Experiments on sound reflection and production by choked nozzle flows subject to acoustic and entropy waves
[Display omitted] The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catas...
Saved in:
Published in | Journal of sound and vibration Vol. 492; p. 115799 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
03.02.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catastrophic engine failure. This work deals with the challenging problem of experimentally quantifying entropy-wave-induced sound production from nozzles under choked flow conditions, at frequencies and turbulence intensities that are relevant for practical applications. There is a substantial need for such experimental data in order to validate predictive models of thermoacoustic instabilities involving entropy waves. In this study, the transfer function linking incident entropy waves, produced by a pulsed hot jet in a non-reactive turbulent cross flow, and the resulting reflected acoustic waves from choked nozzle flows are identified by combining acoustic measurements, background-oriented Schlieren thermometry and particle image velocimetry. The transfer function is measured for frequencies comprised between 60 and 180 Hz in the case of entropy waves that undergo intense dispersion in the highly turbulent channel, and that exhibit, at their arrival at the supercritical nozzle, amplitudes ranging from −1 to 10 percent of the mean temperature. This work suggests that three-dimensional deformation of entropy spots upstream of the nozzle convergent is likely to play a key role in the sound generation process, and can be used for developing new models accounting for this phenomenon. |
---|---|
AbstractList | The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catastrophic engine failure. This work deals with the challenging problem of experimentally quantifying entropy-wave-induced sound production from nozzles under choked flow conditions, at frequencies and turbulence intensities that are relevant for practical applications. There is a substantial need for such experimental data in order to validate predictive models of thermoacoustic instabilities involving entropy waves. In this study, the transfer function linking incident entropy waves, produced by a pulsed hot jet in a non-reactive turbulent cross flow, and the resulting reflected acoustic waves from choked nozzle flows are identified by combining acoustic measurements, background-oriented Schlieren thermometry and particle image velocimetry. The transfer function is measured for frequencies comprised between 60 and 180 Hz in the case of entropy waves that undergo intense dispersion in the highly turbulent channel, and that exhibit, at their arrival at the supercritical nozzle, amplitudes ranging from -1 to 10 percent of the mean temperature. This work suggests that three-dimensional deformation of entropy spots upstream of the nozzle convergent is likely to play a key role in the sound generation process, and can be used for developing new models accounting for this phenomenon. [Display omitted] The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catastrophic engine failure. This work deals with the challenging problem of experimentally quantifying entropy-wave-induced sound production from nozzles under choked flow conditions, at frequencies and turbulence intensities that are relevant for practical applications. There is a substantial need for such experimental data in order to validate predictive models of thermoacoustic instabilities involving entropy waves. In this study, the transfer function linking incident entropy waves, produced by a pulsed hot jet in a non-reactive turbulent cross flow, and the resulting reflected acoustic waves from choked nozzle flows are identified by combining acoustic measurements, background-oriented Schlieren thermometry and particle image velocimetry. The transfer function is measured for frequencies comprised between 60 and 180 Hz in the case of entropy waves that undergo intense dispersion in the highly turbulent channel, and that exhibit, at their arrival at the supercritical nozzle, amplitudes ranging from −1 to 10 percent of the mean temperature. This work suggests that three-dimensional deformation of entropy spots upstream of the nozzle convergent is likely to play a key role in the sound generation process, and can be used for developing new models accounting for this phenomenon. |
ArticleNumber | 115799 |
Author | Weilenmann, Markus Noiray, Nicolas |
Author_xml | – sequence: 1 givenname: Markus surname: Weilenmann fullname: Weilenmann, Markus email: wemarkus@ethz.ch – sequence: 2 givenname: Nicolas orcidid: 0000-0003-3362-9721 surname: Noiray fullname: Noiray, Nicolas email: noirayn@ethz.ch |
BookMark | eNp9kD1PwzAQhi1UJNrCD2CzxJxiJ47jiAlV5UOqxAISm-U4F-E0xMFOWtpfj0uYGDpZ7-me890zQ5PWtoDQNSULSii_rRe13y5iEodM0yzPz9CUkjyNRMrFBE0JieOIcfJ-gWbe14SQnCVsijar7w6c-YS299i22NuhLbGDqgHdm1BQIXbOlsMYiz3WH3YDJW7t4dAArhq789gPRR0A3FustB18b_QvGcY62-3xTm3BX6LzSjUerv7eOXp7WL0un6L1y-Pz8n4d6YSLPoo1T1kFitJClKmqkirjBaFJWDnPk1DhiUpTkleCJpoJHutC5JViQIpMqQKSOboZ54a9vwbwvazt4NrwpYyZyBjnlGahKxu7tLPeh4ulNr06Htk7ZRpJiTyalbUMZuXRrBzNBpL-I7tgULn9SeZuZCAcvjXgpNcGWg2lcUGcLK05Qf8AwzuVWA |
CitedBy_id | crossref_primary_10_1016_j_ast_2025_109932 crossref_primary_10_1016_j_combustflame_2024_113949 crossref_primary_10_1177_1475472X221107368 crossref_primary_10_1016_j_ast_2024_108898 crossref_primary_10_1098_rspa_2021_0851 crossref_primary_10_1016_j_jsv_2022_117170 crossref_primary_10_30932_1992_3252_2022_20_1_2 crossref_primary_10_3390_en15030841 crossref_primary_10_1016_j_jsv_2022_117311 crossref_primary_10_1080_13647830_2024_2434538 crossref_primary_10_1016_j_proci_2022_07_083 |
Cites_doi | 10.1016/j.jsv.2018.09.011 10.1016/j.jsv.2011.01.025 10.1016/j.jsv.2019.115155 10.1016/j.jsv.2019.115163 10.1016/j.proci.2014.08.016 10.20855/ijav.2001.6.382 10.1177/1475472X17743628 10.1115/1.4037321 10.1017/S0022112007006647 10.2514/1.B37463 10.1016/j.combustflame.2019.03.005 10.1007/s00348-015-1927-5 10.1017/jfm.2016.397 10.1115/1.1365159 10.2514/1.J055199 10.1016/j.jsv.2017.01.004 10.1017/jfm.2013.448 10.1115/1.4007318 10.1121/1.393542 10.1017/jfm.2013.118 10.1007/s00348-017-2325-y 10.1017/jfm.2020.703 10.1063/1.4999046 10.1016/j.jsv.2009.05.018 10.1016/j.pecs.2020.100845 10.1007/s10494-017-9854-6 10.1016/j.combustflame.2016.01.015 10.1016/j.jsv.2011.05.016 10.1016/j.jsv.2020.115637 10.1017/jfm.2017.183 10.1017/jfm.2013.442 10.1177/1756827717740775 10.2514/1.15757 10.1007/s10494-018-9964-9 10.2514/1.J052755 10.1016/j.jsv.2016.03.028 10.1017/S0022112002001428 10.1177/1756827717738139 10.1016/j.combustflame.2019.07.007 10.1016/j.proci.2016.05.007 10.1017/jfm.2019.799 10.1016/0022-460X(77)90596-X 10.2514/1.J051528 10.1007/s003480050408 10.1177/1756827716651791 10.1016/j.jsv.2017.01.012 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright Elsevier Science Ltd. Feb 3, 2021 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright Elsevier Science Ltd. Feb 3, 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.jsv.2020.115799 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1095-8568 |
ExternalDocumentID | 10_1016_j_jsv_2020_115799 S0022460X20306283 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DM4 E.L EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM LG5 M24 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHPGS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE NDZJH R2- RIG SEW SMS SPG SSH T9H VOH WUQ ZY4 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c368t-2c654fea11b8d5af3f76b013009993d5a63a5509f813c4862cb89fa4e0b7aabe3 |
IEDL.DBID | .~1 |
ISSN | 0022-460X |
IngestDate | Fri Jul 25 06:26:40 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 03:32:14 EDT 2025 Fri Feb 23 02:45:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Entropy waves Choked nozzle flow Indirect noise Thermoacoustic instabilities |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-2c654fea11b8d5af3f76b013009993d5a63a5509f813c4862cb89fa4e0b7aabe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3362-9721 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022460X20306283 |
PQID | 2487466117 |
PQPubID | 2047461 |
ParticipantIDs | proquest_journals_2487466117 crossref_citationtrail_10_1016_j_jsv_2020_115799 crossref_primary_10_1016_j_jsv_2020_115799 elsevier_sciencedirect_doi_10_1016_j_jsv_2020_115799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-03 |
PublicationDateYYYYMMDD | 2021-02-03 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of sound and vibration |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Tam, Parrish (bib0001) 2018; 17 Poinsot (bib0007) 2017; 36 Polifke (bib0023) 2020; 79 Dowling, Mahmoudi (bib0005) 2015; 35 Weilenmann, Doll, Bombach, Blond, Ebi, Xiong, Noiray (bib0011) 2020 Huet (bib0028) 2016; 374 Ceci, Gojon, Mihaescu (bib0035) 2019; 102 Bodn, bom (bib0046) 1986; 79 Duran, Moreau, Nicoud, T., Bouty, Poinsot (bib0004) 2014; 7 Sattelmayer (bib0010) 2002; 125 Raffel, Richard, Meier (bib0047) 2000; 28 Weilenmann, Xiong, Noiray (bib0025) 2020; 903 Leyko, Moreau, Nicoud, Poinsot (bib0041) 2011; 330 Schuermans, Bellucci, Guethe, Meili, Flohr, Paschereit (bib0045) 2004 Duran, Moreau (bib0031) 2013; 723 Magri, O’Brien, Ihme (bib0002) 2016; 799 Tao, Schuller, Huet, Richecoeur (bib0044) 2017; 394 Chen, Bomberg, Polifke (bib0016) 2016; 166 Xia, Duran, Morgans, Han (bib0022) 2018; 100 Giusti, Worth, Mastorakos, Dowling (bib0024) 2017; 55 Domenico, Rolland, Hochgreb (bib0043) 2017; 394 Morgans, Duran (bib0006) 2016; 8 Christodoulou, Karimi, Cammarano, Paul, Navarro-Martinez (bib0019) 2020; 882 Fattahi, Hosseinalipour, Karimi (bib0018) 2017; 29 Marble, Candel (bib0026) 1977; 55 Lourier, Huber, Noll, Aigner (bib0042) 2014; 52 Bake, Richter, Mhlbauer, Kings, Rhle, Thiele, Noll (bib0038) 2009; 326 Raffel (bib0049) 2015; 56 Steinbacher, Meindl, Polifke (bib0015) 2018; 10 Goh, Morgans (bib0029) 2011; 330 Moase, Brear, Manzie (bib0030) 2007; 585 Stow, Dowling, Hynes (bib0003) 2002; 467 Moreau, Becerril, Gicquel (bib0039) 2018; 10 Semlitsch, Hynes, Langella, Swaminathan, Dowling (bib0014) 2019; 35 Eckstein, Sattelmayer (bib0012) 2006; 22 Rolland, De Domenico, Hochgreb (bib0033) 2017; 819 Emmanuelli, Zheng, Huet, Giauque, Le Garrec, Ducruix (bib0036) 2020; 472 Anderson (bib0048) 2009 Rodrigues, Busseti, Hochgreb (bib0020) 2020; 472 Wang, Liu, Wang, Li, Qi (bib0013) 2019; 204 Morgans, Goh, Dahan (bib0017) 2013; 733 Polifke, Paschereit, Döbbeling (bib0008) 2001; 6 Bluemner, Paschereit, Oberleithner (bib0009) 2019; 209 Durn, Moreau, Poinsot (bib0040) 2013; 51 Nicolas, Donjat, Lon, Le Besnerais, Champagnat, Micheli (bib0050) 2017; 58 Mahmoudi, Giusti, Mastorakos, Dowling (bib0021) 2017; 140 Domenico, Rolland, Hochgreb (bib0034) 2019; 440 Giauque, Huet, Clero (bib0032) 2012; 134 Huet, Giauque (bib0027) 2013; 733 Huet, Emmanuelli, Le Garrec (bib0037) 2020; 488 Fattahi (10.1016/j.jsv.2020.115799_bib0018) 2017; 29 Tao (10.1016/j.jsv.2020.115799_bib0044) 2017; 394 Raffel (10.1016/j.jsv.2020.115799_bib0047) 2000; 28 Poinsot (10.1016/j.jsv.2020.115799_bib0007) 2017; 36 Dowling (10.1016/j.jsv.2020.115799_bib0005) 2015; 35 Morgans (10.1016/j.jsv.2020.115799_bib0017) 2013; 733 Polifke (10.1016/j.jsv.2020.115799_bib0008) 2001; 6 Magri (10.1016/j.jsv.2020.115799_bib0002) 2016; 799 Rodrigues (10.1016/j.jsv.2020.115799_bib0020) 2020; 472 Marble (10.1016/j.jsv.2020.115799_bib0026) 1977; 55 Mahmoudi (10.1016/j.jsv.2020.115799_bib0021) 2017; 140 Ceci (10.1016/j.jsv.2020.115799_bib0035) 2019; 102 Steinbacher (10.1016/j.jsv.2020.115799_bib0015) 2018; 10 Xia (10.1016/j.jsv.2020.115799_bib0022) 2018; 100 Giusti (10.1016/j.jsv.2020.115799_bib0024) 2017; 55 Moase (10.1016/j.jsv.2020.115799_bib0030) 2007; 585 Leyko (10.1016/j.jsv.2020.115799_bib0041) 2011; 330 Domenico (10.1016/j.jsv.2020.115799_bib0043) 2017; 394 Semlitsch (10.1016/j.jsv.2020.115799_bib0014) 2019; 35 Stow (10.1016/j.jsv.2020.115799_bib0003) 2002; 467 Sattelmayer (10.1016/j.jsv.2020.115799_bib0010) 2002; 125 Domenico (10.1016/j.jsv.2020.115799_bib0034) 2019; 440 Huet (10.1016/j.jsv.2020.115799_bib0037) 2020; 488 Polifke (10.1016/j.jsv.2020.115799_bib0023) 2020; 79 Weilenmann (10.1016/j.jsv.2020.115799_sbref0011) 2020 Christodoulou (10.1016/j.jsv.2020.115799_bib0019) 2020; 882 Rolland (10.1016/j.jsv.2020.115799_bib0033) 2017; 819 Huet (10.1016/j.jsv.2020.115799_bib0027) 2013; 733 Bake (10.1016/j.jsv.2020.115799_bib0038) 2009; 326 Raffel (10.1016/j.jsv.2020.115799_bib0049) 2015; 56 Huet (10.1016/j.jsv.2020.115799_bib0028) 2016; 374 Lourier (10.1016/j.jsv.2020.115799_bib0042) 2014; 52 Giauque (10.1016/j.jsv.2020.115799_sbref0032) 2012; 134 Emmanuelli (10.1016/j.jsv.2020.115799_bib0036) 2020; 472 Duran (10.1016/j.jsv.2020.115799_bib0031) 2013; 723 Eckstein (10.1016/j.jsv.2020.115799_bib0012) 2006; 22 Nicolas (10.1016/j.jsv.2020.115799_bib0050) 2017; 58 Schuermans (10.1016/j.jsv.2020.115799_bib0045) 2004 Chen (10.1016/j.jsv.2020.115799_bib0016) 2016; 166 Bodn (10.1016/j.jsv.2020.115799_bib0046) 1986; 79 Anderson (10.1016/j.jsv.2020.115799_bib0048) 2009 Tam (10.1016/j.jsv.2020.115799_bib0001) 2018; 17 Moreau (10.1016/j.jsv.2020.115799_bib0039) 2018; 10 Duran (10.1016/j.jsv.2020.115799_bib0004) 2014; 7 Bluemner (10.1016/j.jsv.2020.115799_bib0009) 2019; 209 Goh (10.1016/j.jsv.2020.115799_bib0029) 2011; 330 Durn (10.1016/j.jsv.2020.115799_bib0040) 2013; 51 Wang (10.1016/j.jsv.2020.115799_bib0013) 2019; 204 Weilenmann (10.1016/j.jsv.2020.115799_bib0025) 2020; 903 Morgans (10.1016/j.jsv.2020.115799_bib0006) 2016; 8 |
References_xml | – volume: 100 start-page: 481 year: 2018 end-page: 502 ident: bib0022 article-title: Dispersion of entropy perturbations transporting through an industrial gas turbine combustor publication-title: Flow Turbulence and Combustion – volume: 102 start-page: 299 year: 2019 end-page: 311 ident: bib0035 article-title: Large eddy simulations for indirect combustion noise assessment in a nozzle guide vane passage publication-title: Flow, Turbulence and Combustion – volume: 134 year: 2012 ident: bib0032 article-title: Analytical analysis of indirect combustion noise in subcritical nozzles publication-title: Journal of Engineering for Gas Turbines and Power – volume: 166 start-page: 170 year: 2016 end-page: 180 ident: bib0016 article-title: Propagation and generation of acoustic and entropy waves across a moving flame front publication-title: Combust Flame – volume: 79 start-page: 100845 year: 2020 ident: bib0023 article-title: Modeling and analysis of premixed flame dynamics by means of distributed time delays publication-title: Prog Energy Combust Sci – volume: 394 start-page: 220 year: 2017 end-page: 236 ident: bib0043 article-title: Detection of direct and indirect noise generated by synthetic hot spots in a duct publication-title: J Sound Vib – year: 2009 ident: bib0048 article-title: Fundamentals of Aerodynamics publication-title: McGraw – volume: 585 start-page: 281 year: 2007 end-page: 304 ident: bib0030 article-title: The forced response of choked nozzles and supersonic diffusers publication-title: J Fluid Mech – volume: 51 start-page: 42 year: 2013 end-page: 52 ident: bib0040 article-title: Analytical and numerical study of combustion noise through a subsonic nozzle publication-title: AIAA Journal – volume: 819 start-page: 435 year: 2017 end-page: 464 ident: bib0033 article-title: Theory and application of reverberated direct and indirect noise publication-title: J Fluid Mech – volume: 10 start-page: 154 year: 2018 end-page: 168 ident: bib0039 article-title: Large-eddy-simulation prediction of indirect combustion noise in the entropy wave generator experiment publication-title: International Journal of Spray and Combustion Dynamics – volume: 8 start-page: 285 year: 2016 end-page: 298 ident: bib0006 article-title: Entropy noise: a review of theory, progress and challenges publication-title: International Journal of Spray and Combustion Dynamics – volume: 723 start-page: 190 year: 2013 end-page: 231 ident: bib0031 article-title: Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the magnus expansion publication-title: J Fluid Mech – volume: 472 start-page: 115163 year: 2020 ident: bib0036 article-title: Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows publication-title: J Sound Vib – volume: 35 start-page: 839 year: 2019 end-page: 849 ident: bib0014 article-title: Entropy and vorticity wave generation in realistic gas turbine combustors publication-title: J. Propul. Power – volume: 374 start-page: 211 year: 2016 end-page: 227 ident: bib0028 article-title: Nonlinear indirect combustion noise for compact supercritical nozzle flows publication-title: J Sound Vib – volume: 440 start-page: 212 year: 2019 end-page: 230 ident: bib0034 article-title: A generalised model for acoustic and entropic transfer function of nozzles with losses publication-title: J Sound Vib – volume: 799 year: 2016 ident: bib0002 article-title: Compositional inhomogeneities as a source of indirect combustion noise publication-title: J Fluid Mech – volume: 330 start-page: 3944 year: 2011 end-page: 3958 ident: bib0041 article-title: Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock publication-title: J Sound Vib – volume: 58 year: 2017 ident: bib0050 article-title: 3D reconstruction of a compressible flow by synchronized multi-camera bos publication-title: Exp Fluids – volume: 55 start-page: 225 year: 1977 end-page: 243 ident: bib0026 article-title: Acoustic disturbance from gas non-uniformities convected through a nozzle publication-title: J Sound Vib – start-page: 539 year: 2004 end-page: 551 ident: bib0045 article-title: A detailed analysis of thermoacoustic interaction mechanisms in a turbulent premixed flame publication-title: Proceedings of the ASME Turbo Expo – year: 2020 ident: bib0011 article-title: Linear and nonlinear entropy-wave response of technically-premixed jet-flames-array and swirled flame to acoustic forcing publication-title: Proceedings of the Combustion Institute – volume: 733 year: 2013 ident: bib0017 article-title: The dissipation and shear dispersion of entropy waves in combustor thermoacoustics publication-title: J Fluid Mech – volume: 17 start-page: 22 year: 2018 end-page: 35 ident: bib0001 article-title: The physical processes of indirect combustion noise generation publication-title: International Journal of Aeroacoustics – volume: 29 start-page: 087104 year: 2017 ident: bib0018 article-title: On the dissipation and dispersion of entropy waves in heat transferring channel flows publication-title: Physics of Fluids – volume: 22 start-page: 425 year: 2006 end-page: 432 ident: bib0012 article-title: Low-order modeling of low-frequency combustion instabilities in aeroengines publication-title: J. Propul. Power – volume: 204 start-page: 85 year: 2019 end-page: 102 ident: bib0013 article-title: Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame publication-title: Combust Flame – volume: 472 start-page: 115155 year: 2020 ident: bib0020 article-title: Numerical investigation on the generation, mixing and convection of entropic and compositional waves in a flow duct publication-title: J Sound Vib – volume: 7 start-page: 1 year: 2014 end-page: 11 ident: bib0004 article-title: Combustion noise in modern aero-engines publication-title: AerospaceLab – volume: 125 start-page: 11 year: 2002 end-page: 19 ident: bib0010 article-title: Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations publication-title: Journal of Engineering for Gas Turbine and Power – volume: 733 start-page: 268 year: 2013 end-page: 301 ident: bib0027 article-title: A nonlinear model for indirect combustion noise through a compact nozzle publication-title: J Fluid Mech – volume: 330 start-page: 5184 year: 2011 end-page: 5198 ident: bib0029 article-title: Phase prediction of the response of choked nozzles to entropy and acoustic disturbances publication-title: J Sound Vib – volume: 52 start-page: 2114 year: 2014 end-page: 2126 ident: bib0042 article-title: Numerical analysis of indirect combustion noise generation within a subsonic nozzle publication-title: AIAA Journal – volume: 882 start-page: A8 year: 2020 ident: bib0019 article-title: State prediction of an entropy wave advecting through a turbulent channel flow publication-title: J Fluid Mech – volume: 394 start-page: 237 year: 2017 end-page: 255 ident: bib0044 article-title: Coherent entropy induced and acoustic noise separation in compact nozzles publication-title: J Sound Vib – volume: 79 start-page: 541 year: 1986 end-page: 549 ident: bib0046 article-title: Influence of errors on the two-microphone method for measuring acoustic properties in ducts publication-title: J. Acoust. Soc. Am. – volume: 56 start-page: 60 year: 2015 ident: bib0049 article-title: Background-oriented schlieren (BOS) techniques publication-title: Exp Fluids – volume: 467 start-page: 215 year: 2002 end-page: 239 ident: bib0003 article-title: Reflection of circumferential modes in a choked nozzle publication-title: J Fluid Mech – volume: 55 start-page: 446 year: 2017 end-page: 458 ident: bib0024 article-title: Experimental and numerical investigation into the propagation of entropy waves publication-title: AIAA Journal – volume: 903 start-page: R1 year: 2020 ident: bib0025 article-title: On the dispersion of entropy waves in turbulent flows publication-title: J Fluid Mech – volume: 140 year: 2017 ident: bib0021 article-title: Low-Order modeling of combustion noise in an aero-engine: the effect of entropy dispersion publication-title: J Eng Gas Turbine Power – volume: 28 start-page: 477 year: 2000 end-page: 481 ident: bib0047 article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations publication-title: Exp Fluids – volume: 35 start-page: 65 year: 2015 end-page: 100 ident: bib0005 article-title: Combustion noise publication-title: Proc. Combust. Inst. – volume: 36 start-page: 1 year: 2017 end-page: 28 ident: bib0007 article-title: Prediction and control of combustion instabilities in real engines publication-title: Proc. Combust. Inst. – volume: 6 start-page: 135 year: 2001 end-page: 146 ident: bib0008 article-title: Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit publication-title: International Journal of Acoustics and Vibration – volume: 326 start-page: 574 year: 2009 end-page: 598 ident: bib0038 article-title: The entropy wave generator (EWG): a reference case on entropy noise publication-title: J Sound Vib – volume: 209 start-page: 99 year: 2019 end-page: 116 ident: bib0009 article-title: Generation and transport of equivalence ratio fluctuations in an acoustically forced swirl burner publication-title: Combust Flame – volume: 10 start-page: 111 year: 2018 end-page: 130 ident: bib0015 article-title: Modelling the generation of temperature inhomogeneities by a premixed flame publication-title: International Journal of Spray and Combustion Dynamics – volume: 488 start-page: 115637 year: 2020 ident: bib0037 article-title: Entropy noise modelling in 2D choked nozzle flows publication-title: J Sound Vib – volume: 440 start-page: 212 year: 2019 ident: 10.1016/j.jsv.2020.115799_bib0034 article-title: A generalised model for acoustic and entropic transfer function of nozzles with losses publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.09.011 – volume: 330 start-page: 3944 issue: 16 year: 2011 ident: 10.1016/j.jsv.2020.115799_bib0041 article-title: Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock publication-title: J Sound Vib doi: 10.1016/j.jsv.2011.01.025 – volume: 472 start-page: 115155 year: 2020 ident: 10.1016/j.jsv.2020.115799_bib0020 article-title: Numerical investigation on the generation, mixing and convection of entropic and compositional waves in a flow duct publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.115155 – volume: 472 start-page: 115163 year: 2020 ident: 10.1016/j.jsv.2020.115799_bib0036 article-title: Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.115163 – volume: 35 start-page: 65 issue: 1 year: 2015 ident: 10.1016/j.jsv.2020.115799_bib0005 article-title: Combustion noise publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.08.016 – volume: 7 start-page: 1 year: 2014 ident: 10.1016/j.jsv.2020.115799_bib0004 article-title: Combustion noise in modern aero-engines publication-title: AerospaceLab – volume: 6 start-page: 135 issue: 3 year: 2001 ident: 10.1016/j.jsv.2020.115799_bib0008 article-title: Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit publication-title: International Journal of Acoustics and Vibration doi: 10.20855/ijav.2001.6.382 – volume: 17 start-page: 22 issue: 1–2 year: 2018 ident: 10.1016/j.jsv.2020.115799_bib0001 article-title: The physical processes of indirect combustion noise generation publication-title: International Journal of Aeroacoustics doi: 10.1177/1475472X17743628 – volume: 140 issue: 1 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0021 article-title: Low-Order modeling of combustion noise in an aero-engine: the effect of entropy dispersion publication-title: J Eng Gas Turbine Power doi: 10.1115/1.4037321 – volume: 585 start-page: 281 year: 2007 ident: 10.1016/j.jsv.2020.115799_bib0030 article-title: The forced response of choked nozzles and supersonic diffusers publication-title: J Fluid Mech doi: 10.1017/S0022112007006647 – volume: 35 start-page: 839 issue: 4 year: 2019 ident: 10.1016/j.jsv.2020.115799_bib0014 article-title: Entropy and vorticity wave generation in realistic gas turbine combustors publication-title: J. Propul. Power doi: 10.2514/1.B37463 – volume: 204 start-page: 85 year: 2019 ident: 10.1016/j.jsv.2020.115799_bib0013 article-title: Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.03.005 – volume: 56 start-page: 60 issue: 3 year: 2015 ident: 10.1016/j.jsv.2020.115799_bib0049 article-title: Background-oriented schlieren (BOS) techniques publication-title: Exp Fluids doi: 10.1007/s00348-015-1927-5 – volume: 799 year: 2016 ident: 10.1016/j.jsv.2020.115799_bib0002 article-title: Compositional inhomogeneities as a source of indirect combustion noise publication-title: J Fluid Mech doi: 10.1017/jfm.2016.397 – volume: 125 start-page: 11 issue: 1 year: 2002 ident: 10.1016/j.jsv.2020.115799_bib0010 article-title: Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations publication-title: Journal of Engineering for Gas Turbine and Power doi: 10.1115/1.1365159 – volume: 55 start-page: 446 issue: 2 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0024 article-title: Experimental and numerical investigation into the propagation of entropy waves publication-title: AIAA Journal doi: 10.2514/1.J055199 – volume: 394 start-page: 220 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0043 article-title: Detection of direct and indirect noise generated by synthetic hot spots in a duct publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.01.004 – volume: 733 year: 2013 ident: 10.1016/j.jsv.2020.115799_bib0017 article-title: The dissipation and shear dispersion of entropy waves in combustor thermoacoustics publication-title: J Fluid Mech doi: 10.1017/jfm.2013.448 – volume: 134 issue: 11 year: 2012 ident: 10.1016/j.jsv.2020.115799_sbref0032 article-title: Analytical analysis of indirect combustion noise in subcritical nozzles publication-title: Journal of Engineering for Gas Turbines and Power doi: 10.1115/1.4007318 – volume: 79 start-page: 541 issue: 2 year: 1986 ident: 10.1016/j.jsv.2020.115799_bib0046 article-title: Influence of errors on the two-microphone method for measuring acoustic properties in ducts publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.393542 – volume: 723 start-page: 190 year: 2013 ident: 10.1016/j.jsv.2020.115799_bib0031 article-title: Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the magnus expansion publication-title: J Fluid Mech doi: 10.1017/jfm.2013.118 – volume: 58 issue: 5 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0050 article-title: 3D reconstruction of a compressible flow by synchronized multi-camera bos publication-title: Exp Fluids doi: 10.1007/s00348-017-2325-y – volume: 903 start-page: R1 year: 2020 ident: 10.1016/j.jsv.2020.115799_bib0025 article-title: On the dispersion of entropy waves in turbulent flows publication-title: J Fluid Mech doi: 10.1017/jfm.2020.703 – volume: 29 start-page: 087104 issue: 8 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0018 article-title: On the dissipation and dispersion of entropy waves in heat transferring channel flows publication-title: Physics of Fluids doi: 10.1063/1.4999046 – volume: 326 start-page: 574 issue: 3 year: 2009 ident: 10.1016/j.jsv.2020.115799_bib0038 article-title: The entropy wave generator (EWG): a reference case on entropy noise publication-title: J Sound Vib doi: 10.1016/j.jsv.2009.05.018 – volume: 79 start-page: 100845 year: 2020 ident: 10.1016/j.jsv.2020.115799_bib0023 article-title: Modeling and analysis of premixed flame dynamics by means of distributed time delays publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2020.100845 – volume: 100 start-page: 481 issue: 2 year: 2018 ident: 10.1016/j.jsv.2020.115799_bib0022 article-title: Dispersion of entropy perturbations transporting through an industrial gas turbine combustor publication-title: Flow Turbulence and Combustion doi: 10.1007/s10494-017-9854-6 – volume: 166 start-page: 170 year: 2016 ident: 10.1016/j.jsv.2020.115799_bib0016 article-title: Propagation and generation of acoustic and entropy waves across a moving flame front publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.01.015 – volume: 330 start-page: 5184 issue: 21 year: 2011 ident: 10.1016/j.jsv.2020.115799_bib0029 article-title: Phase prediction of the response of choked nozzles to entropy and acoustic disturbances publication-title: J Sound Vib doi: 10.1016/j.jsv.2011.05.016 – volume: 488 start-page: 115637 year: 2020 ident: 10.1016/j.jsv.2020.115799_bib0037 article-title: Entropy noise modelling in 2D choked nozzle flows publication-title: J Sound Vib doi: 10.1016/j.jsv.2020.115637 – start-page: 539 year: 2004 ident: 10.1016/j.jsv.2020.115799_bib0045 article-title: A detailed analysis of thermoacoustic interaction mechanisms in a turbulent premixed flame publication-title: Proceedings of the ASME Turbo Expo – volume: 819 start-page: 435 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0033 article-title: Theory and application of reverberated direct and indirect noise publication-title: J Fluid Mech doi: 10.1017/jfm.2017.183 – volume: 733 start-page: 268 year: 2013 ident: 10.1016/j.jsv.2020.115799_bib0027 article-title: A nonlinear model for indirect combustion noise through a compact nozzle publication-title: J Fluid Mech doi: 10.1017/jfm.2013.442 – year: 2020 ident: 10.1016/j.jsv.2020.115799_sbref0011 article-title: Linear and nonlinear entropy-wave response of technically-premixed jet-flames-array and swirled flame to acoustic forcing – volume: 10 start-page: 154 issue: 2 year: 2018 ident: 10.1016/j.jsv.2020.115799_bib0039 article-title: Large-eddy-simulation prediction of indirect combustion noise in the entropy wave generator experiment publication-title: International Journal of Spray and Combustion Dynamics doi: 10.1177/1756827717740775 – volume: 22 start-page: 425 issue: 2 year: 2006 ident: 10.1016/j.jsv.2020.115799_bib0012 article-title: Low-order modeling of low-frequency combustion instabilities in aeroengines publication-title: J. Propul. Power doi: 10.2514/1.15757 – year: 2009 ident: 10.1016/j.jsv.2020.115799_bib0048 article-title: Fundamentals of Aerodynamics publication-title: McGraw – volume: 102 start-page: 299 issue: 2 year: 2019 ident: 10.1016/j.jsv.2020.115799_bib0035 article-title: Large eddy simulations for indirect combustion noise assessment in a nozzle guide vane passage publication-title: Flow, Turbulence and Combustion doi: 10.1007/s10494-018-9964-9 – volume: 52 start-page: 2114 issue: 10 year: 2014 ident: 10.1016/j.jsv.2020.115799_bib0042 article-title: Numerical analysis of indirect combustion noise generation within a subsonic nozzle publication-title: AIAA Journal doi: 10.2514/1.J052755 – volume: 374 start-page: 211 year: 2016 ident: 10.1016/j.jsv.2020.115799_bib0028 article-title: Nonlinear indirect combustion noise for compact supercritical nozzle flows publication-title: J Sound Vib doi: 10.1016/j.jsv.2016.03.028 – volume: 467 start-page: 215 year: 2002 ident: 10.1016/j.jsv.2020.115799_bib0003 article-title: Reflection of circumferential modes in a choked nozzle publication-title: J Fluid Mech doi: 10.1017/S0022112002001428 – volume: 10 start-page: 111 issue: 2 year: 2018 ident: 10.1016/j.jsv.2020.115799_bib0015 article-title: Modelling the generation of temperature inhomogeneities by a premixed flame publication-title: International Journal of Spray and Combustion Dynamics doi: 10.1177/1756827717738139 – volume: 209 start-page: 99 year: 2019 ident: 10.1016/j.jsv.2020.115799_bib0009 article-title: Generation and transport of equivalence ratio fluctuations in an acoustically forced swirl burner publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.07.007 – volume: 36 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0007 article-title: Prediction and control of combustion instabilities in real engines publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.05.007 – volume: 882 start-page: A8 year: 2020 ident: 10.1016/j.jsv.2020.115799_bib0019 article-title: State prediction of an entropy wave advecting through a turbulent channel flow publication-title: J Fluid Mech doi: 10.1017/jfm.2019.799 – volume: 55 start-page: 225 issue: 2 year: 1977 ident: 10.1016/j.jsv.2020.115799_bib0026 article-title: Acoustic disturbance from gas non-uniformities convected through a nozzle publication-title: J Sound Vib doi: 10.1016/0022-460X(77)90596-X – volume: 51 start-page: 42 issue: 1 year: 2013 ident: 10.1016/j.jsv.2020.115799_bib0040 article-title: Analytical and numerical study of combustion noise through a subsonic nozzle publication-title: AIAA Journal doi: 10.2514/1.J051528 – volume: 28 start-page: 477 issue: 5 year: 2000 ident: 10.1016/j.jsv.2020.115799_bib0047 article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations publication-title: Exp Fluids doi: 10.1007/s003480050408 – volume: 8 start-page: 285 issue: 4 year: 2016 ident: 10.1016/j.jsv.2020.115799_bib0006 article-title: Entropy noise: a review of theory, progress and challenges publication-title: International Journal of Spray and Combustion Dynamics doi: 10.1177/1756827716651791 – volume: 394 start-page: 237 year: 2017 ident: 10.1016/j.jsv.2020.115799_bib0044 article-title: Coherent entropy induced and acoustic noise separation in compact nozzles publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.01.012 |
SSID | ssj0009434 |
Score | 2.4233055 |
Snippet | [Display omitted]
The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback... The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115799 |
SubjectTerms | Acoustic measurement Acoustic waves Acoustics Aerodynamics Catastrophic failure analysis Choked flow Choked nozzle flow Combustion chambers Computational fluid dynamics Cross flow Engine failure Entropy Entropy waves Gas turbine engines Gas turbines High cycle fatigue Indirect noise Nozzle flow Nozzles Particle image velocimetry Prediction models Sound generation Surface waves Thermoacoustic instabilities Thermoacoustics Transfer functions Turbulence Turbulent flow |
Title | Experiments on sound reflection and production by choked nozzle flows subject to acoustic and entropy waves |
URI | https://dx.doi.org/10.1016/j.jsv.2020.115799 https://www.proquest.com/docview/2487466117 |
Volume | 492 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEbyIn_gxRw6ehGrbpB87jrExFXdysFtI0gTU0Q5bFT34t_te2k4U8eCxIS-Ul_T3XtJffo-QMx9inApD6ymmuQfxlnmSGe1lsepLayOtHNv9dhpPZvx6Hs07ZNjehUFaZYP9NaY7tG5aLhtvXi7v7_GOL4qh-fMQ016IkniDnSe4yi8-vmgeqH_WKoZj7_bPpuN4PZQvsEUMETiixMm__hqbfqC0Cz3jbbLV5Ix0UL_WDumYfJdsOO6mLvfI42il0l_SIqclVkqiMPrC0axyKuFxWSu74qN6o4B5jyajefH-vjDULorXkpbPCs9kaFVQQElX5MtZ4vFvsXyjr_LFlPtkNh7dDSdeU0PB0yxOKy_UccStkUGg0iySltkkxqNPlxkyaImZhE1K36YBTBZsb7RK-1Zy46tESmXYAVnLi9wcEupnEOt9ACRMWljMU50lYG9SpX0Waf-I-K33hG4ExrHOxUK0TLIHAQ4X6HBRO_yInK9MlrW6xl-deTsl4tsSEYD-f5l12-kTzfdZihD2aRxSkyA5_t-oJ2QzRHYL8rdZl6xVT8_mFNKTSvXc-uuR9cHVzWT6CYns5Po |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQiPvFtDp6EYrdJH3sUUdbXnhT2FpI0AXVpF7squ7_embRVFPHgMaETyiT9ZpJ--QbgOMQYp6PIBZobEWC85YHi1gR5onvKudhoz3a_GyT9B3E9jIdzcN7ehSFaZYP9NaZ7tG56Thtvno4fH-mOL4mhhcOI0l6MkvOwQOpUcQcWzq5u-oMv7V3BRSsaTgbtz01P83qq3nCXGBF2xKlXgP01PP0Aah99LldhpUkb2Vn9ZmswZ4t1WPT0TVNtwPPFp1B_xcqCVVQsieHoI8-0KpjC5rgWd6WmnjKEvWebs6KczUaWuVH5XrHqVdOxDJuUDIHS1_nylnQCXI6n7F292WoTHi4v7s_7QVNGITA8ySZBZJJYOKu6XZ3lsXLcpQmdfvrkkGNPwhXuU3ou6-J84Q7H6KznlLChTpXSlm9BpygLuw0szDHch4hJlLfwRGQmT9HeZtqEPDbhDoSt96RpNMap1MVItmSyJ4kOl-RwWTt8B04-Tca1wMZfD4t2SuS3VSIxAPxltt9On2w-0UpGuFUTmJ10093_jXoES_37u1t5ezW42YPliMguROfm-9CZvLzaA8xWJvqwWY0falnnqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experiments+on+sound+reflection+and+production+by+choked+nozzle+flows+subject+to+acoustic+and+entropy+waves&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Weilenmann%2C+Markus&rft.au=Noiray%2C+Nicolas&rft.date=2021-02-03&rft.issn=0022-460X&rft.volume=492&rft.spage=115799&rft_id=info:doi/10.1016%2Fj.jsv.2020.115799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2020_115799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |