Overlapping brain Community detection using Bayesian tensor decomposition
•New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques are proposed to decompose the association matrices of the individuals.•It has been shown that the resultant community structures through the...
Saved in:
Published in | Journal of neuroscience methods Vol. 318; pp. 47 - 55 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques are proposed to decompose the association matrices of the individuals.•It has been shown that the resultant community structures through the proposed methods are accurate and stable.
It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results. |
---|---|
AbstractList | It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results. It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results.It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results. •New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques are proposed to decompose the association matrices of the individuals.•It has been shown that the resultant community structures through the proposed methods are accurate and stable. It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results. |
Author | Mirzaei, S. Soltanian-Zadeh, H. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-1174-2280 surname: Mirzaei fullname: Mirzaei, S. email: s.mirzaei@ut.ac.ir organization: School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: H. orcidid: 0000-0002-7302-6856 surname: Soltanian-Zadeh fullname: Soltanian-Zadeh, H. email: hszadeh@ut.ac.ir, hsoltan1@hfhs.org organization: CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30831137$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEFr2zAUx0XJaJO2X6H4uIu9J9uRZdhhW2jXQqGXFXoTsvSyKdiSJ8mBfPvKpLn0kpMevN__L95vRRbWWSTkjkJBgbJvu2JncRow_itKoG0BZQG0viBLypsyZw1_W5BlAtc5lA1ckVUIOwCoW2CX5KoCXlFaNUvy9LJH38txNPZv1nlpbLZxwzBZEw-ZxogqGmezKcz7X_KAwUibRbTB-bRXbhhdMDNzQ75sZR_w9uO9Jq8P9382j_nzy--nzc_nXFWMx7xUtMWu1bVq2g6wpmlYb7XmFTQNrQF03coWukq2qBgiSMaZ5lpS3Has7qpr8vXYO3r3f8IQxWCCwr6XFt0UREk5L2Gd-hJ694FO3YBajN4M0h_E6fwEfD8CyrsQPG6FMlHO18SkohcUxGxb7MTJtphtCyhFsp3i7FP89MPZ4I9jEJOovUEvgjJoFWrjk3GhnTlX8Q6IGJ88 |
CitedBy_id | crossref_primary_10_3390_brainsci14080783 crossref_primary_10_1007_s11042_023_15471_1 crossref_primary_10_1016_j_bspc_2022_104151 crossref_primary_10_1093_comjnl_bxac050 crossref_primary_10_1016_j_eswa_2022_118230 crossref_primary_10_1016_j_eswa_2023_122853 crossref_primary_10_1016_j_neuroscience_2021_12_031 crossref_primary_10_1093_cercor_bhab144 crossref_primary_10_1016_j_bspc_2021_102584 |
Cites_doi | 10.1073/pnas.0911855107 10.1007/s10618-010-0181-y 10.1016/j.euroneuro.2010.03.008 10.1177/1073858406293182 10.1073/pnas.0706851105 10.1007/s10072-011-0636-y 10.1016/j.plrev.2014.03.005 10.3389/fnana.2012.00029 10.1137/110859063 10.1016/j.neuroimage.2014.09.058 10.1016/j.neuroimage.2016.04.054 10.1145/3023363 10.1016/j.neuroimage.2005.08.035 10.1016/j.neuroimage.2009.10.003 10.1109/TGRS.2015.2503737 10.1007/978-3-319-55699-4_21 10.1371/journal.pone.0068910 10.1016/j.neuroimage.2013.05.041 10.1109/TMBMC.2016.2633265 10.1007/s00429-013-0524-8 10.1016/j.neubiorev.2014.05.009 10.1007/s10107-015-0895-0 10.1093/cercor/bhp157 10.1002/nav.3800020109 10.1016/j.schres.2012.04.021 10.3389/fnins.2015.00383 10.1073/pnas.0308627101 10.1007/BF02310791 10.1103/PhysRevE.83.066114 10.1038/nn.4135 10.1016/j.neuroimage.2010.08.063 10.1016/j.jneumeth.2017.03.008 10.1093/scan/nss053 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuroimage.2017.11.003 10.1007/s10898-013-0035-4 10.3389/fnins.2010.00200 10.1006/nimg.2001.0978 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jneumeth.2019.02.014 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 55 |
ExternalDocumentID | 30831137 10_1016_j_jneumeth_2019_02_014 S0165027019300615 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI NPM 7X8 |
ID | FETCH-LOGICAL-c368t-2c19eb9d4c79b0e414c75fdd830771400d49a90b3a9ec6ee0a686d8da1efb64b3 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Jul 11 08:46:11 EDT 2025 Thu Apr 03 06:52:34 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Jul 01 02:57:11 EDT 2025 Fri Feb 23 02:33:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bayesian tensor factorization Overlapping community detection rs-fMRI |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-2c19eb9d4c79b0e414c75fdd830771400d49a90b3a9ec6ee0a686d8da1efb64b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7302-6856 0000-0003-1174-2280 |
PMID | 30831137 |
PQID | 2188205830 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2188205830 pubmed_primary_30831137 crossref_citationtrail_10_1016_j_jneumeth_2019_02_014 crossref_primary_10_1016_j_jneumeth_2019_02_014 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2019_02_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-15 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0170) 2002; 15 Psorakis, Roberts, Ebden, Sheldon (bib0135) 2011; 83 Li (bib0090) 2015; 9 Van Den Heuvel, Hilleke, Pol (bib0175) 2010; 20 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0180) 2013; 80 De Luca, Beckmann, De Stefano, Matthews, Smith (bib0035) 2006; 29 Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib0165) 2011; 54 Venkataraman, Whitford, Westin, Golland, Kubicki (bib0190) 2012; 139 Xia, Wang, Yong (bib0205) 2013; 8 Rubinov, Sporns (bib0150) 2010; 52 Eavani, Satterthwaite, Filipovych, Gur, Gur, Davatzikos (bib0040) 2015; 105 Wang, Li, Wang, Zhu, Ding (bib0195) 2011; 22 Li, Hu, Wang (bib0095) 2016 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Christian, Beckmann (bib0020) 2010; 107 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Todd Constable (bib0045) 2015; 18 Shi, Tong, Daianu, Tian, Thompson (bib0160) 2018; 12 O’reilly, Beckmann, Tomassini, Ramnani, Johansen-Berg (bib0125) 2009; 20 Rosazza, Minati (bib0140) 2011; 32 Glasser, Sotiropoulos, Anthony Wilson, Coalson, Fischl, Andersson, Junqian (bib0050) 2013; 80 Greicius, Srivastava, Reiss, Menon (bib0060) 2004; 101 Rosvall, Bergstrom (bib0145) 2008; 105 Algorithms for non-negative tensor factorization (bib0005) 2013 Shi, Lu, Jia (bib0155) 2017 Zuo, Xing (bib0215) 2014; 45 Hutchison (bib0070) 2012; 6 Mao, Sarkar (bib0110) 2016 Bassett, Bullmore (bib0015) 2006; 12 Veganzones, Cohen (bib0185) 2016; 54 Chi, Kolda (bib0030) 2012; 33 Kolda (bib0080) 2015; 151 Meunier, Lambiotte (bib0115) 2010; 4 Pessoa (bib0130) 2014; 11 . Kim, He, Park (bib0075) 2014; 58 Li, Gan, Wang (bib0100) 2018; 166 Mangan, Brunton, Proctor, Nathan Kutz (bib0105) 2016; 2 Hagen, Elisabeth, Stoyanova, Baron-Cohen, Calder (bib0065) 2012; 8 Kuhn (bib0085) 1955; 2 Najafi, McMenamin, Simon, Pessoa (bib0120) 2016; 135 Wee, Yap, Zhang, Wang, Shen (bib0200) 2014; 219 Grave, Obozinski, Bach (bib0055) 2011 Carroll, Chang (bib0025) 1970; 35 Xie, Douglas, Ying Nian, Brody, Ariana (bib0210) 2017; 282 O’reilly (10.1016/j.jneumeth.2019.02.014_bib0125) 2009; 20 Kuhn (10.1016/j.jneumeth.2019.02.014_bib0085) 1955; 2 Glasser (10.1016/j.jneumeth.2019.02.014_bib0050) 2013; 80 Li (10.1016/j.jneumeth.2019.02.014_bib0095) 2016 Rosazza (10.1016/j.jneumeth.2019.02.014_bib0140) 2011; 32 10.1016/j.jneumeth.2019.02.014_bib0010 Van Essen (10.1016/j.jneumeth.2019.02.014_bib0180) 2013; 80 Veganzones (10.1016/j.jneumeth.2019.02.014_bib0185) 2016; 54 Chi (10.1016/j.jneumeth.2019.02.014_bib0030) 2012; 33 Mangan (10.1016/j.jneumeth.2019.02.014_bib0105) 2016; 2 Kim (10.1016/j.jneumeth.2019.02.014_bib0075) 2014; 58 Mao (10.1016/j.jneumeth.2019.02.014_bib0110) 2016 Venkataraman (10.1016/j.jneumeth.2019.02.014_bib0190) 2012; 139 Pessoa (10.1016/j.jneumeth.2019.02.014_bib0130) 2014; 11 Zuo (10.1016/j.jneumeth.2019.02.014_bib0215) 2014; 45 Xie (10.1016/j.jneumeth.2019.02.014_bib0210) 2017; 282 Shi (10.1016/j.jneumeth.2019.02.014_bib0160) 2018; 12 Rubinov (10.1016/j.jneumeth.2019.02.014_bib0150) 2010; 52 Carroll (10.1016/j.jneumeth.2019.02.014_bib0025) 1970; 35 Rosvall (10.1016/j.jneumeth.2019.02.014_bib0145) 2008; 105 Biswal (10.1016/j.jneumeth.2019.02.014_bib0020) 2010; 107 Kolda (10.1016/j.jneumeth.2019.02.014_bib0080) 2015; 151 Van Den Heuvel (10.1016/j.jneumeth.2019.02.014_bib0175) 2010; 20 Meunier (10.1016/j.jneumeth.2019.02.014_bib0115) 2010; 4 Wee (10.1016/j.jneumeth.2019.02.014_bib0200) 2014; 219 De Luca (10.1016/j.jneumeth.2019.02.014_bib0035) 2006; 29 Greicius (10.1016/j.jneumeth.2019.02.014_bib0060) 2004; 101 Wang (10.1016/j.jneumeth.2019.02.014_bib0195) 2011; 22 Smith (10.1016/j.jneumeth.2019.02.014_bib0165) 2011; 54 Li (10.1016/j.jneumeth.2019.02.014_bib0100) 2018; 166 Finn (10.1016/j.jneumeth.2019.02.014_bib0045) 2015; 18 Tzourio-Mazoyer (10.1016/j.jneumeth.2019.02.014_bib0170) 2002; 15 Li (10.1016/j.jneumeth.2019.02.014_bib0090) 2015; 9 Grave (10.1016/j.jneumeth.2019.02.014_bib0055) 2011 Psorakis (10.1016/j.jneumeth.2019.02.014_bib0135) 2011; 83 Hagen (10.1016/j.jneumeth.2019.02.014_bib0065) 2012; 8 Shi (10.1016/j.jneumeth.2019.02.014_bib0155) 2017 Algorithms for non-negative tensor factorization (10.1016/j.jneumeth.2019.02.014_bib0005) 2013 Eavani (10.1016/j.jneumeth.2019.02.014_bib0040) 2015; 105 Bassett (10.1016/j.jneumeth.2019.02.014_bib0015) 2006; 12 Najafi (10.1016/j.jneumeth.2019.02.014_bib0120) 2016; 135 Hutchison (10.1016/j.jneumeth.2019.02.014_bib0070) 2012; 6 Xia (10.1016/j.jneumeth.2019.02.014_bib0205) 2013; 8 |
References_xml | – volume: 166 start-page: 259 year: 2018 end-page: 275 ident: bib0100 article-title: Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks publication-title: NeuroImage – volume: 11 start-page: 400 year: 2014 end-page: 435 ident: bib0130 article-title: Understanding brain networks and brain organization publication-title: Phys. Life Rev. – volume: 219 start-page: 641 year: 2014 end-page: 656 ident: bib0200 article-title: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification publication-title: Brain Struct. Funct. – volume: 139 start-page: 7 year: 2012 end-page: 12 ident: bib0190 article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia publication-title: Schizophr. Res. – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: bib0085 article-title: The Hungarian method for the assignment problem publication-title: Nav. Res. Logist. Q. – start-page: 1607 year: 2016 ident: bib0110 article-title: Deepayan Chakrabarti. "On mixed memberships and symmetric nonnegative matrix factorizations publication-title: arXiv preprint arXiv – volume: 83 year: 2011 ident: bib0135 article-title: Overlapping community detection using bayesian non-negative matrix factorization publication-title: Phys. Rev. E – volume: 101 start-page: 4637 year: 2004 end-page: 4642 ident: bib0060 article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 383 year: 2015 ident: bib0090 article-title: Haixian Wang. "Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering publication-title: Front. Neurosci. – volume: 35 start-page: 283 year: 1970 end-page: 319 ident: bib0025 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition publication-title: Psychometrika – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib0150 article-title: Complex network measures of brain connectivity: uses and interpretations." publication-title: Neuroimage – volume: 18 start-page: 1664 year: 2015 ident: bib0045 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 105 start-page: 1118 year: 2008 end-page: 1123 ident: bib0145 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proc. Natl. Acad. Sci. – volume: 80 start-page: 23 year: 2013 end-page: 79 ident: bib0180 article-title: Wu-Minn HCP Consortium. "The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 54 start-page: 2577 year: 2016 end-page: 2588 ident: bib0185 article-title: Rodrigo Cabral Farias, Jocelyn Chanussot, and Pierre Comon. "Nonnegative tensor CP decomposition of hyperspectral data publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 282 start-page: 81 year: 2017 end-page: 94 ident: bib0210 article-title: Anderson. "decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms publication-title: J. Neurosci. Methods – volume: 6 start-page: 29 year: 2012 ident: bib0070 article-title: Stefan Everling. "Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations publication-title: Front. Neuroanat. – start-page: 339 year: 2017 end-page: 353 ident: bib0155 article-title: Adaptive overlapping Community detection with bayesian NonNegative matrix factorization publication-title: International Conference on Database Systems for Advanced Applications – volume: 2 start-page: 52 year: 2016 end-page: 63 ident: bib0105 article-title: Inferring biological networks by sparse identification of nonlinear dynamics publication-title: Ieee Trans. Mol. Biol. Multi-scale Commun. – volume: 54 start-page: 875 year: 2011 end-page: 891 ident: bib0165 article-title: Network modelling methods for FMRI publication-title: Neuroimage – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: bib0020 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. – volume: 29 start-page: 1359 year: 2006 end-page: 1367 ident: bib0035 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: Neuroimage – volume: 4 start-page: 200 year: 2010 ident: bib0115 article-title: Edward T. Bullmore. "Modular and hierarchically modular organization of brain networks publication-title: Front. Neurosci. – start-page: 140 year: 2016 end-page: 147 ident: bib0095 article-title: Overlapping community structure detection of brain functional network using non-negative matrix factorization publication-title: In International Conference on Neural Information Processing – volume: 32 start-page: 773 year: 2011 end-page: 785 ident: bib0140 article-title: Resting-state brain networks: literature review and clinical applications publication-title: Neurol. Sci. – volume: 8 start-page: 694 year: 2012 end-page: 701 ident: bib0065 article-title: Reduced functional connectivity within and between ‘social’resting state networks in autism spectrum conditions publication-title: Soc. Cogn. Affect. Neurosci. – volume: 8 year: 2013 ident: bib0205 article-title: BrainNet Viewer: a network visualization tool for human brain connectomics publication-title: PLoS One – volume: 151 start-page: 225 year: 2015 end-page: 248 ident: bib0080 article-title: Numerical optimization for symmetric tensor decomposition publication-title: Math. Program. – reference: . – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0050 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – start-page: 2187 year: 2011 end-page: 2195 ident: bib0055 article-title: Trace lasso: a trace norm regularization for correlated designs publication-title: Advances in Neural Information Processing Systems – year: 2013 ident: bib0005 article-title: Markus Flatz, Technical Report 2013-05 – volume: 105 start-page: 286 year: 2015 end-page: 299 ident: bib0040 article-title: Identifying sparse connectivity patterns in the brain using resting-state fMRI publication-title: Neuroimage – volume: 12 start-page: 5 year: 2018 ident: bib0160 article-title: Visual analysis of brain networks using sparse regression models publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 45 start-page: 100 year: 2014 end-page: 118 ident: bib0215 article-title: "Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective publication-title: Neurosci. Biobehav. Rev. – volume: 33 start-page: 1272 year: 2012 end-page: 1299 ident: bib0030 article-title: On tensors, sparsity, and nonnegative factorizations publication-title: Siam J. Matrix Anal. Appl. – volume: 58 start-page: 285 year: 2014 end-page: 319 ident: bib0075 article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework publication-title: J. Glob. Optim. – volume: 22 start-page: 493 year: 2011 end-page: 521 ident: bib0195 article-title: Community discovery using nonnegative matrix factorization publication-title: Data Min. Knowl. Discov. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0170 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 135 start-page: 92 year: 2016 end-page: 106 ident: bib0120 article-title: "Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions publication-title: NeuroImage – volume: 12 start-page: 512 year: 2006 end-page: 523 ident: bib0015 article-title: Small-world brain networks publication-title: Neuroscientist – volume: 20 start-page: 519 year: 2010 end-page: 534 ident: bib0175 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur. Neuropsychopharmacol. – volume: 20 start-page: 953 year: 2009 end-page: 965 ident: bib0125 article-title: Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity publication-title: Cereb. Cortex – volume: 107 start-page: 4734 issue: 10 year: 2010 ident: 10.1016/j.jneumeth.2019.02.014_bib0020 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0911855107 – volume: 22 start-page: 493 issue: 3 year: 2011 ident: 10.1016/j.jneumeth.2019.02.014_bib0195 article-title: Community discovery using nonnegative matrix factorization publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-010-0181-y – start-page: 2187 year: 2011 ident: 10.1016/j.jneumeth.2019.02.014_bib0055 article-title: Trace lasso: a trace norm regularization for correlated designs – volume: 20 start-page: 519 issue: 8 year: 2010 ident: 10.1016/j.jneumeth.2019.02.014_bib0175 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2010.03.008 – volume: 12 start-page: 512 issue: 6 year: 2006 ident: 10.1016/j.jneumeth.2019.02.014_bib0015 article-title: Small-world brain networks publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 105 start-page: 1118 issue: 4 year: 2008 ident: 10.1016/j.jneumeth.2019.02.014_bib0145 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0706851105 – volume: 32 start-page: 773 issue: 5 year: 2011 ident: 10.1016/j.jneumeth.2019.02.014_bib0140 article-title: Resting-state brain networks: literature review and clinical applications publication-title: Neurol. Sci. doi: 10.1007/s10072-011-0636-y – volume: 11 start-page: 400 issue: 3 year: 2014 ident: 10.1016/j.jneumeth.2019.02.014_bib0130 article-title: Understanding brain networks and brain organization publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2014.03.005 – volume: 6 start-page: 29 year: 2012 ident: 10.1016/j.jneumeth.2019.02.014_bib0070 article-title: Stefan Everling. "Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations publication-title: Front. Neuroanat. doi: 10.3389/fnana.2012.00029 – volume: 33 start-page: 1272 issue: 4 year: 2012 ident: 10.1016/j.jneumeth.2019.02.014_bib0030 article-title: On tensors, sparsity, and nonnegative factorizations publication-title: Siam J. Matrix Anal. Appl. doi: 10.1137/110859063 – volume: 105 start-page: 286 year: 2015 ident: 10.1016/j.jneumeth.2019.02.014_bib0040 article-title: Identifying sparse connectivity patterns in the brain using resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.058 – ident: 10.1016/j.jneumeth.2019.02.014_bib0010 – volume: 135 start-page: 92 year: 2016 ident: 10.1016/j.jneumeth.2019.02.014_bib0120 article-title: "Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.054 – volume: 12 start-page: 5 issue: 1 year: 2018 ident: 10.1016/j.jneumeth.2019.02.014_bib0160 article-title: Visual analysis of brain networks using sparse regression models publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/3023363 – volume: 29 start-page: 1359 issue: 4 year: 2006 ident: 10.1016/j.jneumeth.2019.02.014_bib0035 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 10.1016/j.jneumeth.2019.02.014_bib0150 article-title: Complex network measures of brain connectivity: uses and interpretations." publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 54 start-page: 2577 issue: 5 year: 2016 ident: 10.1016/j.jneumeth.2019.02.014_bib0185 article-title: Rodrigo Cabral Farias, Jocelyn Chanussot, and Pierre Comon. "Nonnegative tensor CP decomposition of hyperspectral data publication-title: Ieee Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2015.2503737 – start-page: 339 year: 2017 ident: 10.1016/j.jneumeth.2019.02.014_bib0155 article-title: Adaptive overlapping Community detection with bayesian NonNegative matrix factorization publication-title: International Conference on Database Systems for Advanced Applications doi: 10.1007/978-3-319-55699-4_21 – year: 2013 ident: 10.1016/j.jneumeth.2019.02.014_bib0005 – volume: 8 issue: 7 year: 2013 ident: 10.1016/j.jneumeth.2019.02.014_bib0205 article-title: BrainNet Viewer: a network visualization tool for human brain connectomics publication-title: PLoS One doi: 10.1371/journal.pone.0068910 – volume: 80 start-page: 23 year: 2013 ident: 10.1016/j.jneumeth.2019.02.014_bib0180 article-title: Wu-Minn HCP Consortium. "The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 2 start-page: 52 issue: 1 year: 2016 ident: 10.1016/j.jneumeth.2019.02.014_bib0105 article-title: Inferring biological networks by sparse identification of nonlinear dynamics publication-title: Ieee Trans. Mol. Biol. Multi-scale Commun. doi: 10.1109/TMBMC.2016.2633265 – volume: 219 start-page: 641 issue: 2 year: 2014 ident: 10.1016/j.jneumeth.2019.02.014_bib0200 article-title: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0524-8 – volume: 45 start-page: 100 year: 2014 ident: 10.1016/j.jneumeth.2019.02.014_bib0215 article-title: "Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2014.05.009 – start-page: 140 year: 2016 ident: 10.1016/j.jneumeth.2019.02.014_bib0095 article-title: Overlapping community structure detection of brain functional network using non-negative matrix factorization publication-title: In International Conference on Neural Information Processing – volume: 151 start-page: 225 issue: 1 year: 2015 ident: 10.1016/j.jneumeth.2019.02.014_bib0080 article-title: Numerical optimization for symmetric tensor decomposition publication-title: Math. Program. doi: 10.1007/s10107-015-0895-0 – volume: 20 start-page: 953 issue: 4 year: 2009 ident: 10.1016/j.jneumeth.2019.02.014_bib0125 article-title: Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp157 – volume: 2 start-page: 83 issue: 1‐2 year: 1955 ident: 10.1016/j.jneumeth.2019.02.014_bib0085 article-title: The Hungarian method for the assignment problem publication-title: Nav. Res. Logist. Q. doi: 10.1002/nav.3800020109 – volume: 139 start-page: 7 issue: 1-3 year: 2012 ident: 10.1016/j.jneumeth.2019.02.014_bib0190 article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2012.04.021 – volume: 9 start-page: 383 year: 2015 ident: 10.1016/j.jneumeth.2019.02.014_bib0090 article-title: Haixian Wang. "Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00383 – volume: 101 start-page: 4637 issue: 13 year: 2004 ident: 10.1016/j.jneumeth.2019.02.014_bib0060 article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0308627101 – volume: 35 start-page: 283 year: 1970 ident: 10.1016/j.jneumeth.2019.02.014_bib0025 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition publication-title: Psychometrika doi: 10.1007/BF02310791 – volume: 83 issue: 6 year: 2011 ident: 10.1016/j.jneumeth.2019.02.014_bib0135 article-title: Overlapping community detection using bayesian non-negative matrix factorization publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.066114 – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 10.1016/j.jneumeth.2019.02.014_bib0045 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 54 start-page: 875 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2019.02.014_bib0165 article-title: Network modelling methods for FMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 282 start-page: 81 year: 2017 ident: 10.1016/j.jneumeth.2019.02.014_bib0210 article-title: Anderson. "decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.03.008 – volume: 8 start-page: 694 issue: 6 year: 2012 ident: 10.1016/j.jneumeth.2019.02.014_bib0065 article-title: Reduced functional connectivity within and between ‘social’resting state networks in autism spectrum conditions publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nss053 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.jneumeth.2019.02.014_bib0050 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 166 start-page: 259 year: 2018 ident: 10.1016/j.jneumeth.2019.02.014_bib0100 article-title: Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.11.003 – volume: 58 start-page: 285 issue: 2 year: 2014 ident: 10.1016/j.jneumeth.2019.02.014_bib0075 article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0035-4 – start-page: 1607 issue: 00084 year: 2016 ident: 10.1016/j.jneumeth.2019.02.014_bib0110 article-title: Deepayan Chakrabarti. "On mixed memberships and symmetric nonnegative matrix factorizations publication-title: arXiv preprint arXiv – volume: 4 start-page: 200 year: 2010 ident: 10.1016/j.jneumeth.2019.02.014_bib0115 article-title: Edward T. Bullmore. "Modular and hierarchically modular organization of brain networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00200 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.jneumeth.2019.02.014_bib0170 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 |
SSID | ssj0004906 |
Score | 2.3352766 |
Snippet | •New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques... It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 47 |
SubjectTerms | Bayesian tensor factorization Overlapping community detection rs-fMRI |
Title | Overlapping brain Community detection using Bayesian tensor decomposition |
URI | https://dx.doi.org/10.1016/j.jneumeth.2019.02.014 https://www.ncbi.nlm.nih.gov/pubmed/30831137 https://www.proquest.com/docview/2188205830 |
Volume | 318 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxQxDI6qIiEuiLY8lj4UJMRtuskm88hxqVptQZQDVOotysNTdVVmqzJbaS_8duxspsCh6oHbvKJJ7CS24882Y-_9REQnWlcEYSaFrtFAaWJZFQ04tDeUQmssAWTPqtm5_nRRXmywoyEWhmCVee9f7-lpt85Pxpma45urq_E3CsRBowp1FJUEM0Ww65pm-eGvPzAPbVJ9TfqY_JXiryjh-eG8gyVVaiaIl0m5O6V-SEA9pIAmQXTygj3PGiSfrju5xTag22Y70w6t5x8r_oEnTGc6LN9mT79k1_kOO_16R0d3lI7hknsqDMFzcEi_4hH6BMnqOOHgL_lHtwKKruSEb1_c4nuCnmd810t2fnL8_WhW5DoKRVBV0xeTIA14E3WojRegJV6UbYwNrm_K1yeiNs4Ir5yBUAEIVzVVbKKT0PpKe_WKbXaLDt4w3tRRqtqBqXTQTgbfQivr2MpgQPnWjFg5EM-GnGScal1c2wFNNrcD0S0R3YqJRaKP2Pi-3c06zcajLczAG_vPhLEoCx5t-25gpsXVRC4S18Fi-dOiwoMqUYmUGbHXay7f90dRUTYc_dv_-PMue0Z35I6S5R7b7G-XsI9aTe8P0rQ9YE-mp59nZ78Bw7f4aQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RILVcqhZaSEupK6HetrFj78PHgIqSAukBkLhZfi0igg2im0r59_U4XtoeEAduq_Vaa8_YnhnPNzMA-2ZInaa1ziyVw0yUwUCpXF5kldfB3uA8WGMRIDstxhfix2V-uQaHXSwMwirT2b860-Npnd4MEjUHd9fXgzMMxAlGVdBReBTML2Ads1PlPVgfTY7H07_hkTKW2MTv0WVJ_wkUnn2bNX6BxZoR5SVj-k4mHpNRj-mgURYdvYHXSYkko9U438KabzZha9QEA_p2Sb6SCOuM9-Wb8PI0ec-3YPLzN97eYUaGK2KwNgRJ8SHtkjjfRlRWQxAKf0UO9NJjgCVBiPv8PrQj-jxBvN7BxdH388NxlkopZJYXVZsNLZPeSCdsKQ31goWHvHauClscU_ZRJ6SW1HAtvS28p7qoClc5zXxtCmH4e-g188bvAKlKx3ipvSyEFZpZU_uala5mVnpuatmHvCOesinPOJa7uFEdoGymOqIrJLqiQxWI3ofBQ7-7VaaNJ3vIjjfqvzWjgjh4su-XjpkqbCj0kujGzxe_VNB5glaUB8r0YXvF5YfxcKzLFmb_4Rl__gyvxuenJ-pkMj3-CBvYgt4plu9Cr71f-E9ByWnNXlrEfwA_Tvsa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overlapping+brain+Community+detection+using+Bayesian+tensor+decomposition&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Mirzaei%2C+S&rft.au=Soltanian-Zadeh%2C+H&rft.date=2019-04-15&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=318&rft.spage=47&rft_id=info:doi/10.1016%2Fj.jneumeth.2019.02.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |