PM₂.₅ Monitoring: Use Information Abundance Measurement and Wide and Deep Learning
This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical sensor-based PM 2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 10; pp. 4278 - 4290 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2021.3105394 |
Cover
Loading…
Abstract | This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical sensor-based PM 2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM 2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM 2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM 2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM 2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques. |
---|---|
AbstractList | This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical sensor-based PM 2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM 2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM 2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM 2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM 2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques. This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods’ shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques. This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques. |
Author | Xia, Zhifang Gu, Ke Qiao, Junfei Lin, Weisi Thalmann, Daniel Liu, Hongyan |
Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0001-5540-3235 surname: Gu fullname: Gu, Ke email: guke.doctor@gmail.com organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Hongyan surname: Liu fullname: Liu, Hongyan email: liuhy9221@gmail.com organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China – sequence: 3 givenname: Zhifang orcidid: 0000-0001-9605-6786 surname: Xia fullname: Xia, Zhifang email: spidergirl21@163.com organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China – sequence: 4 givenname: Junfei orcidid: 0000-0002-1707-6074 surname: Qiao fullname: Qiao, Junfei email: junfeiq@bjut.edu.cn organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China – sequence: 5 givenname: Weisi orcidid: 0000-0001-9866-1947 surname: Lin fullname: Lin, Weisi email: wslin@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 6 givenname: Daniel orcidid: 0000-0002-0451-7491 surname: Thalmann fullname: Thalmann, Daniel email: daniel.thalmann@epfl.ch organization: EPFL, CH, Lausanne, Switzerland |
BookMark | eNp9kctOAjEUQBuD8YH8gG4mceMG7Hum7ojvBNREUXeTUm5NDbTYzizckvijfokDGBcs7KZ3cc5Nc7qPWj54QOiQ4B4hWJ0-3d0NHnsUU9JjBAum-Bbao0TSLmVF0fqb89dd1EnpHTdHYiG52kG7jHOJmWJ76Plh-L1Y9L4XX9kweFeF6PzbWTZKkN16G-JMVy74rD-u_UR7A9kQdKojzMBXmfaT7MVNYDVcAMyzAejomw0HaNvqaYLO791Go6vLp_Ob7uD--va8P-gaJouqSy0HQ20BYsxhrEFbqRXj1ihsZMEBKCHKgJqIHCzRWGlOjdS5FRIT0Dlro5P13nkMHzWkqpy5ZGA61R5CnUoqZK4KgTlp0OMN9D3U0Teva6hccY5FIRqqWFMmhpQi2NK4atWgitpNS4LLZf5ylb9c5i9_8zcq3VDn0c10_PxfOlpLDgD-BCWoWP7PD8iRkgA |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s41742_022_00458_x crossref_primary_10_1007_s00371_023_02803_3 crossref_primary_10_1007_s11042_023_14790_7 crossref_primary_10_3389_fnins_2021_766396 crossref_primary_10_1007_s11042_023_14941_w crossref_primary_10_1007_s11042_023_16416_4 crossref_primary_10_1016_j_displa_2022_102296 crossref_primary_10_1007_s11042_023_15558_9 crossref_primary_10_1016_j_displa_2022_102331 crossref_primary_10_1016_j_displa_2022_102332 crossref_primary_10_1016_j_displa_2022_102258 crossref_primary_10_1016_j_displa_2023_102576 crossref_primary_10_1109_JIOT_2023_3263949 crossref_primary_10_1007_s11356_023_27630_w crossref_primary_10_1016_j_displa_2024_102739 crossref_primary_10_3390_s23073485 crossref_primary_10_3389_fnins_2021_761610 crossref_primary_10_1002_cav_2145 crossref_primary_10_1007_s11042_022_13258_4 crossref_primary_10_1007_s11356_023_29043_1 crossref_primary_10_1007_s11042_023_15624_2 crossref_primary_10_1109_TCYB_2025_3533088 crossref_primary_10_1016_j_displa_2022_102324 crossref_primary_10_1016_j_apr_2023_101689 crossref_primary_10_1016_j_displa_2022_102289 crossref_primary_10_1007_s11042_023_17499_9 crossref_primary_10_3390_rs14061515 crossref_primary_10_1007_s41742_023_00547_5 crossref_primary_10_1016_j_apr_2022_101475 crossref_primary_10_1109_TII_2021_3129813 crossref_primary_10_3390_s24113448 crossref_primary_10_1007_s11042_023_17092_0 crossref_primary_10_1631_FITEE_2200534 crossref_primary_10_1109_TIM_2022_3157365 crossref_primary_10_1016_j_displa_2022_102328 crossref_primary_10_1109_TIM_2022_3205915 crossref_primary_10_1109_TIP_2022_3196815 crossref_primary_10_1109_TMM_2022_3168438 crossref_primary_10_1007_s41742_022_00494_7 crossref_primary_10_1016_j_displa_2023_102390 crossref_primary_10_1016_j_jenvman_2022_116282 crossref_primary_10_1007_s11042_023_16645_7 crossref_primary_10_1109_JSEN_2023_3343080 crossref_primary_10_3390_su142316126 crossref_primary_10_1109_TCSVT_2024_3454160 crossref_primary_10_1016_j_eswa_2023_120085 crossref_primary_10_1002_cav_2137 crossref_primary_10_1007_s11042_023_16921_6 crossref_primary_10_3389_fnins_2021_766762 crossref_primary_10_3390_math13071037 crossref_primary_10_1007_s41742_023_00530_0 crossref_primary_10_1007_s11042_023_16489_1 crossref_primary_10_1007_s11042_022_12223_5 crossref_primary_10_1016_j_bspc_2022_104388 crossref_primary_10_1007_s11042_024_20067_4 crossref_primary_10_1007_s41742_023_00529_7 crossref_primary_10_1016_j_displa_2024_102665 crossref_primary_10_1016_j_displa_2022_102301 crossref_primary_10_1016_j_neucom_2023_126378 crossref_primary_10_1016_j_eswa_2023_121588 crossref_primary_10_1016_j_bspc_2022_103849 crossref_primary_10_1007_s11042_022_13157_8 |
Cites_doi | 10.1109/TMM.2016.2518868 10.1109/CVPR.2016.90 10.1164/rccm.201709-1883OC 10.1126/science.abb8001 10.1109/TIP.2015.2500021 10.1109/ICIP.2017.8297023 10.1021/acs.est.9b04295 10.1109/TNNLS.2019.2952864 10.1016/S2542-5196(20)30107-8 10.1016/j.jclepro.2015.04.092 10.1109/TIP.2011.2179666 10.1109/tnnls.2014.2336852 10.1109/TCSVT.2017.2713806 10.1186/1476-069X-8-58 10.1016/j.compeleceng.2013.10.016 10.4249/scholarpedia.5947 10.1056/NEJMc2004973 10.1126/science.abc1560 10.1016/j.scitotenv.2020.138178 10.1007/s11042-015-2882-0 10.1016/j.neucom.2005.12.126 10.1001/jama.287.9.1132 10.1109/LSP.2012.2199980 10.1016/j.apr.2020.07.019 10.1016/j.lfs.2016.03.039 10.1109/CVPR.2009.5206848 10.1109/TNNLS.2017.2649101 10.1038/s41560-019-0412-4 10.1080/10473289.1995.10467369 10.1038/323533a0 10.1126/sciadv.abd4049 10.1016/j.envres.2019.108601 10.1109/TNNLS.2016.2603784 10.1016/S2542-5196(20)30224-2 10.1109/TIE.2018.2840515 10.1016/j.fuel.2018.10.140 10.1289/EHP1673 10.1007/s00477-020-01787-z 10.1109/INFCOMW.2015.7179456 10.1109/cvpr.2009.5206515 10.1109/TITS.2014.2311123 10.1109/TIP.2015.2409988 10.1049/el.2018.5613 10.1145/2988450.2988454 10.1001/jama.295.10.1127 10.1109/TIP.2017.2711279 10.1038/nature14539 10.1016/j.jvcir.2017.09.011 10.1016/j.rse.2015.02.005 10.1109/TIP.2015.2482903 10.1109/TIP.2015.2439035 10.1038/s41586-020-2271-3 10.1023/B:STCO.0000035301.49549.88 10.1016/j.image.2020.115958 10.1109/TCYB.2016.2575544 10.1007/s41748-020-00184-4 10.1109/TASL.2012.2229986 10.1038/s41591-020-0843-2 10.1109/EICT48899.2019.9068759 10.1109/LSP.2012.2227726 10.1109/CVPR42600.2020.00571 10.1371/journal.pone.0145955 10.1016/j.jinf.2020.06.019 10.1145/3341162.3349327 10.1016/j.envres.2020.109754 10.1016/j.scitotenv.2004.03.008 10.1007/s00138-020-01067-4 10.1038/s41560-019-0440-0 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3105394 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 4290 |
ExternalDocumentID | 10_1109_TNNLS_2021_3105394 9525039 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation of China grantid: 62076013; 62021003; 61890935 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c368t-2f4ec2f8e5b4ebaeaf6a934fc90c684ee2119ce9d57ef1a09a42c6a7f5601ea73 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 19:56:12 EDT 2025 Mon Jun 30 06:11:06 EDT 2025 Tue Jul 01 00:27:41 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Wed Aug 27 02:26:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-2f4ec2f8e5b4ebaeaf6a934fc90c684ee2119ce9d57ef1a09a42c6a7f5601ea73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9605-6786 0000-0002-1707-6074 0000-0001-5540-3235 0000-0001-9866-1947 0000-0002-0451-7491 |
OpenAccessLink | http://infoscience.epfl.ch/record/289897 |
PMID | 34460393 |
PQID | 2579440585 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2579440585 crossref_citationtrail_10_1109_TNNLS_2021_3105394 ieee_primary_9525039 proquest_miscellaneous_2567985041 crossref_primary_10_1109_TNNLS_2021_3105394 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref18 ref51 ref50 ref48 (ref19) 2020 ref47 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Babaan (ref73) 2018; 42 ref81 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref74 ref77 ref32 ref76 ref2 Liaw (ref33) 2002; 2 ref1 ref39 ref38 Li (ref30) 2020; 14 ref71 ref70 ref72 Yang (ref49) Wen (ref53) ref24 ref68 Meo (ref22) 2021; 33 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 Fang (ref59) 2019 Ibraheem (ref69) 2012; 2 |
References_xml | – ident: ref43 doi: 10.1109/TMM.2016.2518868 – ident: ref68 doi: 10.1109/CVPR.2016.90 – ident: ref8 doi: 10.1164/rccm.201709-1883OC – ident: ref15 doi: 10.1126/science.abb8001 – ident: ref38 doi: 10.1109/TIP.2015.2500021 – ident: ref51 doi: 10.1109/ICIP.2017.8297023 – ident: ref9 doi: 10.1021/acs.est.9b04295 – ident: ref40 doi: 10.1109/TNNLS.2019.2952864 – ident: ref21 doi: 10.1016/S2542-5196(20)30107-8 – ident: ref1 doi: 10.1016/j.jclepro.2015.04.092 – volume: 14 start-page: 907 issue: 2 year: 2020 ident: ref30 article-title: PM₂.₅ estimation based on image analysis publication-title: KSII Trans. Internet Inf. Syst. – ident: ref52 doi: 10.1109/TIP.2011.2179666 – ident: ref37 doi: 10.1109/tnnls.2014.2336852 – ident: ref78 doi: 10.1109/TCSVT.2017.2713806 – ident: ref4 doi: 10.1186/1476-069X-8-58 – ident: ref54 doi: 10.1016/j.compeleceng.2013.10.016 – ident: ref56 doi: 10.4249/scholarpedia.5947 – ident: ref12 doi: 10.1056/NEJMc2004973 – ident: ref14 doi: 10.1126/science.abc1560 – ident: ref67 doi: 10.1016/j.scitotenv.2020.138178 – ident: ref74 doi: 10.1007/s11042-015-2882-0 – ident: ref34 doi: 10.1016/j.neucom.2005.12.126 – ident: ref2 doi: 10.1001/jama.287.9.1132 – ident: ref63 doi: 10.1109/LSP.2012.2199980 – ident: ref81 doi: 10.1016/j.apr.2020.07.019 – ident: ref5 doi: 10.1016/j.lfs.2016.03.039 – ident: ref80 doi: 10.1109/CVPR.2009.5206848 – ident: ref44 doi: 10.1109/TNNLS.2017.2649101 – ident: ref24 doi: 10.1038/s41560-019-0412-4 – volume-title: arXiv:1912.11191 year: 2019 ident: ref59 article-title: BETANAS: BalancEd TrAining and selective drop for neural architecture search – ident: ref25 doi: 10.1080/10473289.1995.10467369 – ident: ref55 doi: 10.1038/323533a0 – ident: ref7 doi: 10.1126/sciadv.abd4049 – ident: ref71 doi: 10.1016/j.envres.2019.108601 – ident: ref39 doi: 10.1109/TNNLS.2016.2603784 – ident: ref20 doi: 10.1016/S2542-5196(20)30224-2 – ident: ref28 doi: 10.1109/TIE.2018.2840515 – ident: ref26 doi: 10.1016/j.fuel.2018.10.140 – ident: ref10 doi: 10.1289/EHP1673 – ident: ref31 doi: 10.1007/s00477-020-01787-z – ident: ref50 doi: 10.1109/INFCOMW.2015.7179456 – ident: ref47 doi: 10.1109/cvpr.2009.5206515 – start-page: 61 volume-title: Proc. Int. Conf. Smart Comput. ident: ref49 article-title: Evaluation of PM₂.₅ and PM₁₀ using normalized first-order absolute sum of high-frequency spectrum – ident: ref36 doi: 10.1109/TITS.2014.2311123 – ident: ref75 doi: 10.1109/TIP.2015.2409988 – ident: ref29 doi: 10.1049/el.2018.5613 – ident: ref41 doi: 10.1145/2988450.2988454 – ident: ref3 doi: 10.1001/jama.295.10.1127 – ident: ref66 doi: 10.1109/TIP.2017.2711279 – ident: ref57 doi: 10.1038/nature14539 – volume: 33 issue: 3 year: 2021 ident: ref22 article-title: Effect of environmental pollution PM₂.₅, carbon monoxide, and ozone on the incidence and mortality due to SARS-CoV-2 infection in London, United Kingdom publication-title: J. King Saud Univ.-Sci. – ident: ref60 doi: 10.1016/j.jvcir.2017.09.011 – volume: 2 start-page: 265 issue: 3 year: 2012 ident: ref69 article-title: Understanding color models: A review publication-title: ARPN J. Sci. Technol. – volume-title: ESA-air Pollution Drops in India Following Lock-Down year: 2020 ident: ref19 – ident: ref72 doi: 10.1016/j.rse.2015.02.005 – ident: ref48 doi: 10.1109/TIP.2015.2482903 – ident: ref64 doi: 10.1109/TIP.2015.2439035 – ident: ref13 doi: 10.1038/s41586-020-2271-3 – volume: 42 start-page: 1 year: 2018 ident: ref73 article-title: Estimation of PM₂.₅ vertical distribution using customized UAV and mobile sensors in Brgy. UP Campus, Diliman, Quezon City publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. – ident: ref32 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: ref79 doi: 10.1016/j.image.2020.115958 – ident: ref62 doi: 10.1109/TCYB.2016.2575544 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: ref33 article-title: Classification and regression by random forest publication-title: R Newslett. – ident: ref18 doi: 10.1007/s41748-020-00184-4 – ident: ref35 doi: 10.1109/TASL.2012.2229986 – ident: ref11 doi: 10.1038/s41591-020-0843-2 – ident: ref58 doi: 10.1109/EICT48899.2019.9068759 – ident: ref65 doi: 10.1109/LSP.2012.2227726 – ident: ref76 doi: 10.1109/CVPR42600.2020.00571 – ident: ref27 doi: 10.1371/journal.pone.0145955 – ident: ref16 doi: 10.1016/j.jinf.2020.06.019 – ident: ref70 doi: 10.1145/3341162.3349327 – ident: ref17 doi: 10.1016/j.envres.2020.109754 – ident: ref6 doi: 10.1016/j.scitotenv.2004.03.008 – start-page: 753 volume-title: Proc. IEEE Int. Symp. Circuits Syst. (ISCAS) ident: ref53 article-title: Single underwater image enhancement with a new optical model – ident: ref77 doi: 10.1007/s00138-020-01067-4 – ident: ref23 doi: 10.1038/s41560-019-0440-0 |
SSID | ssj0000605649 |
Score | 2.5773754 |
Snippet | This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical... This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4278 |
SubjectTerms | Abundance Artificial neural networks Atmospheric measurements Atmospheric modeling Cameras Chemical sensors COVID-19 Data recorders Decision making Deep learning DS transform space Electrochemistry Epidemics Feature extraction information abundance (IA) Machine learning Megacities Memory Monitoring Monitoring methods Neural networks Particulate matter photograph-based PM₂₅ monitoring Spatial distribution Temperature measurement Time lag Transforms wide and deep learning |
Title | PM₂.₅ Monitoring: Use Information Abundance Measurement and Wide and Deep Learning |
URI | https://ieeexplore.ieee.org/document/9525039 https://www.proquest.com/docview/2579440585 https://www.proquest.com/docview/2567985041 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61PXGhlFIRGpCRuNFN9-H1rrlVhShCJEJqA7mtbO-4QqBN1CQXjpH4o_0leLzeRTxUcbO09j78ebzzzXhmAF4lRtQKrYiUljLiAuNIFVkRYaEcwzV5rC0FOE9nYjLn7xf5Yg_O-lgYRPSHz3BETe_Lr5dmS6ayc0k-uEzuw74jbm2sVm9PiZ1eLry2myYijdKsWHQxMrE8v57NPlw5NpgmjqS6dSepHk_mqBCFpv72S_I1Vv7amP3fZnwI0-4920MmX0fbjR6Z73-kcPzfD3kED4PayS7adXIEe9g8hsOupAMLEn4Mnz5O73a70d3uB2ulncx-b9h8jSwELhGQ7EJTAIkbwaa_bIxMNTX7_KVG33iLuGIhe-vNE5iP311fTqJQeiEymSg3UWo5mtSWmGuOWqGyQsmMWyNjI0qOSInhDMo6L9AmKpaKp0aowhLBQ4f2CRw0ywafAkMsa26F0w205ToxUluRWUfrEuu0R1sMIOlmvzIhLzmVx_hWeX4Sy8qDVxF4VQBvAK_7Mas2K8e9vY8Jgr5nmP0BDDuQqyC468rtYJI7JbbMB_Cyv-xEjvwoqsHllvqQ6yqPefLs33c-hQf0_PbM3xAONrdbfO50l41-4RftT4Ig6qI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQpioYCRuEG2ceI4MbeqpVpgs0JiF_YW2c4YVUXZiu5eOK7EH-0vweM8EA8hbpFiR44_j_3NjGcG4Dm3stboZKSNUpGQGEc6T_MIc-01XJvFxlGAczmTk4V4u8yWO_ByiIVBxHD5DMf0GHz59cpuyFR2qMgHl6prcN2f-xlvo7UGi0rsmbkMfDfhMomSNF_2UTKxOpzPZtMPXh9MuFdT_cpTVJEn9coQBaf-ciiFKit_bM3hvDndg7IfaXvN5Hy8WZux_fZbEsf__ZXbcKsjnuyoXSl3YAebu7DXF3VgnYzvw8f35dV2O77afmetvJPh7xVbXCLrQpcISnZkKITE92DlTysj003NPp3VGB5OEC9Yl7_18z1YnL6eH0-irvhCZFNZrKPECbSJKzAzAo1G7aRWqXBWxVYWApFSw1lUdZaj4zpWWiRW6tyRioce7_uw26wafAAMsaiFk54dGCcMt8o4mTqv2HHn-aPLR8D72a9sl5mcCmR8qYKGEqsqgFcReFUH3gheDH0u2rwc_2y9TxAMLbvZH8FBD3LVie5l5fcwJTyNLbIRPBtee6EjT4pucLWhNuS8ymLBH_79y0_hxmReTqvpm9m7R3CTxtLeADyA3fXXDT72TGZtnoQF_APmh-3r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM%E2%82%82.%E2%82%85+Monitoring%3A+Use+Information+Abundance+Measurement+and+Wide+and+Deep+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gu%2C+Ke&rft.au=Liu%2C+Hongyan&rft.au=Xia%2C+Zhifang&rft.au=Qiao%2C+Junfei&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=10&rft.spage=4278&rft_id=info:doi/10.1109%2FTNNLS.2021.3105394&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |