhyHbsJGsIgTSW0zlNM8TN0IIfOjkh48Hdc3_olCcuOIr5YeowpjkLQp9Ja92oy6D4imDCKt12tYXCyXa0CV3VUTxg3HQ1THifIQG-ljJSoWSnpL5cLc0Zocwi9X1koOJR3EiQqH2Q6bu26ysd2HPSrsZaqJKOHE_FmIsKdzYToB6B6hFtLkA95-Tmu8u64OLY1phXChQ_DEpArNjWrVEpW5SzOYH3kGQyyHzDi_9JvSR7eIdrwp7bIPU0zswVJDNp1MyttUl2evePw9EXZHn3MA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6kRfQirljXOXgSQpvMNEmPIkrq0lMLvQ2TWSClG0mq6D_x3_peFkXBHoScZnmEeW_eMvPeN4RcKR16JpC-g3WNDvds6EhEwgw8o2MuQUQUFic_D_xoxB_G3fEGua1rYTCtstL9pU4vtHXV0q5Ws71MEqzxRTC0ztgFIWVeCHF7E9Gpug3SvOk_RoNv7F3OeA0ajhPqy80izWuSvWCCV1AAnnreX-bpl6IurM_9Ltmp3EZ6U_7ZHtkw832yWaRvquyAfAxW5c3LlCbfwBmLOYVPwpem8o0uLAUjMwN1l79TiLLx3HyRZhTcVgpuIDTpEkoWR84wUc8psmRXqaGvEqgCbTor3k4DopqWcCQUAY-dbAlWkKYymdJ8hakztISIzg7J6P5ueBs51aMLjmJ-mDuMac6C0GfSWjfuMYi_YtizSndcbSF2sl1tQld1FQ8YNz0Ne95niIGvpYxVKNkRacwXc3NMKLOIfh8bCHoUNxIoah9o-q7t-UoHtkU69VoLVSGS48MYU1Gnnk0EsEcge0SHC2BPi1x_TVmWcBzrBvOageKHTAkwF-umndXMFtWGzqAf_EwGzm948j-ql2QrGj4_iaf-4PGUbGMPHhF77hlp5OnKnINvk8cXlex-AtQl-eE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+an+array+of+Helmholtz+resonators+for+the+reduction+of+micro-pressure+waves+in+modern+and+future+high-speed+rail+tunnel+systems&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Tebbutt%2C+J.A.&rft.au=Vahdati%2C+M.&rft.au=Carolan%2C+D.&rft.au=Dear%2C+J.P.&rft.date=2017-07-21&rft.pub=Elsevier+Ltd&rft.issn=0022-460X&rft.eissn=1095-8568&rft.volume=400&rft.spage=606&rft.epage=625&rft_id=info:doi/10.1016%2Fj.jsv.2017.04.022&rft.externalDocID=S0022460X17303280 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |