PM₂.₅ Monitoring: Use Information Abundance Measurement and Wide and Deep Learning

This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical sensor-based PM 2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 10; pp. 4278 - 4290
Main Authors Gu, Ke, Liu, Hongyan, Xia, Zhifang, Qiao, Junfei, Lin, Weisi, Thalmann, Daniel
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3105394

Cover

Loading…
Abstract This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical sensor-based PM 2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM 2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM 2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM 2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM 2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.
AbstractList This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical sensor-based PM 2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM 2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM 2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM 2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM 2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.
This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods’ shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.
This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.
Author Xia, Zhifang
Gu, Ke
Qiao, Junfei
Lin, Weisi
Thalmann, Daniel
Liu, Hongyan
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0001-5540-3235
  surname: Gu
  fullname: Gu, Ke
  email: guke.doctor@gmail.com
  organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Hongyan
  surname: Liu
  fullname: Liu, Hongyan
  email: liuhy9221@gmail.com
  organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Zhifang
  orcidid: 0000-0001-9605-6786
  surname: Xia
  fullname: Xia, Zhifang
  email: spidergirl21@163.com
  organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China
– sequence: 4
  givenname: Junfei
  orcidid: 0000-0002-1707-6074
  surname: Qiao
  fullname: Qiao, Junfei
  email: junfeiq@bjut.edu.cn
  organization: Faculty of Information Technology, Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, Beijing Laboratory of Smart Environmental Protection, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China
– sequence: 5
  givenname: Weisi
  orcidid: 0000-0001-9866-1947
  surname: Lin
  fullname: Lin, Weisi
  email: wslin@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 6
  givenname: Daniel
  orcidid: 0000-0002-0451-7491
  surname: Thalmann
  fullname: Thalmann, Daniel
  email: daniel.thalmann@epfl.ch
  organization: EPFL, CH, Lausanne, Switzerland
BookMark eNp9kctOAjEUQBuD8YH8gG4mceMG7Hum7ojvBNREUXeTUm5NDbTYzizckvijfokDGBcs7KZ3cc5Nc7qPWj54QOiQ4B4hWJ0-3d0NHnsUU9JjBAum-Bbao0TSLmVF0fqb89dd1EnpHTdHYiG52kG7jHOJmWJ76Plh-L1Y9L4XX9kweFeF6PzbWTZKkN16G-JMVy74rD-u_UR7A9kQdKojzMBXmfaT7MVNYDVcAMyzAejomw0HaNvqaYLO791Go6vLp_Ob7uD--va8P-gaJouqSy0HQ20BYsxhrEFbqRXj1ihsZMEBKCHKgJqIHCzRWGlOjdS5FRIT0Dlro5P13nkMHzWkqpy5ZGA61R5CnUoqZK4KgTlp0OMN9D3U0Teva6hccY5FIRqqWFMmhpQi2NK4atWgitpNS4LLZf5ylb9c5i9_8zcq3VDn0c10_PxfOlpLDgD-BCWoWP7PD8iRkgA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s41742_022_00458_x
crossref_primary_10_1007_s00371_023_02803_3
crossref_primary_10_1007_s11042_023_14790_7
crossref_primary_10_3389_fnins_2021_766396
crossref_primary_10_1007_s11042_023_14941_w
crossref_primary_10_1007_s11042_023_16416_4
crossref_primary_10_1016_j_displa_2022_102296
crossref_primary_10_1007_s11042_023_15558_9
crossref_primary_10_1016_j_displa_2022_102331
crossref_primary_10_1016_j_displa_2022_102332
crossref_primary_10_1016_j_displa_2022_102258
crossref_primary_10_1016_j_displa_2023_102576
crossref_primary_10_1109_JIOT_2023_3263949
crossref_primary_10_1007_s11356_023_27630_w
crossref_primary_10_1016_j_displa_2024_102739
crossref_primary_10_3390_s23073485
crossref_primary_10_3389_fnins_2021_761610
crossref_primary_10_1002_cav_2145
crossref_primary_10_1007_s11042_022_13258_4
crossref_primary_10_1007_s11356_023_29043_1
crossref_primary_10_1007_s11042_023_15624_2
crossref_primary_10_1109_TCYB_2025_3533088
crossref_primary_10_1016_j_displa_2022_102324
crossref_primary_10_1016_j_apr_2023_101689
crossref_primary_10_1016_j_displa_2022_102289
crossref_primary_10_1007_s11042_023_17499_9
crossref_primary_10_3390_rs14061515
crossref_primary_10_1007_s41742_023_00547_5
crossref_primary_10_1016_j_apr_2022_101475
crossref_primary_10_1109_TII_2021_3129813
crossref_primary_10_3390_s24113448
crossref_primary_10_1007_s11042_023_17092_0
crossref_primary_10_1631_FITEE_2200534
crossref_primary_10_1109_TIM_2022_3157365
crossref_primary_10_1016_j_displa_2022_102328
crossref_primary_10_1109_TIM_2022_3205915
crossref_primary_10_1109_TIP_2022_3196815
crossref_primary_10_1109_TMM_2022_3168438
crossref_primary_10_1007_s41742_022_00494_7
crossref_primary_10_1016_j_displa_2023_102390
crossref_primary_10_1016_j_jenvman_2022_116282
crossref_primary_10_1007_s11042_023_16645_7
crossref_primary_10_1109_JSEN_2023_3343080
crossref_primary_10_3390_su142316126
crossref_primary_10_1109_TCSVT_2024_3454160
crossref_primary_10_1016_j_eswa_2023_120085
crossref_primary_10_1002_cav_2137
crossref_primary_10_1007_s11042_023_16921_6
crossref_primary_10_3389_fnins_2021_766762
crossref_primary_10_3390_math13071037
crossref_primary_10_1007_s41742_023_00530_0
crossref_primary_10_1007_s11042_023_16489_1
crossref_primary_10_1007_s11042_022_12223_5
crossref_primary_10_1016_j_bspc_2022_104388
crossref_primary_10_1007_s11042_024_20067_4
crossref_primary_10_1007_s41742_023_00529_7
crossref_primary_10_1016_j_displa_2024_102665
crossref_primary_10_1016_j_displa_2022_102301
crossref_primary_10_1016_j_neucom_2023_126378
crossref_primary_10_1016_j_eswa_2023_121588
crossref_primary_10_1016_j_bspc_2022_103849
crossref_primary_10_1007_s11042_022_13157_8
Cites_doi 10.1109/TMM.2016.2518868
10.1109/CVPR.2016.90
10.1164/rccm.201709-1883OC
10.1126/science.abb8001
10.1109/TIP.2015.2500021
10.1109/ICIP.2017.8297023
10.1021/acs.est.9b04295
10.1109/TNNLS.2019.2952864
10.1016/S2542-5196(20)30107-8
10.1016/j.jclepro.2015.04.092
10.1109/TIP.2011.2179666
10.1109/tnnls.2014.2336852
10.1109/TCSVT.2017.2713806
10.1186/1476-069X-8-58
10.1016/j.compeleceng.2013.10.016
10.4249/scholarpedia.5947
10.1056/NEJMc2004973
10.1126/science.abc1560
10.1016/j.scitotenv.2020.138178
10.1007/s11042-015-2882-0
10.1016/j.neucom.2005.12.126
10.1001/jama.287.9.1132
10.1109/LSP.2012.2199980
10.1016/j.apr.2020.07.019
10.1016/j.lfs.2016.03.039
10.1109/CVPR.2009.5206848
10.1109/TNNLS.2017.2649101
10.1038/s41560-019-0412-4
10.1080/10473289.1995.10467369
10.1038/323533a0
10.1126/sciadv.abd4049
10.1016/j.envres.2019.108601
10.1109/TNNLS.2016.2603784
10.1016/S2542-5196(20)30224-2
10.1109/TIE.2018.2840515
10.1016/j.fuel.2018.10.140
10.1289/EHP1673
10.1007/s00477-020-01787-z
10.1109/INFCOMW.2015.7179456
10.1109/cvpr.2009.5206515
10.1109/TITS.2014.2311123
10.1109/TIP.2015.2409988
10.1049/el.2018.5613
10.1145/2988450.2988454
10.1001/jama.295.10.1127
10.1109/TIP.2017.2711279
10.1038/nature14539
10.1016/j.jvcir.2017.09.011
10.1016/j.rse.2015.02.005
10.1109/TIP.2015.2482903
10.1109/TIP.2015.2439035
10.1038/s41586-020-2271-3
10.1023/B:STCO.0000035301.49549.88
10.1016/j.image.2020.115958
10.1109/TCYB.2016.2575544
10.1007/s41748-020-00184-4
10.1109/TASL.2012.2229986
10.1038/s41591-020-0843-2
10.1109/EICT48899.2019.9068759
10.1109/LSP.2012.2227726
10.1109/CVPR42600.2020.00571
10.1371/journal.pone.0145955
10.1016/j.jinf.2020.06.019
10.1145/3341162.3349327
10.1016/j.envres.2020.109754
10.1016/j.scitotenv.2004.03.008
10.1007/s00138-020-01067-4
10.1038/s41560-019-0440-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3105394
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4290
ExternalDocumentID 10_1109_TNNLS_2021_3105394
9525039
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 62076013; 62021003; 61890935
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c368t-2f4ec2f8e5b4ebaeaf6a934fc90c684ee2119ce9d57ef1a09a42c6a7f5601ea73
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 19:56:12 EDT 2025
Mon Jun 30 06:11:06 EDT 2025
Tue Jul 01 00:27:41 EDT 2025
Thu Apr 24 23:02:14 EDT 2025
Wed Aug 27 02:26:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-2f4ec2f8e5b4ebaeaf6a934fc90c684ee2119ce9d57ef1a09a42c6a7f5601ea73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9605-6786
0000-0002-1707-6074
0000-0001-5540-3235
0000-0001-9866-1947
0000-0002-0451-7491
OpenAccessLink http://infoscience.epfl.ch/record/289897
PMID 34460393
PQID 2579440585
PQPubID 85436
PageCount 13
ParticipantIDs proquest_journals_2579440585
crossref_citationtrail_10_1109_TNNLS_2021_3105394
ieee_primary_9525039
proquest_miscellaneous_2567985041
crossref_primary_10_1109_TNNLS_2021_3105394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
ref51
ref50
ref48
(ref19) 2020
ref47
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Babaan (ref73) 2018; 42
ref81
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref74
ref77
ref32
ref76
ref2
Liaw (ref33) 2002; 2
ref1
ref39
ref38
Li (ref30) 2020; 14
ref71
ref70
ref72
Yang (ref49)
Wen (ref53)
ref24
ref68
Meo (ref22) 2021; 33
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
Fang (ref59) 2019
Ibraheem (ref69) 2012; 2
References_xml – ident: ref43
  doi: 10.1109/TMM.2016.2518868
– ident: ref68
  doi: 10.1109/CVPR.2016.90
– ident: ref8
  doi: 10.1164/rccm.201709-1883OC
– ident: ref15
  doi: 10.1126/science.abb8001
– ident: ref38
  doi: 10.1109/TIP.2015.2500021
– ident: ref51
  doi: 10.1109/ICIP.2017.8297023
– ident: ref9
  doi: 10.1021/acs.est.9b04295
– ident: ref40
  doi: 10.1109/TNNLS.2019.2952864
– ident: ref21
  doi: 10.1016/S2542-5196(20)30107-8
– ident: ref1
  doi: 10.1016/j.jclepro.2015.04.092
– volume: 14
  start-page: 907
  issue: 2
  year: 2020
  ident: ref30
  article-title: PM₂.₅ estimation based on image analysis
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref52
  doi: 10.1109/TIP.2011.2179666
– ident: ref37
  doi: 10.1109/tnnls.2014.2336852
– ident: ref78
  doi: 10.1109/TCSVT.2017.2713806
– ident: ref4
  doi: 10.1186/1476-069X-8-58
– ident: ref54
  doi: 10.1016/j.compeleceng.2013.10.016
– ident: ref56
  doi: 10.4249/scholarpedia.5947
– ident: ref12
  doi: 10.1056/NEJMc2004973
– ident: ref14
  doi: 10.1126/science.abc1560
– ident: ref67
  doi: 10.1016/j.scitotenv.2020.138178
– ident: ref74
  doi: 10.1007/s11042-015-2882-0
– ident: ref34
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref2
  doi: 10.1001/jama.287.9.1132
– ident: ref63
  doi: 10.1109/LSP.2012.2199980
– ident: ref81
  doi: 10.1016/j.apr.2020.07.019
– ident: ref5
  doi: 10.1016/j.lfs.2016.03.039
– ident: ref80
  doi: 10.1109/CVPR.2009.5206848
– ident: ref44
  doi: 10.1109/TNNLS.2017.2649101
– ident: ref24
  doi: 10.1038/s41560-019-0412-4
– volume-title: arXiv:1912.11191
  year: 2019
  ident: ref59
  article-title: BETANAS: BalancEd TrAining and selective drop for neural architecture search
– ident: ref25
  doi: 10.1080/10473289.1995.10467369
– ident: ref55
  doi: 10.1038/323533a0
– ident: ref7
  doi: 10.1126/sciadv.abd4049
– ident: ref71
  doi: 10.1016/j.envres.2019.108601
– ident: ref39
  doi: 10.1109/TNNLS.2016.2603784
– ident: ref20
  doi: 10.1016/S2542-5196(20)30224-2
– ident: ref28
  doi: 10.1109/TIE.2018.2840515
– ident: ref26
  doi: 10.1016/j.fuel.2018.10.140
– ident: ref10
  doi: 10.1289/EHP1673
– ident: ref31
  doi: 10.1007/s00477-020-01787-z
– ident: ref50
  doi: 10.1109/INFCOMW.2015.7179456
– ident: ref47
  doi: 10.1109/cvpr.2009.5206515
– start-page: 61
  volume-title: Proc. Int. Conf. Smart Comput.
  ident: ref49
  article-title: Evaluation of PM₂.₅ and PM₁₀ using normalized first-order absolute sum of high-frequency spectrum
– ident: ref36
  doi: 10.1109/TITS.2014.2311123
– ident: ref75
  doi: 10.1109/TIP.2015.2409988
– ident: ref29
  doi: 10.1049/el.2018.5613
– ident: ref41
  doi: 10.1145/2988450.2988454
– ident: ref3
  doi: 10.1001/jama.295.10.1127
– ident: ref66
  doi: 10.1109/TIP.2017.2711279
– ident: ref57
  doi: 10.1038/nature14539
– volume: 33
  issue: 3
  year: 2021
  ident: ref22
  article-title: Effect of environmental pollution PM₂.₅, carbon monoxide, and ozone on the incidence and mortality due to SARS-CoV-2 infection in London, United Kingdom
  publication-title: J. King Saud Univ.-Sci.
– ident: ref60
  doi: 10.1016/j.jvcir.2017.09.011
– volume: 2
  start-page: 265
  issue: 3
  year: 2012
  ident: ref69
  article-title: Understanding color models: A review
  publication-title: ARPN J. Sci. Technol.
– volume-title: ESA-air Pollution Drops in India Following Lock-Down
  year: 2020
  ident: ref19
– ident: ref72
  doi: 10.1016/j.rse.2015.02.005
– ident: ref48
  doi: 10.1109/TIP.2015.2482903
– ident: ref64
  doi: 10.1109/TIP.2015.2439035
– ident: ref13
  doi: 10.1038/s41586-020-2271-3
– volume: 42
  start-page: 1
  year: 2018
  ident: ref73
  article-title: Estimation of PM₂.₅ vertical distribution using customized UAV and mobile sensors in Brgy. UP Campus, Diliman, Quezon City
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– ident: ref32
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref79
  doi: 10.1016/j.image.2020.115958
– ident: ref62
  doi: 10.1109/TCYB.2016.2575544
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: ref33
  article-title: Classification and regression by random forest
  publication-title: R Newslett.
– ident: ref18
  doi: 10.1007/s41748-020-00184-4
– ident: ref35
  doi: 10.1109/TASL.2012.2229986
– ident: ref11
  doi: 10.1038/s41591-020-0843-2
– ident: ref58
  doi: 10.1109/EICT48899.2019.9068759
– ident: ref65
  doi: 10.1109/LSP.2012.2227726
– ident: ref76
  doi: 10.1109/CVPR42600.2020.00571
– ident: ref27
  doi: 10.1371/journal.pone.0145955
– ident: ref16
  doi: 10.1016/j.jinf.2020.06.019
– ident: ref70
  doi: 10.1145/3341162.3349327
– ident: ref17
  doi: 10.1016/j.envres.2020.109754
– ident: ref6
  doi: 10.1016/j.scitotenv.2004.03.008
– start-page: 753
  volume-title: Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)
  ident: ref53
  article-title: Single underwater image enhancement with a new optical model
– ident: ref77
  doi: 10.1007/s00138-020-01067-4
– ident: ref23
  doi: 10.1038/s41560-019-0440-0
SSID ssj0000605649
Score 2.5773754
Snippet This article devises a photograph-based monitoring model to estimate the real-time PM 2.5 concentrations, overcoming currently popular electrochemical...
This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4278
SubjectTerms Abundance
Artificial neural networks
Atmospheric measurements
Atmospheric modeling
Cameras
Chemical sensors
COVID-19
Data recorders
Decision making
Deep learning
DS transform space
Electrochemistry
Epidemics
Feature extraction
information abundance (IA)
Machine learning
Megacities
Memory
Monitoring
Monitoring methods
Neural networks
Particulate matter
photograph-based PM₂₅ monitoring
Spatial distribution
Temperature measurement
Time lag
Transforms
wide and deep learning
Title PM₂.₅ Monitoring: Use Information Abundance Measurement and Wide and Deep Learning
URI https://ieeexplore.ieee.org/document/9525039
https://www.proquest.com/docview/2579440585
https://www.proquest.com/docview/2567985041
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61PXGhlFIRGpCRuNFN9-H1rrlVhShCJEJqA7mtbO-4QqBN1CQXjpH4o_0leLzeRTxUcbO09j78ebzzzXhmAF4lRtQKrYiUljLiAuNIFVkRYaEcwzV5rC0FOE9nYjLn7xf5Yg_O-lgYRPSHz3BETe_Lr5dmS6ayc0k-uEzuw74jbm2sVm9PiZ1eLry2myYijdKsWHQxMrE8v57NPlw5NpgmjqS6dSepHk_mqBCFpv72S_I1Vv7amP3fZnwI0-4920MmX0fbjR6Z73-kcPzfD3kED4PayS7adXIEe9g8hsOupAMLEn4Mnz5O73a70d3uB2ulncx-b9h8jSwELhGQ7EJTAIkbwaa_bIxMNTX7_KVG33iLuGIhe-vNE5iP311fTqJQeiEymSg3UWo5mtSWmGuOWqGyQsmMWyNjI0qOSInhDMo6L9AmKpaKp0aowhLBQ4f2CRw0ywafAkMsa26F0w205ToxUluRWUfrEuu0R1sMIOlmvzIhLzmVx_hWeX4Sy8qDVxF4VQBvAK_7Mas2K8e9vY8Jgr5nmP0BDDuQqyC468rtYJI7JbbMB_Cyv-xEjvwoqsHllvqQ6yqPefLs33c-hQf0_PbM3xAONrdbfO50l41-4RftT4Ig6qI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQpioYCRuEG2ceI4MbeqpVpgs0JiF_YW2c4YVUXZiu5eOK7EH-0vweM8EA8hbpFiR44_j_3NjGcG4Dm3stboZKSNUpGQGEc6T_MIc-01XJvFxlGAczmTk4V4u8yWO_ByiIVBxHD5DMf0GHz59cpuyFR2qMgHl6prcN2f-xlvo7UGi0rsmbkMfDfhMomSNF_2UTKxOpzPZtMPXh9MuFdT_cpTVJEn9coQBaf-ciiFKit_bM3hvDndg7IfaXvN5Hy8WZux_fZbEsf__ZXbcKsjnuyoXSl3YAebu7DXF3VgnYzvw8f35dV2O77afmetvJPh7xVbXCLrQpcISnZkKITE92DlTysj003NPp3VGB5OEC9Yl7_18z1YnL6eH0-irvhCZFNZrKPECbSJKzAzAo1G7aRWqXBWxVYWApFSw1lUdZaj4zpWWiRW6tyRioce7_uw26wafAAMsaiFk54dGCcMt8o4mTqv2HHn-aPLR8D72a9sl5mcCmR8qYKGEqsqgFcReFUH3gheDH0u2rwc_2y9TxAMLbvZH8FBD3LVie5l5fcwJTyNLbIRPBtee6EjT4pucLWhNuS8ymLBH_79y0_hxmReTqvpm9m7R3CTxtLeADyA3fXXDT72TGZtnoQF_APmh-3r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM%E2%82%82.%E2%82%85+Monitoring%3A+Use+Information+Abundance+Measurement+and+Wide+and+Deep+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gu%2C+Ke&rft.au=Liu%2C+Hongyan&rft.au=Xia%2C+Zhifang&rft.au=Qiao%2C+Junfei&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=10&rft.spage=4278&rft_id=info:doi/10.1109%2FTNNLS.2021.3105394&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon