Experiments on sound reflection and production by choked nozzle flows subject to acoustic and entropy waves

[Display omitted] The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catas...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 492; p. 115799
Main Authors Weilenmann, Markus, Noiray, Nicolas
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 03.02.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catastrophic engine failure. This work deals with the challenging problem of experimentally quantifying entropy-wave-induced sound production from nozzles under choked flow conditions, at frequencies and turbulence intensities that are relevant for practical applications. There is a substantial need for such experimental data in order to validate predictive models of thermoacoustic instabilities involving entropy waves. In this study, the transfer function linking incident entropy waves, produced by a pulsed hot jet in a non-reactive turbulent cross flow, and the resulting reflected acoustic waves from choked nozzle flows are identified by combining acoustic measurements, background-oriented Schlieren thermometry and particle image velocimetry. The transfer function is measured for frequencies comprised between 60 and 180 Hz in the case of entropy waves that undergo intense dispersion in the highly turbulent channel, and that exhibit, at their arrival at the supercritical nozzle, amplitudes ranging from −1 to 10 percent of the mean temperature. This work suggests that three-dimensional deformation of entropy spots upstream of the nozzle convergent is likely to play a key role in the sound generation process, and can be used for developing new models accounting for this phenomenon.
AbstractList The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catastrophic engine failure. This work deals with the challenging problem of experimentally quantifying entropy-wave-induced sound production from nozzles under choked flow conditions, at frequencies and turbulence intensities that are relevant for practical applications. There is a substantial need for such experimental data in order to validate predictive models of thermoacoustic instabilities involving entropy waves. In this study, the transfer function linking incident entropy waves, produced by a pulsed hot jet in a non-reactive turbulent cross flow, and the resulting reflected acoustic waves from choked nozzle flows are identified by combining acoustic measurements, background-oriented Schlieren thermometry and particle image velocimetry. The transfer function is measured for frequencies comprised between 60 and 180 Hz in the case of entropy waves that undergo intense dispersion in the highly turbulent channel, and that exhibit, at their arrival at the supercritical nozzle, amplitudes ranging from -1 to 10 percent of the mean temperature. This work suggests that three-dimensional deformation of entropy spots upstream of the nozzle convergent is likely to play a key role in the sound generation process, and can be used for developing new models accounting for this phenomenon.
[Display omitted] The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of thermoacoustic instabilities. These instabilities cause high cycle fatigue of the combustor components, which may lead to catastrophic engine failure. This work deals with the challenging problem of experimentally quantifying entropy-wave-induced sound production from nozzles under choked flow conditions, at frequencies and turbulence intensities that are relevant for practical applications. There is a substantial need for such experimental data in order to validate predictive models of thermoacoustic instabilities involving entropy waves. In this study, the transfer function linking incident entropy waves, produced by a pulsed hot jet in a non-reactive turbulent cross flow, and the resulting reflected acoustic waves from choked nozzle flows are identified by combining acoustic measurements, background-oriented Schlieren thermometry and particle image velocimetry. The transfer function is measured for frequencies comprised between 60 and 180 Hz in the case of entropy waves that undergo intense dispersion in the highly turbulent channel, and that exhibit, at their arrival at the supercritical nozzle, amplitudes ranging from −1 to 10 percent of the mean temperature. This work suggests that three-dimensional deformation of entropy spots upstream of the nozzle convergent is likely to play a key role in the sound generation process, and can be used for developing new models accounting for this phenomenon.
ArticleNumber 115799
Author Weilenmann, Markus
Noiray, Nicolas
Author_xml – sequence: 1
  givenname: Markus
  surname: Weilenmann
  fullname: Weilenmann, Markus
  email: wemarkus@ethz.ch
– sequence: 2
  givenname: Nicolas
  orcidid: 0000-0003-3362-9721
  surname: Noiray
  fullname: Noiray, Nicolas
  email: noirayn@ethz.ch
BookMark eNp9kD1PwzAQhi1UJNrCD2CzxJxiJ47jiAlV5UOqxAISm-U4F-E0xMFOWtpfj0uYGDpZ7-me890zQ5PWtoDQNSULSii_rRe13y5iEodM0yzPz9CUkjyNRMrFBE0JieOIcfJ-gWbe14SQnCVsijar7w6c-YS299i22NuhLbGDqgHdm1BQIXbOlsMYiz3WH3YDJW7t4dAArhq789gPRR0A3FustB18b_QvGcY62-3xTm3BX6LzSjUerv7eOXp7WL0un6L1y-Pz8n4d6YSLPoo1T1kFitJClKmqkirjBaFJWDnPk1DhiUpTkleCJpoJHutC5JViQIpMqQKSOboZ54a9vwbwvazt4NrwpYyZyBjnlGahKxu7tLPeh4ulNr06Htk7ZRpJiTyalbUMZuXRrBzNBpL-I7tgULn9SeZuZCAcvjXgpNcGWg2lcUGcLK05Qf8AwzuVWA
CitedBy_id crossref_primary_10_1016_j_ast_2025_109932
crossref_primary_10_1016_j_combustflame_2024_113949
crossref_primary_10_1177_1475472X221107368
crossref_primary_10_1016_j_ast_2024_108898
crossref_primary_10_1098_rspa_2021_0851
crossref_primary_10_1016_j_jsv_2022_117170
crossref_primary_10_30932_1992_3252_2022_20_1_2
crossref_primary_10_3390_en15030841
crossref_primary_10_1016_j_jsv_2022_117311
crossref_primary_10_1080_13647830_2024_2434538
crossref_primary_10_1016_j_proci_2022_07_083
Cites_doi 10.1016/j.jsv.2018.09.011
10.1016/j.jsv.2011.01.025
10.1016/j.jsv.2019.115155
10.1016/j.jsv.2019.115163
10.1016/j.proci.2014.08.016
10.20855/ijav.2001.6.382
10.1177/1475472X17743628
10.1115/1.4037321
10.1017/S0022112007006647
10.2514/1.B37463
10.1016/j.combustflame.2019.03.005
10.1007/s00348-015-1927-5
10.1017/jfm.2016.397
10.1115/1.1365159
10.2514/1.J055199
10.1016/j.jsv.2017.01.004
10.1017/jfm.2013.448
10.1115/1.4007318
10.1121/1.393542
10.1017/jfm.2013.118
10.1007/s00348-017-2325-y
10.1017/jfm.2020.703
10.1063/1.4999046
10.1016/j.jsv.2009.05.018
10.1016/j.pecs.2020.100845
10.1007/s10494-017-9854-6
10.1016/j.combustflame.2016.01.015
10.1016/j.jsv.2011.05.016
10.1016/j.jsv.2020.115637
10.1017/jfm.2017.183
10.1017/jfm.2013.442
10.1177/1756827717740775
10.2514/1.15757
10.1007/s10494-018-9964-9
10.2514/1.J052755
10.1016/j.jsv.2016.03.028
10.1017/S0022112002001428
10.1177/1756827717738139
10.1016/j.combustflame.2019.07.007
10.1016/j.proci.2016.05.007
10.1017/jfm.2019.799
10.1016/0022-460X(77)90596-X
10.2514/1.J051528
10.1007/s003480050408
10.1177/1756827716651791
10.1016/j.jsv.2017.01.012
ContentType Journal Article
Copyright 2020 The Authors
Copyright Elsevier Science Ltd. Feb 3, 2021
Copyright_xml – notice: 2020 The Authors
– notice: Copyright Elsevier Science Ltd. Feb 3, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jsv.2020.115799
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1095-8568
ExternalDocumentID 10_1016_j_jsv_2020_115799
S0022460X20306283
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
E.L
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
LG5
M24
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSQ
SST
SSZ
T5K
TN5
XPP
ZMT
~G-
29L
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHPGS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
H~9
IHE
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
T9H
VOH
WUQ
ZY4
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c368t-2c654fea11b8d5af3f76b013009993d5a63a5509f813c4862cb89fa4e0b7aabe3
IEDL.DBID .~1
ISSN 0022-460X
IngestDate Fri Jul 25 06:26:40 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Tue Jul 01 03:32:14 EDT 2025
Fri Feb 23 02:45:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Entropy waves
Choked nozzle flow
Indirect noise
Thermoacoustic instabilities
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-2c654fea11b8d5af3f76b013009993d5a63a5509f813c4862cb89fa4e0b7aabe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3362-9721
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022460X20306283
PQID 2487466117
PQPubID 2047461
ParticipantIDs proquest_journals_2487466117
crossref_citationtrail_10_1016_j_jsv_2020_115799
crossref_primary_10_1016_j_jsv_2020_115799
elsevier_sciencedirect_doi_10_1016_j_jsv_2020_115799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-03
PublicationDateYYYYMMDD 2021-02-03
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-03
  day: 03
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of sound and vibration
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Tam, Parrish (bib0001) 2018; 17
Poinsot (bib0007) 2017; 36
Polifke (bib0023) 2020; 79
Dowling, Mahmoudi (bib0005) 2015; 35
Weilenmann, Doll, Bombach, Blond, Ebi, Xiong, Noiray (bib0011) 2020
Huet (bib0028) 2016; 374
Ceci, Gojon, Mihaescu (bib0035) 2019; 102
Bodn, bom (bib0046) 1986; 79
Duran, Moreau, Nicoud, T., Bouty, Poinsot (bib0004) 2014; 7
Sattelmayer (bib0010) 2002; 125
Raffel, Richard, Meier (bib0047) 2000; 28
Weilenmann, Xiong, Noiray (bib0025) 2020; 903
Leyko, Moreau, Nicoud, Poinsot (bib0041) 2011; 330
Schuermans, Bellucci, Guethe, Meili, Flohr, Paschereit (bib0045) 2004
Duran, Moreau (bib0031) 2013; 723
Magri, O’Brien, Ihme (bib0002) 2016; 799
Tao, Schuller, Huet, Richecoeur (bib0044) 2017; 394
Chen, Bomberg, Polifke (bib0016) 2016; 166
Xia, Duran, Morgans, Han (bib0022) 2018; 100
Giusti, Worth, Mastorakos, Dowling (bib0024) 2017; 55
Domenico, Rolland, Hochgreb (bib0043) 2017; 394
Morgans, Duran (bib0006) 2016; 8
Christodoulou, Karimi, Cammarano, Paul, Navarro-Martinez (bib0019) 2020; 882
Fattahi, Hosseinalipour, Karimi (bib0018) 2017; 29
Marble, Candel (bib0026) 1977; 55
Lourier, Huber, Noll, Aigner (bib0042) 2014; 52
Bake, Richter, Mhlbauer, Kings, Rhle, Thiele, Noll (bib0038) 2009; 326
Raffel (bib0049) 2015; 56
Steinbacher, Meindl, Polifke (bib0015) 2018; 10
Goh, Morgans (bib0029) 2011; 330
Moase, Brear, Manzie (bib0030) 2007; 585
Stow, Dowling, Hynes (bib0003) 2002; 467
Moreau, Becerril, Gicquel (bib0039) 2018; 10
Semlitsch, Hynes, Langella, Swaminathan, Dowling (bib0014) 2019; 35
Eckstein, Sattelmayer (bib0012) 2006; 22
Rolland, De Domenico, Hochgreb (bib0033) 2017; 819
Emmanuelli, Zheng, Huet, Giauque, Le Garrec, Ducruix (bib0036) 2020; 472
Anderson (bib0048) 2009
Rodrigues, Busseti, Hochgreb (bib0020) 2020; 472
Wang, Liu, Wang, Li, Qi (bib0013) 2019; 204
Morgans, Goh, Dahan (bib0017) 2013; 733
Polifke, Paschereit, Döbbeling (bib0008) 2001; 6
Bluemner, Paschereit, Oberleithner (bib0009) 2019; 209
Durn, Moreau, Poinsot (bib0040) 2013; 51
Nicolas, Donjat, Lon, Le Besnerais, Champagnat, Micheli (bib0050) 2017; 58
Mahmoudi, Giusti, Mastorakos, Dowling (bib0021) 2017; 140
Domenico, Rolland, Hochgreb (bib0034) 2019; 440
Giauque, Huet, Clero (bib0032) 2012; 134
Huet, Giauque (bib0027) 2013; 733
Huet, Emmanuelli, Le Garrec (bib0037) 2020; 488
Fattahi (10.1016/j.jsv.2020.115799_bib0018) 2017; 29
Tao (10.1016/j.jsv.2020.115799_bib0044) 2017; 394
Raffel (10.1016/j.jsv.2020.115799_bib0047) 2000; 28
Poinsot (10.1016/j.jsv.2020.115799_bib0007) 2017; 36
Dowling (10.1016/j.jsv.2020.115799_bib0005) 2015; 35
Morgans (10.1016/j.jsv.2020.115799_bib0017) 2013; 733
Polifke (10.1016/j.jsv.2020.115799_bib0008) 2001; 6
Magri (10.1016/j.jsv.2020.115799_bib0002) 2016; 799
Rodrigues (10.1016/j.jsv.2020.115799_bib0020) 2020; 472
Marble (10.1016/j.jsv.2020.115799_bib0026) 1977; 55
Mahmoudi (10.1016/j.jsv.2020.115799_bib0021) 2017; 140
Ceci (10.1016/j.jsv.2020.115799_bib0035) 2019; 102
Steinbacher (10.1016/j.jsv.2020.115799_bib0015) 2018; 10
Xia (10.1016/j.jsv.2020.115799_bib0022) 2018; 100
Giusti (10.1016/j.jsv.2020.115799_bib0024) 2017; 55
Moase (10.1016/j.jsv.2020.115799_bib0030) 2007; 585
Leyko (10.1016/j.jsv.2020.115799_bib0041) 2011; 330
Domenico (10.1016/j.jsv.2020.115799_bib0043) 2017; 394
Semlitsch (10.1016/j.jsv.2020.115799_bib0014) 2019; 35
Stow (10.1016/j.jsv.2020.115799_bib0003) 2002; 467
Sattelmayer (10.1016/j.jsv.2020.115799_bib0010) 2002; 125
Domenico (10.1016/j.jsv.2020.115799_bib0034) 2019; 440
Huet (10.1016/j.jsv.2020.115799_bib0037) 2020; 488
Polifke (10.1016/j.jsv.2020.115799_bib0023) 2020; 79
Weilenmann (10.1016/j.jsv.2020.115799_sbref0011) 2020
Christodoulou (10.1016/j.jsv.2020.115799_bib0019) 2020; 882
Rolland (10.1016/j.jsv.2020.115799_bib0033) 2017; 819
Huet (10.1016/j.jsv.2020.115799_bib0027) 2013; 733
Bake (10.1016/j.jsv.2020.115799_bib0038) 2009; 326
Raffel (10.1016/j.jsv.2020.115799_bib0049) 2015; 56
Huet (10.1016/j.jsv.2020.115799_bib0028) 2016; 374
Lourier (10.1016/j.jsv.2020.115799_bib0042) 2014; 52
Giauque (10.1016/j.jsv.2020.115799_sbref0032) 2012; 134
Emmanuelli (10.1016/j.jsv.2020.115799_bib0036) 2020; 472
Duran (10.1016/j.jsv.2020.115799_bib0031) 2013; 723
Eckstein (10.1016/j.jsv.2020.115799_bib0012) 2006; 22
Nicolas (10.1016/j.jsv.2020.115799_bib0050) 2017; 58
Schuermans (10.1016/j.jsv.2020.115799_bib0045) 2004
Chen (10.1016/j.jsv.2020.115799_bib0016) 2016; 166
Bodn (10.1016/j.jsv.2020.115799_bib0046) 1986; 79
Anderson (10.1016/j.jsv.2020.115799_bib0048) 2009
Tam (10.1016/j.jsv.2020.115799_bib0001) 2018; 17
Moreau (10.1016/j.jsv.2020.115799_bib0039) 2018; 10
Duran (10.1016/j.jsv.2020.115799_bib0004) 2014; 7
Bluemner (10.1016/j.jsv.2020.115799_bib0009) 2019; 209
Goh (10.1016/j.jsv.2020.115799_bib0029) 2011; 330
Durn (10.1016/j.jsv.2020.115799_bib0040) 2013; 51
Wang (10.1016/j.jsv.2020.115799_bib0013) 2019; 204
Weilenmann (10.1016/j.jsv.2020.115799_bib0025) 2020; 903
Morgans (10.1016/j.jsv.2020.115799_bib0006) 2016; 8
References_xml – volume: 100
  start-page: 481
  year: 2018
  end-page: 502
  ident: bib0022
  article-title: Dispersion of entropy perturbations transporting through an industrial gas turbine combustor
  publication-title: Flow Turbulence and Combustion
– volume: 102
  start-page: 299
  year: 2019
  end-page: 311
  ident: bib0035
  article-title: Large eddy simulations for indirect combustion noise assessment in a nozzle guide vane passage
  publication-title: Flow, Turbulence and Combustion
– volume: 134
  year: 2012
  ident: bib0032
  article-title: Analytical analysis of indirect combustion noise in subcritical nozzles
  publication-title: Journal of Engineering for Gas Turbines and Power
– volume: 166
  start-page: 170
  year: 2016
  end-page: 180
  ident: bib0016
  article-title: Propagation and generation of acoustic and entropy waves across a moving flame front
  publication-title: Combust Flame
– volume: 79
  start-page: 100845
  year: 2020
  ident: bib0023
  article-title: Modeling and analysis of premixed flame dynamics by means of distributed time delays
  publication-title: Prog Energy Combust Sci
– volume: 394
  start-page: 220
  year: 2017
  end-page: 236
  ident: bib0043
  article-title: Detection of direct and indirect noise generated by synthetic hot spots in a duct
  publication-title: J Sound Vib
– year: 2009
  ident: bib0048
  article-title: Fundamentals of Aerodynamics
  publication-title: McGraw
– volume: 585
  start-page: 281
  year: 2007
  end-page: 304
  ident: bib0030
  article-title: The forced response of choked nozzles and supersonic diffusers
  publication-title: J Fluid Mech
– volume: 51
  start-page: 42
  year: 2013
  end-page: 52
  ident: bib0040
  article-title: Analytical and numerical study of combustion noise through a subsonic nozzle
  publication-title: AIAA Journal
– volume: 819
  start-page: 435
  year: 2017
  end-page: 464
  ident: bib0033
  article-title: Theory and application of reverberated direct and indirect noise
  publication-title: J Fluid Mech
– volume: 10
  start-page: 154
  year: 2018
  end-page: 168
  ident: bib0039
  article-title: Large-eddy-simulation prediction of indirect combustion noise in the entropy wave generator experiment
  publication-title: International Journal of Spray and Combustion Dynamics
– volume: 8
  start-page: 285
  year: 2016
  end-page: 298
  ident: bib0006
  article-title: Entropy noise: a review of theory, progress and challenges
  publication-title: International Journal of Spray and Combustion Dynamics
– volume: 723
  start-page: 190
  year: 2013
  end-page: 231
  ident: bib0031
  article-title: Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the magnus expansion
  publication-title: J Fluid Mech
– volume: 472
  start-page: 115163
  year: 2020
  ident: bib0036
  article-title: Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows
  publication-title: J Sound Vib
– volume: 35
  start-page: 839
  year: 2019
  end-page: 849
  ident: bib0014
  article-title: Entropy and vorticity wave generation in realistic gas turbine combustors
  publication-title: J. Propul. Power
– volume: 374
  start-page: 211
  year: 2016
  end-page: 227
  ident: bib0028
  article-title: Nonlinear indirect combustion noise for compact supercritical nozzle flows
  publication-title: J Sound Vib
– volume: 440
  start-page: 212
  year: 2019
  end-page: 230
  ident: bib0034
  article-title: A generalised model for acoustic and entropic transfer function of nozzles with losses
  publication-title: J Sound Vib
– volume: 799
  year: 2016
  ident: bib0002
  article-title: Compositional inhomogeneities as a source of indirect combustion noise
  publication-title: J Fluid Mech
– volume: 330
  start-page: 3944
  year: 2011
  end-page: 3958
  ident: bib0041
  article-title: Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock
  publication-title: J Sound Vib
– volume: 58
  year: 2017
  ident: bib0050
  article-title: 3D reconstruction of a compressible flow by synchronized multi-camera bos
  publication-title: Exp Fluids
– volume: 55
  start-page: 225
  year: 1977
  end-page: 243
  ident: bib0026
  article-title: Acoustic disturbance from gas non-uniformities convected through a nozzle
  publication-title: J Sound Vib
– start-page: 539
  year: 2004
  end-page: 551
  ident: bib0045
  article-title: A detailed analysis of thermoacoustic interaction mechanisms in a turbulent premixed flame
  publication-title: Proceedings of the ASME Turbo Expo
– year: 2020
  ident: bib0011
  article-title: Linear and nonlinear entropy-wave response of technically-premixed jet-flames-array and swirled flame to acoustic forcing
  publication-title: Proceedings of the Combustion Institute
– volume: 733
  year: 2013
  ident: bib0017
  article-title: The dissipation and shear dispersion of entropy waves in combustor thermoacoustics
  publication-title: J Fluid Mech
– volume: 17
  start-page: 22
  year: 2018
  end-page: 35
  ident: bib0001
  article-title: The physical processes of indirect combustion noise generation
  publication-title: International Journal of Aeroacoustics
– volume: 29
  start-page: 087104
  year: 2017
  ident: bib0018
  article-title: On the dissipation and dispersion of entropy waves in heat transferring channel flows
  publication-title: Physics of Fluids
– volume: 22
  start-page: 425
  year: 2006
  end-page: 432
  ident: bib0012
  article-title: Low-order modeling of low-frequency combustion instabilities in aeroengines
  publication-title: J. Propul. Power
– volume: 204
  start-page: 85
  year: 2019
  end-page: 102
  ident: bib0013
  article-title: Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame
  publication-title: Combust Flame
– volume: 472
  start-page: 115155
  year: 2020
  ident: bib0020
  article-title: Numerical investigation on the generation, mixing and convection of entropic and compositional waves in a flow duct
  publication-title: J Sound Vib
– volume: 7
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0004
  article-title: Combustion noise in modern aero-engines
  publication-title: AerospaceLab
– volume: 125
  start-page: 11
  year: 2002
  end-page: 19
  ident: bib0010
  article-title: Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations
  publication-title: Journal of Engineering for Gas Turbine and Power
– volume: 733
  start-page: 268
  year: 2013
  end-page: 301
  ident: bib0027
  article-title: A nonlinear model for indirect combustion noise through a compact nozzle
  publication-title: J Fluid Mech
– volume: 330
  start-page: 5184
  year: 2011
  end-page: 5198
  ident: bib0029
  article-title: Phase prediction of the response of choked nozzles to entropy and acoustic disturbances
  publication-title: J Sound Vib
– volume: 52
  start-page: 2114
  year: 2014
  end-page: 2126
  ident: bib0042
  article-title: Numerical analysis of indirect combustion noise generation within a subsonic nozzle
  publication-title: AIAA Journal
– volume: 882
  start-page: A8
  year: 2020
  ident: bib0019
  article-title: State prediction of an entropy wave advecting through a turbulent channel flow
  publication-title: J Fluid Mech
– volume: 394
  start-page: 237
  year: 2017
  end-page: 255
  ident: bib0044
  article-title: Coherent entropy induced and acoustic noise separation in compact nozzles
  publication-title: J Sound Vib
– volume: 79
  start-page: 541
  year: 1986
  end-page: 549
  ident: bib0046
  article-title: Influence of errors on the two-microphone method for measuring acoustic properties in ducts
  publication-title: J. Acoust. Soc. Am.
– volume: 56
  start-page: 60
  year: 2015
  ident: bib0049
  article-title: Background-oriented schlieren (BOS) techniques
  publication-title: Exp Fluids
– volume: 467
  start-page: 215
  year: 2002
  end-page: 239
  ident: bib0003
  article-title: Reflection of circumferential modes in a choked nozzle
  publication-title: J Fluid Mech
– volume: 55
  start-page: 446
  year: 2017
  end-page: 458
  ident: bib0024
  article-title: Experimental and numerical investigation into the propagation of entropy waves
  publication-title: AIAA Journal
– volume: 903
  start-page: R1
  year: 2020
  ident: bib0025
  article-title: On the dispersion of entropy waves in turbulent flows
  publication-title: J Fluid Mech
– volume: 140
  year: 2017
  ident: bib0021
  article-title: Low-Order modeling of combustion noise in an aero-engine: the effect of entropy dispersion
  publication-title: J Eng Gas Turbine Power
– volume: 28
  start-page: 477
  year: 2000
  end-page: 481
  ident: bib0047
  article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations
  publication-title: Exp Fluids
– volume: 35
  start-page: 65
  year: 2015
  end-page: 100
  ident: bib0005
  article-title: Combustion noise
  publication-title: Proc. Combust. Inst.
– volume: 36
  start-page: 1
  year: 2017
  end-page: 28
  ident: bib0007
  article-title: Prediction and control of combustion instabilities in real engines
  publication-title: Proc. Combust. Inst.
– volume: 6
  start-page: 135
  year: 2001
  end-page: 146
  ident: bib0008
  article-title: Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit
  publication-title: International Journal of Acoustics and Vibration
– volume: 326
  start-page: 574
  year: 2009
  end-page: 598
  ident: bib0038
  article-title: The entropy wave generator (EWG): a reference case on entropy noise
  publication-title: J Sound Vib
– volume: 209
  start-page: 99
  year: 2019
  end-page: 116
  ident: bib0009
  article-title: Generation and transport of equivalence ratio fluctuations in an acoustically forced swirl burner
  publication-title: Combust Flame
– volume: 10
  start-page: 111
  year: 2018
  end-page: 130
  ident: bib0015
  article-title: Modelling the generation of temperature inhomogeneities by a premixed flame
  publication-title: International Journal of Spray and Combustion Dynamics
– volume: 488
  start-page: 115637
  year: 2020
  ident: bib0037
  article-title: Entropy noise modelling in 2D choked nozzle flows
  publication-title: J Sound Vib
– volume: 440
  start-page: 212
  year: 2019
  ident: 10.1016/j.jsv.2020.115799_bib0034
  article-title: A generalised model for acoustic and entropic transfer function of nozzles with losses
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.09.011
– volume: 330
  start-page: 3944
  issue: 16
  year: 2011
  ident: 10.1016/j.jsv.2020.115799_bib0041
  article-title: Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2011.01.025
– volume: 472
  start-page: 115155
  year: 2020
  ident: 10.1016/j.jsv.2020.115799_bib0020
  article-title: Numerical investigation on the generation, mixing and convection of entropic and compositional waves in a flow duct
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.115155
– volume: 472
  start-page: 115163
  year: 2020
  ident: 10.1016/j.jsv.2020.115799_bib0036
  article-title: Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.115163
– volume: 35
  start-page: 65
  issue: 1
  year: 2015
  ident: 10.1016/j.jsv.2020.115799_bib0005
  article-title: Combustion noise
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.08.016
– volume: 7
  start-page: 1
  year: 2014
  ident: 10.1016/j.jsv.2020.115799_bib0004
  article-title: Combustion noise in modern aero-engines
  publication-title: AerospaceLab
– volume: 6
  start-page: 135
  issue: 3
  year: 2001
  ident: 10.1016/j.jsv.2020.115799_bib0008
  article-title: Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit
  publication-title: International Journal of Acoustics and Vibration
  doi: 10.20855/ijav.2001.6.382
– volume: 17
  start-page: 22
  issue: 1–2
  year: 2018
  ident: 10.1016/j.jsv.2020.115799_bib0001
  article-title: The physical processes of indirect combustion noise generation
  publication-title: International Journal of Aeroacoustics
  doi: 10.1177/1475472X17743628
– volume: 140
  issue: 1
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0021
  article-title: Low-Order modeling of combustion noise in an aero-engine: the effect of entropy dispersion
  publication-title: J Eng Gas Turbine Power
  doi: 10.1115/1.4037321
– volume: 585
  start-page: 281
  year: 2007
  ident: 10.1016/j.jsv.2020.115799_bib0030
  article-title: The forced response of choked nozzles and supersonic diffusers
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112007006647
– volume: 35
  start-page: 839
  issue: 4
  year: 2019
  ident: 10.1016/j.jsv.2020.115799_bib0014
  article-title: Entropy and vorticity wave generation in realistic gas turbine combustors
  publication-title: J. Propul. Power
  doi: 10.2514/1.B37463
– volume: 204
  start-page: 85
  year: 2019
  ident: 10.1016/j.jsv.2020.115799_bib0013
  article-title: Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.03.005
– volume: 56
  start-page: 60
  issue: 3
  year: 2015
  ident: 10.1016/j.jsv.2020.115799_bib0049
  article-title: Background-oriented schlieren (BOS) techniques
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-1927-5
– volume: 799
  year: 2016
  ident: 10.1016/j.jsv.2020.115799_bib0002
  article-title: Compositional inhomogeneities as a source of indirect combustion noise
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.397
– volume: 125
  start-page: 11
  issue: 1
  year: 2002
  ident: 10.1016/j.jsv.2020.115799_bib0010
  article-title: Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations
  publication-title: Journal of Engineering for Gas Turbine and Power
  doi: 10.1115/1.1365159
– volume: 55
  start-page: 446
  issue: 2
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0024
  article-title: Experimental and numerical investigation into the propagation of entropy waves
  publication-title: AIAA Journal
  doi: 10.2514/1.J055199
– volume: 394
  start-page: 220
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0043
  article-title: Detection of direct and indirect noise generated by synthetic hot spots in a duct
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.01.004
– volume: 733
  year: 2013
  ident: 10.1016/j.jsv.2020.115799_bib0017
  article-title: The dissipation and shear dispersion of entropy waves in combustor thermoacoustics
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2013.448
– volume: 134
  issue: 11
  year: 2012
  ident: 10.1016/j.jsv.2020.115799_sbref0032
  article-title: Analytical analysis of indirect combustion noise in subcritical nozzles
  publication-title: Journal of Engineering for Gas Turbines and Power
  doi: 10.1115/1.4007318
– volume: 79
  start-page: 541
  issue: 2
  year: 1986
  ident: 10.1016/j.jsv.2020.115799_bib0046
  article-title: Influence of errors on the two-microphone method for measuring acoustic properties in ducts
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.393542
– volume: 723
  start-page: 190
  year: 2013
  ident: 10.1016/j.jsv.2020.115799_bib0031
  article-title: Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the magnus expansion
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2013.118
– volume: 58
  issue: 5
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0050
  article-title: 3D reconstruction of a compressible flow by synchronized multi-camera bos
  publication-title: Exp Fluids
  doi: 10.1007/s00348-017-2325-y
– volume: 903
  start-page: R1
  year: 2020
  ident: 10.1016/j.jsv.2020.115799_bib0025
  article-title: On the dispersion of entropy waves in turbulent flows
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2020.703
– volume: 29
  start-page: 087104
  issue: 8
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0018
  article-title: On the dissipation and dispersion of entropy waves in heat transferring channel flows
  publication-title: Physics of Fluids
  doi: 10.1063/1.4999046
– volume: 326
  start-page: 574
  issue: 3
  year: 2009
  ident: 10.1016/j.jsv.2020.115799_bib0038
  article-title: The entropy wave generator (EWG): a reference case on entropy noise
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2009.05.018
– volume: 79
  start-page: 100845
  year: 2020
  ident: 10.1016/j.jsv.2020.115799_bib0023
  article-title: Modeling and analysis of premixed flame dynamics by means of distributed time delays
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2020.100845
– volume: 100
  start-page: 481
  issue: 2
  year: 2018
  ident: 10.1016/j.jsv.2020.115799_bib0022
  article-title: Dispersion of entropy perturbations transporting through an industrial gas turbine combustor
  publication-title: Flow Turbulence and Combustion
  doi: 10.1007/s10494-017-9854-6
– volume: 166
  start-page: 170
  year: 2016
  ident: 10.1016/j.jsv.2020.115799_bib0016
  article-title: Propagation and generation of acoustic and entropy waves across a moving flame front
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2016.01.015
– volume: 330
  start-page: 5184
  issue: 21
  year: 2011
  ident: 10.1016/j.jsv.2020.115799_bib0029
  article-title: Phase prediction of the response of choked nozzles to entropy and acoustic disturbances
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2011.05.016
– volume: 488
  start-page: 115637
  year: 2020
  ident: 10.1016/j.jsv.2020.115799_bib0037
  article-title: Entropy noise modelling in 2D choked nozzle flows
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2020.115637
– start-page: 539
  year: 2004
  ident: 10.1016/j.jsv.2020.115799_bib0045
  article-title: A detailed analysis of thermoacoustic interaction mechanisms in a turbulent premixed flame
  publication-title: Proceedings of the ASME Turbo Expo
– volume: 819
  start-page: 435
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0033
  article-title: Theory and application of reverberated direct and indirect noise
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2017.183
– volume: 733
  start-page: 268
  year: 2013
  ident: 10.1016/j.jsv.2020.115799_bib0027
  article-title: A nonlinear model for indirect combustion noise through a compact nozzle
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2013.442
– year: 2020
  ident: 10.1016/j.jsv.2020.115799_sbref0011
  article-title: Linear and nonlinear entropy-wave response of technically-premixed jet-flames-array and swirled flame to acoustic forcing
– volume: 10
  start-page: 154
  issue: 2
  year: 2018
  ident: 10.1016/j.jsv.2020.115799_bib0039
  article-title: Large-eddy-simulation prediction of indirect combustion noise in the entropy wave generator experiment
  publication-title: International Journal of Spray and Combustion Dynamics
  doi: 10.1177/1756827717740775
– volume: 22
  start-page: 425
  issue: 2
  year: 2006
  ident: 10.1016/j.jsv.2020.115799_bib0012
  article-title: Low-order modeling of low-frequency combustion instabilities in aeroengines
  publication-title: J. Propul. Power
  doi: 10.2514/1.15757
– year: 2009
  ident: 10.1016/j.jsv.2020.115799_bib0048
  article-title: Fundamentals of Aerodynamics
  publication-title: McGraw
– volume: 102
  start-page: 299
  issue: 2
  year: 2019
  ident: 10.1016/j.jsv.2020.115799_bib0035
  article-title: Large eddy simulations for indirect combustion noise assessment in a nozzle guide vane passage
  publication-title: Flow, Turbulence and Combustion
  doi: 10.1007/s10494-018-9964-9
– volume: 52
  start-page: 2114
  issue: 10
  year: 2014
  ident: 10.1016/j.jsv.2020.115799_bib0042
  article-title: Numerical analysis of indirect combustion noise generation within a subsonic nozzle
  publication-title: AIAA Journal
  doi: 10.2514/1.J052755
– volume: 374
  start-page: 211
  year: 2016
  ident: 10.1016/j.jsv.2020.115799_bib0028
  article-title: Nonlinear indirect combustion noise for compact supercritical nozzle flows
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2016.03.028
– volume: 467
  start-page: 215
  year: 2002
  ident: 10.1016/j.jsv.2020.115799_bib0003
  article-title: Reflection of circumferential modes in a choked nozzle
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112002001428
– volume: 10
  start-page: 111
  issue: 2
  year: 2018
  ident: 10.1016/j.jsv.2020.115799_bib0015
  article-title: Modelling the generation of temperature inhomogeneities by a premixed flame
  publication-title: International Journal of Spray and Combustion Dynamics
  doi: 10.1177/1756827717738139
– volume: 209
  start-page: 99
  year: 2019
  ident: 10.1016/j.jsv.2020.115799_bib0009
  article-title: Generation and transport of equivalence ratio fluctuations in an acoustically forced swirl burner
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.07.007
– volume: 36
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0007
  article-title: Prediction and control of combustion instabilities in real engines
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.05.007
– volume: 882
  start-page: A8
  year: 2020
  ident: 10.1016/j.jsv.2020.115799_bib0019
  article-title: State prediction of an entropy wave advecting through a turbulent channel flow
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2019.799
– volume: 55
  start-page: 225
  issue: 2
  year: 1977
  ident: 10.1016/j.jsv.2020.115799_bib0026
  article-title: Acoustic disturbance from gas non-uniformities convected through a nozzle
  publication-title: J Sound Vib
  doi: 10.1016/0022-460X(77)90596-X
– volume: 51
  start-page: 42
  issue: 1
  year: 2013
  ident: 10.1016/j.jsv.2020.115799_bib0040
  article-title: Analytical and numerical study of combustion noise through a subsonic nozzle
  publication-title: AIAA Journal
  doi: 10.2514/1.J051528
– volume: 28
  start-page: 477
  issue: 5
  year: 2000
  ident: 10.1016/j.jsv.2020.115799_bib0047
  article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations
  publication-title: Exp Fluids
  doi: 10.1007/s003480050408
– volume: 8
  start-page: 285
  issue: 4
  year: 2016
  ident: 10.1016/j.jsv.2020.115799_bib0006
  article-title: Entropy noise: a review of theory, progress and challenges
  publication-title: International Journal of Spray and Combustion Dynamics
  doi: 10.1177/1756827716651791
– volume: 394
  start-page: 237
  year: 2017
  ident: 10.1016/j.jsv.2020.115799_bib0044
  article-title: Coherent entropy induced and acoustic noise separation in compact nozzles
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.01.012
SSID ssj0009434
Score 2.4233055
Snippet [Display omitted] The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback...
The acceleration of entropy waves in the turbine stages of aero-engines and gas turbines produces sound, which can contribute to the feedback mechanism of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115799
SubjectTerms Acoustic measurement
Acoustic waves
Acoustics
Aerodynamics
Catastrophic failure analysis
Choked flow
Choked nozzle flow
Combustion chambers
Computational fluid dynamics
Cross flow
Engine failure
Entropy
Entropy waves
Gas turbine engines
Gas turbines
High cycle fatigue
Indirect noise
Nozzle flow
Nozzles
Particle image velocimetry
Prediction models
Sound generation
Surface waves
Thermoacoustic instabilities
Thermoacoustics
Transfer functions
Turbulence
Turbulent flow
Title Experiments on sound reflection and production by choked nozzle flows subject to acoustic and entropy waves
URI https://dx.doi.org/10.1016/j.jsv.2020.115799
https://www.proquest.com/docview/2487466117
Volume 492
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEbyIn_gxRw6ehGrbpB87jrExFXdysFtI0gTU0Q5bFT34t_te2k4U8eCxIS-Ul_T3XtJffo-QMx9inApD6ymmuQfxlnmSGe1lsepLayOtHNv9dhpPZvx6Hs07ZNjehUFaZYP9NaY7tG5aLhtvXi7v7_GOL4qh-fMQ016IkniDnSe4yi8-vmgeqH_WKoZj7_bPpuN4PZQvsEUMETiixMm__hqbfqC0Cz3jbbLV5Ix0UL_WDumYfJdsOO6mLvfI42il0l_SIqclVkqiMPrC0axyKuFxWSu74qN6o4B5jyajefH-vjDULorXkpbPCs9kaFVQQElX5MtZ4vFvsXyjr_LFlPtkNh7dDSdeU0PB0yxOKy_UccStkUGg0iySltkkxqNPlxkyaImZhE1K36YBTBZsb7RK-1Zy46tESmXYAVnLi9wcEupnEOt9ACRMWljMU50lYG9SpX0Waf-I-K33hG4ExrHOxUK0TLIHAQ4X6HBRO_yInK9MlrW6xl-deTsl4tsSEYD-f5l12-kTzfdZihD2aRxSkyA5_t-oJ2QzRHYL8rdZl6xVT8_mFNKTSvXc-uuR9cHVzWT6CYns5Po
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQiPvFtDp6EYrdJH3sUUdbXnhT2FpI0AXVpF7squ7_embRVFPHgMaETyiT9ZpJ--QbgOMQYp6PIBZobEWC85YHi1gR5onvKudhoz3a_GyT9B3E9jIdzcN7ehSFaZYP9NaZ7tG56Thtvno4fH-mOL4mhhcOI0l6MkvOwQOpUcQcWzq5u-oMv7V3BRSsaTgbtz01P83qq3nCXGBF2xKlXgP01PP0Aah99LldhpUkb2Vn9ZmswZ4t1WPT0TVNtwPPFp1B_xcqCVVQsieHoI8-0KpjC5rgWd6WmnjKEvWebs6KczUaWuVH5XrHqVdOxDJuUDIHS1_nylnQCXI6n7F292WoTHi4v7s_7QVNGITA8ySZBZJJYOKu6XZ3lsXLcpQmdfvrkkGNPwhXuU3ou6-J84Q7H6KznlLChTpXSlm9BpygLuw0szDHch4hJlLfwRGQmT9HeZtqEPDbhDoSt96RpNMap1MVItmSyJ4kOl-RwWTt8B04-Tca1wMZfD4t2SuS3VSIxAPxltt9On2w-0UpGuFUTmJ10093_jXoES_37u1t5ezW42YPliMguROfm-9CZvLzaA8xWJvqwWY0falnnqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experiments+on+sound+reflection+and+production+by+choked+nozzle+flows+subject+to+acoustic+and+entropy+waves&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Weilenmann%2C+Markus&rft.au=Noiray%2C+Nicolas&rft.date=2021-02-03&rft.issn=0022-460X&rft.volume=492&rft.spage=115799&rft_id=info:doi/10.1016%2Fj.jsv.2020.115799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2020_115799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon