Overlapping brain Community detection using Bayesian tensor decomposition

•New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques are proposed to decompose the association matrices of the individuals.•It has been shown that the resultant community structures through the...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 318; pp. 47 - 55
Main Authors Mirzaei, S., Soltanian-Zadeh, H.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques are proposed to decompose the association matrices of the individuals.•It has been shown that the resultant community structures through the proposed methods are accurate and stable. It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results.
AbstractList It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results.
It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results.It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results.
•New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques are proposed to decompose the association matrices of the individuals.•It has been shown that the resultant community structures through the proposed methods are accurate and stable. It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the brain is of great importance for understanding the brain functionality and diagnosing some neuropsychiatric illnesses. In this paper, we introduce Non-negative Tensor Factorization (NTF) methods to identify the overlapping communities in brain networks using resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Instead of taking average over a group of subjects, we use individual subject connectivity matrices to build the tensor data. Decomposed factors indicate the community membership probabilities and inter-subject variability indices modeling the community strengths over subjects. In contrast to the methods based on Non-negative Matrix Factorization (NMF) which are generally applied to the average connectivity matrices, using tensor factorization modeling preserves the information conveyed by the individual subjects. The experiments are carried out on simulated data as well as real Human Connectome Project (HCP) rs-fMRI datasets. To evaluate the effectiveness of the proposed framework, we have computed reproducibility over time and groups of subjects. Test-retest reliability is also examined through computing the intra-class correlation coefficient (ICC) index. The results show that the proposed NTF-based frameworks lead to stable and accurate results.
Author Mirzaei, S.
Soltanian-Zadeh, H.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-1174-2280
  surname: Mirzaei
  fullname: Mirzaei, S.
  email: s.mirzaei@ut.ac.ir
  organization: School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: H.
  orcidid: 0000-0002-7302-6856
  surname: Soltanian-Zadeh
  fullname: Soltanian-Zadeh, H.
  email: hszadeh@ut.ac.ir, hsoltan1@hfhs.org
  organization: CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30831137$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFr2zAUx0XJaJO2X6H4uIu9J9uRZdhhW2jXQqGXFXoTsvSyKdiSJ8mBfPvKpLn0kpMevN__L95vRRbWWSTkjkJBgbJvu2JncRow_itKoG0BZQG0viBLypsyZw1_W5BlAtc5lA1ckVUIOwCoW2CX5KoCXlFaNUvy9LJH38txNPZv1nlpbLZxwzBZEw-ZxogqGmezKcz7X_KAwUibRbTB-bRXbhhdMDNzQ75sZR_w9uO9Jq8P9382j_nzy--nzc_nXFWMx7xUtMWu1bVq2g6wpmlYb7XmFTQNrQF03coWukq2qBgiSMaZ5lpS3Has7qpr8vXYO3r3f8IQxWCCwr6XFt0UREk5L2Gd-hJ694FO3YBajN4M0h_E6fwEfD8CyrsQPG6FMlHO18SkohcUxGxb7MTJtphtCyhFsp3i7FP89MPZ4I9jEJOovUEvgjJoFWrjk3GhnTlX8Q6IGJ88
CitedBy_id crossref_primary_10_3390_brainsci14080783
crossref_primary_10_1007_s11042_023_15471_1
crossref_primary_10_1016_j_bspc_2022_104151
crossref_primary_10_1093_comjnl_bxac050
crossref_primary_10_1016_j_eswa_2022_118230
crossref_primary_10_1016_j_eswa_2023_122853
crossref_primary_10_1016_j_neuroscience_2021_12_031
crossref_primary_10_1093_cercor_bhab144
crossref_primary_10_1016_j_bspc_2021_102584
Cites_doi 10.1073/pnas.0911855107
10.1007/s10618-010-0181-y
10.1016/j.euroneuro.2010.03.008
10.1177/1073858406293182
10.1073/pnas.0706851105
10.1007/s10072-011-0636-y
10.1016/j.plrev.2014.03.005
10.3389/fnana.2012.00029
10.1137/110859063
10.1016/j.neuroimage.2014.09.058
10.1016/j.neuroimage.2016.04.054
10.1145/3023363
10.1016/j.neuroimage.2005.08.035
10.1016/j.neuroimage.2009.10.003
10.1109/TGRS.2015.2503737
10.1007/978-3-319-55699-4_21
10.1371/journal.pone.0068910
10.1016/j.neuroimage.2013.05.041
10.1109/TMBMC.2016.2633265
10.1007/s00429-013-0524-8
10.1016/j.neubiorev.2014.05.009
10.1007/s10107-015-0895-0
10.1093/cercor/bhp157
10.1002/nav.3800020109
10.1016/j.schres.2012.04.021
10.3389/fnins.2015.00383
10.1073/pnas.0308627101
10.1007/BF02310791
10.1103/PhysRevE.83.066114
10.1038/nn.4135
10.1016/j.neuroimage.2010.08.063
10.1016/j.jneumeth.2017.03.008
10.1093/scan/nss053
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2017.11.003
10.1007/s10898-013-0035-4
10.3389/fnins.2010.00200
10.1006/nimg.2001.0978
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2019.02.014
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 55
ExternalDocumentID 30831137
10_1016_j_jneumeth_2019_02_014
S0165027019300615
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
NPM
7X8
ID FETCH-LOGICAL-c368t-2c19eb9d4c79b0e414c75fdd830771400d49a90b3a9ec6ee0a686d8da1efb64b3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Fri Jul 11 08:46:11 EDT 2025
Thu Apr 03 06:52:34 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Tue Jul 01 02:57:11 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian tensor factorization
Overlapping community detection
rs-fMRI
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-2c19eb9d4c79b0e414c75fdd830771400d49a90b3a9ec6ee0a686d8da1efb64b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7302-6856
0000-0003-1174-2280
PMID 30831137
PQID 2188205830
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2188205830
pubmed_primary_30831137
crossref_citationtrail_10_1016_j_jneumeth_2019_02_014
crossref_primary_10_1016_j_jneumeth_2019_02_014
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2019_02_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0170) 2002; 15
Psorakis, Roberts, Ebden, Sheldon (bib0135) 2011; 83
Li (bib0090) 2015; 9
Van Den Heuvel, Hilleke, Pol (bib0175) 2010; 20
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0180) 2013; 80
De Luca, Beckmann, De Stefano, Matthews, Smith (bib0035) 2006; 29
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib0165) 2011; 54
Venkataraman, Whitford, Westin, Golland, Kubicki (bib0190) 2012; 139
Xia, Wang, Yong (bib0205) 2013; 8
Rubinov, Sporns (bib0150) 2010; 52
Eavani, Satterthwaite, Filipovych, Gur, Gur, Davatzikos (bib0040) 2015; 105
Wang, Li, Wang, Zhu, Ding (bib0195) 2011; 22
Li, Hu, Wang (bib0095) 2016
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Christian, Beckmann (bib0020) 2010; 107
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Todd Constable (bib0045) 2015; 18
Shi, Tong, Daianu, Tian, Thompson (bib0160) 2018; 12
O’reilly, Beckmann, Tomassini, Ramnani, Johansen-Berg (bib0125) 2009; 20
Rosazza, Minati (bib0140) 2011; 32
Glasser, Sotiropoulos, Anthony Wilson, Coalson, Fischl, Andersson, Junqian (bib0050) 2013; 80
Greicius, Srivastava, Reiss, Menon (bib0060) 2004; 101
Rosvall, Bergstrom (bib0145) 2008; 105
Algorithms for non-negative tensor factorization (bib0005) 2013
Shi, Lu, Jia (bib0155) 2017
Zuo, Xing (bib0215) 2014; 45
Hutchison (bib0070) 2012; 6
Mao, Sarkar (bib0110) 2016
Bassett, Bullmore (bib0015) 2006; 12
Veganzones, Cohen (bib0185) 2016; 54
Chi, Kolda (bib0030) 2012; 33
Kolda (bib0080) 2015; 151
Meunier, Lambiotte (bib0115) 2010; 4
Pessoa (bib0130) 2014; 11
.
Kim, He, Park (bib0075) 2014; 58
Li, Gan, Wang (bib0100) 2018; 166
Mangan, Brunton, Proctor, Nathan Kutz (bib0105) 2016; 2
Hagen, Elisabeth, Stoyanova, Baron-Cohen, Calder (bib0065) 2012; 8
Kuhn (bib0085) 1955; 2
Najafi, McMenamin, Simon, Pessoa (bib0120) 2016; 135
Wee, Yap, Zhang, Wang, Shen (bib0200) 2014; 219
Grave, Obozinski, Bach (bib0055) 2011
Carroll, Chang (bib0025) 1970; 35
Xie, Douglas, Ying Nian, Brody, Ariana (bib0210) 2017; 282
O’reilly (10.1016/j.jneumeth.2019.02.014_bib0125) 2009; 20
Kuhn (10.1016/j.jneumeth.2019.02.014_bib0085) 1955; 2
Glasser (10.1016/j.jneumeth.2019.02.014_bib0050) 2013; 80
Li (10.1016/j.jneumeth.2019.02.014_bib0095) 2016
Rosazza (10.1016/j.jneumeth.2019.02.014_bib0140) 2011; 32
10.1016/j.jneumeth.2019.02.014_bib0010
Van Essen (10.1016/j.jneumeth.2019.02.014_bib0180) 2013; 80
Veganzones (10.1016/j.jneumeth.2019.02.014_bib0185) 2016; 54
Chi (10.1016/j.jneumeth.2019.02.014_bib0030) 2012; 33
Mangan (10.1016/j.jneumeth.2019.02.014_bib0105) 2016; 2
Kim (10.1016/j.jneumeth.2019.02.014_bib0075) 2014; 58
Mao (10.1016/j.jneumeth.2019.02.014_bib0110) 2016
Venkataraman (10.1016/j.jneumeth.2019.02.014_bib0190) 2012; 139
Pessoa (10.1016/j.jneumeth.2019.02.014_bib0130) 2014; 11
Zuo (10.1016/j.jneumeth.2019.02.014_bib0215) 2014; 45
Xie (10.1016/j.jneumeth.2019.02.014_bib0210) 2017; 282
Shi (10.1016/j.jneumeth.2019.02.014_bib0160) 2018; 12
Rubinov (10.1016/j.jneumeth.2019.02.014_bib0150) 2010; 52
Carroll (10.1016/j.jneumeth.2019.02.014_bib0025) 1970; 35
Rosvall (10.1016/j.jneumeth.2019.02.014_bib0145) 2008; 105
Biswal (10.1016/j.jneumeth.2019.02.014_bib0020) 2010; 107
Kolda (10.1016/j.jneumeth.2019.02.014_bib0080) 2015; 151
Van Den Heuvel (10.1016/j.jneumeth.2019.02.014_bib0175) 2010; 20
Meunier (10.1016/j.jneumeth.2019.02.014_bib0115) 2010; 4
Wee (10.1016/j.jneumeth.2019.02.014_bib0200) 2014; 219
De Luca (10.1016/j.jneumeth.2019.02.014_bib0035) 2006; 29
Greicius (10.1016/j.jneumeth.2019.02.014_bib0060) 2004; 101
Wang (10.1016/j.jneumeth.2019.02.014_bib0195) 2011; 22
Smith (10.1016/j.jneumeth.2019.02.014_bib0165) 2011; 54
Li (10.1016/j.jneumeth.2019.02.014_bib0100) 2018; 166
Finn (10.1016/j.jneumeth.2019.02.014_bib0045) 2015; 18
Tzourio-Mazoyer (10.1016/j.jneumeth.2019.02.014_bib0170) 2002; 15
Li (10.1016/j.jneumeth.2019.02.014_bib0090) 2015; 9
Grave (10.1016/j.jneumeth.2019.02.014_bib0055) 2011
Psorakis (10.1016/j.jneumeth.2019.02.014_bib0135) 2011; 83
Hagen (10.1016/j.jneumeth.2019.02.014_bib0065) 2012; 8
Shi (10.1016/j.jneumeth.2019.02.014_bib0155) 2017
Algorithms for non-negative tensor factorization (10.1016/j.jneumeth.2019.02.014_bib0005) 2013
Eavani (10.1016/j.jneumeth.2019.02.014_bib0040) 2015; 105
Bassett (10.1016/j.jneumeth.2019.02.014_bib0015) 2006; 12
Najafi (10.1016/j.jneumeth.2019.02.014_bib0120) 2016; 135
Hutchison (10.1016/j.jneumeth.2019.02.014_bib0070) 2012; 6
Xia (10.1016/j.jneumeth.2019.02.014_bib0205) 2013; 8
References_xml – volume: 166
  start-page: 259
  year: 2018
  end-page: 275
  ident: bib0100
  article-title: Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks
  publication-title: NeuroImage
– volume: 11
  start-page: 400
  year: 2014
  end-page: 435
  ident: bib0130
  article-title: Understanding brain networks and brain organization
  publication-title: Phys. Life Rev.
– volume: 219
  start-page: 641
  year: 2014
  end-page: 656
  ident: bib0200
  article-title: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification
  publication-title: Brain Struct. Funct.
– volume: 139
  start-page: 7
  year: 2012
  end-page: 12
  ident: bib0190
  article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia
  publication-title: Schizophr. Res.
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: bib0085
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
– start-page: 1607
  year: 2016
  ident: bib0110
  article-title: Deepayan Chakrabarti. "On mixed memberships and symmetric nonnegative matrix factorizations
  publication-title: arXiv preprint arXiv
– volume: 83
  year: 2011
  ident: bib0135
  article-title: Overlapping community detection using bayesian non-negative matrix factorization
  publication-title: Phys. Rev. E
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  ident: bib0060
  article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI
  publication-title: Proc. Natl. Acad. Sci.
– volume: 9
  start-page: 383
  year: 2015
  ident: bib0090
  article-title: Haixian Wang. "Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering
  publication-title: Front. Neurosci.
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: bib0025
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition
  publication-title: Psychometrika
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib0150
  article-title: Complex network measures of brain connectivity: uses and interpretations."
  publication-title: Neuroimage
– volume: 18
  start-page: 1664
  year: 2015
  ident: bib0045
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: bib0145
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci.
– volume: 80
  start-page: 23
  year: 2013
  end-page: 79
  ident: bib0180
  article-title: Wu-Minn HCP Consortium. "The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 54
  start-page: 2577
  year: 2016
  end-page: 2588
  ident: bib0185
  article-title: Rodrigo Cabral Farias, Jocelyn Chanussot, and Pierre Comon. "Nonnegative tensor CP decomposition of hyperspectral data
  publication-title: Ieee Trans. Geosci. Remote. Sens.
– volume: 282
  start-page: 81
  year: 2017
  end-page: 94
  ident: bib0210
  article-title: Anderson. "decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms
  publication-title: J. Neurosci. Methods
– volume: 6
  start-page: 29
  year: 2012
  ident: bib0070
  article-title: Stefan Everling. "Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations
  publication-title: Front. Neuroanat.
– start-page: 339
  year: 2017
  end-page: 353
  ident: bib0155
  article-title: Adaptive overlapping Community detection with bayesian NonNegative matrix factorization
  publication-title: International Conference on Database Systems for Advanced Applications
– volume: 2
  start-page: 52
  year: 2016
  end-page: 63
  ident: bib0105
  article-title: Inferring biological networks by sparse identification of nonlinear dynamics
  publication-title: Ieee Trans. Mol. Biol. Multi-scale Commun.
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: bib0165
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: bib0020
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
– volume: 29
  start-page: 1359
  year: 2006
  end-page: 1367
  ident: bib0035
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain
  publication-title: Neuroimage
– volume: 4
  start-page: 200
  year: 2010
  ident: bib0115
  article-title: Edward T. Bullmore. "Modular and hierarchically modular organization of brain networks
  publication-title: Front. Neurosci.
– start-page: 140
  year: 2016
  end-page: 147
  ident: bib0095
  article-title: Overlapping community structure detection of brain functional network using non-negative matrix factorization
  publication-title: In International Conference on Neural Information Processing
– volume: 32
  start-page: 773
  year: 2011
  end-page: 785
  ident: bib0140
  article-title: Resting-state brain networks: literature review and clinical applications
  publication-title: Neurol. Sci.
– volume: 8
  start-page: 694
  year: 2012
  end-page: 701
  ident: bib0065
  article-title: Reduced functional connectivity within and between ‘social’resting state networks in autism spectrum conditions
  publication-title: Soc. Cogn. Affect. Neurosci.
– volume: 8
  year: 2013
  ident: bib0205
  article-title: BrainNet Viewer: a network visualization tool for human brain connectomics
  publication-title: PLoS One
– volume: 151
  start-page: 225
  year: 2015
  end-page: 248
  ident: bib0080
  article-title: Numerical optimization for symmetric tensor decomposition
  publication-title: Math. Program.
– reference: .
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0050
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– start-page: 2187
  year: 2011
  end-page: 2195
  ident: bib0055
  article-title: Trace lasso: a trace norm regularization for correlated designs
  publication-title: Advances in Neural Information Processing Systems
– year: 2013
  ident: bib0005
  article-title: Markus Flatz, Technical Report 2013-05
– volume: 105
  start-page: 286
  year: 2015
  end-page: 299
  ident: bib0040
  article-title: Identifying sparse connectivity patterns in the brain using resting-state fMRI
  publication-title: Neuroimage
– volume: 12
  start-page: 5
  year: 2018
  ident: bib0160
  article-title: Visual analysis of brain networks using sparse regression models
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 45
  start-page: 100
  year: 2014
  end-page: 118
  ident: bib0215
  article-title: "Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective
  publication-title: Neurosci. Biobehav. Rev.
– volume: 33
  start-page: 1272
  year: 2012
  end-page: 1299
  ident: bib0030
  article-title: On tensors, sparsity, and nonnegative factorizations
  publication-title: Siam J. Matrix Anal. Appl.
– volume: 58
  start-page: 285
  year: 2014
  end-page: 319
  ident: bib0075
  article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
  publication-title: J. Glob. Optim.
– volume: 22
  start-page: 493
  year: 2011
  end-page: 521
  ident: bib0195
  article-title: Community discovery using nonnegative matrix factorization
  publication-title: Data Min. Knowl. Discov.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0170
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 135
  start-page: 92
  year: 2016
  end-page: 106
  ident: bib0120
  article-title: "Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions
  publication-title: NeuroImage
– volume: 12
  start-page: 512
  year: 2006
  end-page: 523
  ident: bib0015
  article-title: Small-world brain networks
  publication-title: Neuroscientist
– volume: 20
  start-page: 519
  year: 2010
  end-page: 534
  ident: bib0175
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur. Neuropsychopharmacol.
– volume: 20
  start-page: 953
  year: 2009
  end-page: 965
  ident: bib0125
  article-title: Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity
  publication-title: Cereb. Cortex
– volume: 107
  start-page: 4734
  issue: 10
  year: 2010
  ident: 10.1016/j.jneumeth.2019.02.014_bib0020
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0911855107
– volume: 22
  start-page: 493
  issue: 3
  year: 2011
  ident: 10.1016/j.jneumeth.2019.02.014_bib0195
  article-title: Community discovery using nonnegative matrix factorization
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-010-0181-y
– start-page: 2187
  year: 2011
  ident: 10.1016/j.jneumeth.2019.02.014_bib0055
  article-title: Trace lasso: a trace norm regularization for correlated designs
– volume: 20
  start-page: 519
  issue: 8
  year: 2010
  ident: 10.1016/j.jneumeth.2019.02.014_bib0175
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2010.03.008
– volume: 12
  start-page: 512
  issue: 6
  year: 2006
  ident: 10.1016/j.jneumeth.2019.02.014_bib0015
  article-title: Small-world brain networks
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 105
  start-page: 1118
  issue: 4
  year: 2008
  ident: 10.1016/j.jneumeth.2019.02.014_bib0145
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0706851105
– volume: 32
  start-page: 773
  issue: 5
  year: 2011
  ident: 10.1016/j.jneumeth.2019.02.014_bib0140
  article-title: Resting-state brain networks: literature review and clinical applications
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-011-0636-y
– volume: 11
  start-page: 400
  issue: 3
  year: 2014
  ident: 10.1016/j.jneumeth.2019.02.014_bib0130
  article-title: Understanding brain networks and brain organization
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2014.03.005
– volume: 6
  start-page: 29
  year: 2012
  ident: 10.1016/j.jneumeth.2019.02.014_bib0070
  article-title: Stefan Everling. "Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2012.00029
– volume: 33
  start-page: 1272
  issue: 4
  year: 2012
  ident: 10.1016/j.jneumeth.2019.02.014_bib0030
  article-title: On tensors, sparsity, and nonnegative factorizations
  publication-title: Siam J. Matrix Anal. Appl.
  doi: 10.1137/110859063
– volume: 105
  start-page: 286
  year: 2015
  ident: 10.1016/j.jneumeth.2019.02.014_bib0040
  article-title: Identifying sparse connectivity patterns in the brain using resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.058
– ident: 10.1016/j.jneumeth.2019.02.014_bib0010
– volume: 135
  start-page: 92
  year: 2016
  ident: 10.1016/j.jneumeth.2019.02.014_bib0120
  article-title: "Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.054
– volume: 12
  start-page: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.jneumeth.2019.02.014_bib0160
  article-title: Visual analysis of brain networks using sparse regression models
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/3023363
– volume: 29
  start-page: 1359
  issue: 4
  year: 2006
  ident: 10.1016/j.jneumeth.2019.02.014_bib0035
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.035
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.jneumeth.2019.02.014_bib0150
  article-title: Complex network measures of brain connectivity: uses and interpretations."
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 54
  start-page: 2577
  issue: 5
  year: 2016
  ident: 10.1016/j.jneumeth.2019.02.014_bib0185
  article-title: Rodrigo Cabral Farias, Jocelyn Chanussot, and Pierre Comon. "Nonnegative tensor CP decomposition of hyperspectral data
  publication-title: Ieee Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2015.2503737
– start-page: 339
  year: 2017
  ident: 10.1016/j.jneumeth.2019.02.014_bib0155
  article-title: Adaptive overlapping Community detection with bayesian NonNegative matrix factorization
  publication-title: International Conference on Database Systems for Advanced Applications
  doi: 10.1007/978-3-319-55699-4_21
– year: 2013
  ident: 10.1016/j.jneumeth.2019.02.014_bib0005
– volume: 8
  issue: 7
  year: 2013
  ident: 10.1016/j.jneumeth.2019.02.014_bib0205
  article-title: BrainNet Viewer: a network visualization tool for human brain connectomics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068910
– volume: 80
  start-page: 23
  year: 2013
  ident: 10.1016/j.jneumeth.2019.02.014_bib0180
  article-title: Wu-Minn HCP Consortium. "The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 2
  start-page: 52
  issue: 1
  year: 2016
  ident: 10.1016/j.jneumeth.2019.02.014_bib0105
  article-title: Inferring biological networks by sparse identification of nonlinear dynamics
  publication-title: Ieee Trans. Mol. Biol. Multi-scale Commun.
  doi: 10.1109/TMBMC.2016.2633265
– volume: 219
  start-page: 641
  issue: 2
  year: 2014
  ident: 10.1016/j.jneumeth.2019.02.014_bib0200
  article-title: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0524-8
– volume: 45
  start-page: 100
  year: 2014
  ident: 10.1016/j.jneumeth.2019.02.014_bib0215
  article-title: "Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.05.009
– start-page: 140
  year: 2016
  ident: 10.1016/j.jneumeth.2019.02.014_bib0095
  article-title: Overlapping community structure detection of brain functional network using non-negative matrix factorization
  publication-title: In International Conference on Neural Information Processing
– volume: 151
  start-page: 225
  issue: 1
  year: 2015
  ident: 10.1016/j.jneumeth.2019.02.014_bib0080
  article-title: Numerical optimization for symmetric tensor decomposition
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0895-0
– volume: 20
  start-page: 953
  issue: 4
  year: 2009
  ident: 10.1016/j.jneumeth.2019.02.014_bib0125
  article-title: Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp157
– volume: 2
  start-page: 83
  issue: 1‐2
  year: 1955
  ident: 10.1016/j.jneumeth.2019.02.014_bib0085
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– volume: 139
  start-page: 7
  issue: 1-3
  year: 2012
  ident: 10.1016/j.jneumeth.2019.02.014_bib0190
  article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2012.04.021
– volume: 9
  start-page: 383
  year: 2015
  ident: 10.1016/j.jneumeth.2019.02.014_bib0090
  article-title: Haixian Wang. "Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00383
– volume: 101
  start-page: 4637
  issue: 13
  year: 2004
  ident: 10.1016/j.jneumeth.2019.02.014_bib0060
  article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0308627101
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.jneumeth.2019.02.014_bib0025
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 83
  issue: 6
  year: 2011
  ident: 10.1016/j.jneumeth.2019.02.014_bib0135
  article-title: Overlapping community detection using bayesian non-negative matrix factorization
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.066114
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 10.1016/j.jneumeth.2019.02.014_bib0045
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2019.02.014_bib0165
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 282
  start-page: 81
  year: 2017
  ident: 10.1016/j.jneumeth.2019.02.014_bib0210
  article-title: Anderson. "decoding the encoding of functional brain networks: an fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.03.008
– volume: 8
  start-page: 694
  issue: 6
  year: 2012
  ident: 10.1016/j.jneumeth.2019.02.014_bib0065
  article-title: Reduced functional connectivity within and between ‘social’resting state networks in autism spectrum conditions
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nss053
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.jneumeth.2019.02.014_bib0050
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 166
  start-page: 259
  year: 2018
  ident: 10.1016/j.jneumeth.2019.02.014_bib0100
  article-title: Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.003
– volume: 58
  start-page: 285
  issue: 2
  year: 2014
  ident: 10.1016/j.jneumeth.2019.02.014_bib0075
  article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0035-4
– start-page: 1607
  issue: 00084
  year: 2016
  ident: 10.1016/j.jneumeth.2019.02.014_bib0110
  article-title: Deepayan Chakrabarti. "On mixed memberships and symmetric nonnegative matrix factorizations
  publication-title: arXiv preprint arXiv
– volume: 4
  start-page: 200
  year: 2010
  ident: 10.1016/j.jneumeth.2019.02.014_bib0115
  article-title: Edward T. Bullmore. "Modular and hierarchically modular organization of brain networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00200
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.jneumeth.2019.02.014_bib0170
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
SSID ssj0004906
Score 2.3352766
Snippet •New approaches for detecting the overlapping communities of the brain network are introduced using rs-fMRI data.•Non-negative Tensor Factorization techniques...
It has been found that specific regions in the brain are dedicated to specific functions. Detection and analysis of the constituent functional networks of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms Bayesian tensor factorization
Overlapping community detection
rs-fMRI
Title Overlapping brain Community detection using Bayesian tensor decomposition
URI https://dx.doi.org/10.1016/j.jneumeth.2019.02.014
https://www.ncbi.nlm.nih.gov/pubmed/30831137
https://www.proquest.com/docview/2188205830
Volume 318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxQxDI6qIiEuiLY8lj4UJMRtuskm88hxqVptQZQDVOotysNTdVVmqzJbaS_8duxspsCh6oHbvKJJ7CS24882Y-_9REQnWlcEYSaFrtFAaWJZFQ04tDeUQmssAWTPqtm5_nRRXmywoyEWhmCVee9f7-lpt85Pxpma45urq_E3CsRBowp1FJUEM0Ww65pm-eGvPzAPbVJ9TfqY_JXiryjh-eG8gyVVaiaIl0m5O6V-SEA9pIAmQXTygj3PGiSfrju5xTag22Y70w6t5x8r_oEnTGc6LN9mT79k1_kOO_16R0d3lI7hknsqDMFzcEi_4hH6BMnqOOHgL_lHtwKKruSEb1_c4nuCnmd810t2fnL8_WhW5DoKRVBV0xeTIA14E3WojRegJV6UbYwNrm_K1yeiNs4Ir5yBUAEIVzVVbKKT0PpKe_WKbXaLDt4w3tRRqtqBqXTQTgbfQivr2MpgQPnWjFg5EM-GnGScal1c2wFNNrcD0S0R3YqJRaKP2Pi-3c06zcajLczAG_vPhLEoCx5t-25gpsXVRC4S18Fi-dOiwoMqUYmUGbHXay7f90dRUTYc_dv_-PMue0Z35I6S5R7b7G-XsI9aTe8P0rQ9YE-mp59nZ78Bw7f4aQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RILVcqhZaSEupK6HetrFj78PHgIqSAukBkLhZfi0igg2im0r59_U4XtoeEAduq_Vaa8_YnhnPNzMA-2ZInaa1ziyVw0yUwUCpXF5kldfB3uA8WGMRIDstxhfix2V-uQaHXSwMwirT2b860-Npnd4MEjUHd9fXgzMMxAlGVdBReBTML2Ads1PlPVgfTY7H07_hkTKW2MTv0WVJ_wkUnn2bNX6BxZoR5SVj-k4mHpNRj-mgURYdvYHXSYkko9U438KabzZha9QEA_p2Sb6SCOuM9-Wb8PI0ec-3YPLzN97eYUaGK2KwNgRJ8SHtkjjfRlRWQxAKf0UO9NJjgCVBiPv8PrQj-jxBvN7BxdH388NxlkopZJYXVZsNLZPeSCdsKQ31goWHvHauClscU_ZRJ6SW1HAtvS28p7qoClc5zXxtCmH4e-g188bvAKlKx3ipvSyEFZpZU_uala5mVnpuatmHvCOesinPOJa7uFEdoGymOqIrJLqiQxWI3ofBQ7-7VaaNJ3vIjjfqvzWjgjh4su-XjpkqbCj0kujGzxe_VNB5glaUB8r0YXvF5YfxcKzLFmb_4Rl__gyvxuenJ-pkMj3-CBvYgt4plu9Cr71f-E9ByWnNXlrEfwA_Tvsa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overlapping+brain+Community+detection+using+Bayesian+tensor+decomposition&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Mirzaei%2C+S&rft.au=Soltanian-Zadeh%2C+H&rft.date=2019-04-15&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=318&rft.spage=47&rft_id=info:doi/10.1016%2Fj.jneumeth.2019.02.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon