Bio-based phytic acid@polyurushiol‑titanium complex coated cotton fabrics with durable flame retardancy for oil-water separation

Bio-based hydrophobic coating modified cotton fabrics with durable flame retardancy are of high interest in the application of oil-water separation for not only avoiding the use of hazardous substances but also improving the fire safety during use. Herein, phytic acid@Polyurushiol‑titanium complex c...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 235; p. 123782
Main Authors Dong, Ying-Qi, Bai, Wei-Bin, Zhang, Wen, Lin, Yu-Cai, Jian, Rong-Kun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bio-based hydrophobic coating modified cotton fabrics with durable flame retardancy are of high interest in the application of oil-water separation for not only avoiding the use of hazardous substances but also improving the fire safety during use. Herein, phytic acid@Polyurushiol‑titanium complex coated cotton fabric was developed using the facile dip-coating method involving the sequential immersion in the solution of poly(ethyleneimine), phytic acid, titanium oxide, and urushiol. The underlying coating accommodated abundance of phytic acid, which imparted excellent flame retardancy to cotton fabric, and the top coating composed of the polyurushiol‑titanium complex endowed cotton fabric with high hydrophobicity that the water contact angle (WCA) was up to 149.8°. The hydrophobicity also guaranteed effective protection of the underlying phytic acid against chemical solvents and abrasion. Besides, the hydrophobic coating allowed cotton fabric for good self-cleaning and effective oil-water separation. Therefore, the preparation of phytic acid@polyurushiol‑titanium complex coated cotton fabric offers a promising approach to construct durable biomass-coated cellulose-based fabric with multifunctionality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.123782