Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation

•3D large deflections of FG porous beams are studied using a geometrically exact beam theory.•Constitutive relation is obtained based on the concepts of continuum mechanics.•For solution, the Chebyshev collocation method is adopted for the numerical discretisation.•Two types of porosity distribution...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 76; pp. 938 - 957
Main Authors Khaneh Masjedi, Pedram, Maheri, Alireza, Weaver, Paul M.
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.12.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •3D large deflections of FG porous beams are studied using a geometrically exact beam theory.•Constitutive relation is obtained based on the concepts of continuum mechanics.•For solution, the Chebyshev collocation method is adopted for the numerical discretisation.•Two types of porosity distributions, namely cross-sectional and span-wise are considered.•To simulate different loading conditions, conservative and non-conservative (follower) loading scenarios are considered. Porous graded materials found in nature can be regarded as variable stiffness optimised load carrier elements that exhibit beneficial properties for real-life engineering designs. In order to investigate the nonlinear behaviour of variable stiffness bioinspired materials, the large deflection of functionally graded beams made from porous materials is considered in this work. Our purpose is to present an efficient and accurate methodology capable of capturing spatially large deflections of these structures with different types of loading conditions and porosity distributions. A geometrically exact beam model with fully intrinsic formulation is employed for the first time to study the large deflection behaviour of functionally graded beams under conservative and non-conservative (follower) loading scenarios. An orthogonal Chebyshev collocation method is used for the discretisation of the fully intrinsic formulation. Two types of porosity distributions, namely cross-sectional and span-wise, are considered and the effect of porosity distribution has been investigated for various benchmark classical test cases. For a given level of accuracy, it is shown that the span-wise functionally graded beam is computationally more demanding compared to the cross-sectional functionally graded beam. In addition to classical problems, two examples demonstrating 3D deflections of highly flexible structures made from porous material subject to combined loads are investigated. It is shown that the current paradigm, while being computationally efficient, can effectively capture the large deflections of functionally graded beams with excellent accuracy.
AbstractList Porous graded materials found in nature can be regarded as variable stiffness optimised load carrier elements that exhibit beneficial properties for real-life engineering designs. In order to investigate the nonlinear behaviour of variable stiffness bioinspired materials, the large deflection of functionally graded beams made from porous materials is considered in this work. Our purpose is to present an efficient and accurate methodology capable of capturing spatially large deflections of these structures with different types of loading conditions and porosity distributions. A geometrically exact beam model with fully intrinsic formulation is employed for the first time to study the large deflection behaviour of functionally graded beams under conservative and non-conservative (follower) loading scenarios. An orthogonal Chebyshev collocation method is used for the discretisation of the fully intrinsic formulation. Two types of porosity distributions, namely cross-sectional and span-wise, are considered and the effect of porosity distribution has been investigated for various benchmark classical test cases. For a given level of accuracy, it is shown that the span-wise functionally graded beam is computationally more demanding compared to the cross-sectional functionally graded beam. In addition to classical problems, two examples demonstrating 3D deflections of highly flexible structures made from porous material subject to combined loads are investigated. It is shown that the current paradigm, while being computationally efficient, can effectively capture the large deflections of functionally graded beams with excellent accuracy.
•3D large deflections of FG porous beams are studied using a geometrically exact beam theory.•Constitutive relation is obtained based on the concepts of continuum mechanics.•For solution, the Chebyshev collocation method is adopted for the numerical discretisation.•Two types of porosity distributions, namely cross-sectional and span-wise are considered.•To simulate different loading conditions, conservative and non-conservative (follower) loading scenarios are considered. Porous graded materials found in nature can be regarded as variable stiffness optimised load carrier elements that exhibit beneficial properties for real-life engineering designs. In order to investigate the nonlinear behaviour of variable stiffness bioinspired materials, the large deflection of functionally graded beams made from porous materials is considered in this work. Our purpose is to present an efficient and accurate methodology capable of capturing spatially large deflections of these structures with different types of loading conditions and porosity distributions. A geometrically exact beam model with fully intrinsic formulation is employed for the first time to study the large deflection behaviour of functionally graded beams under conservative and non-conservative (follower) loading scenarios. An orthogonal Chebyshev collocation method is used for the discretisation of the fully intrinsic formulation. Two types of porosity distributions, namely cross-sectional and span-wise, are considered and the effect of porosity distribution has been investigated for various benchmark classical test cases. For a given level of accuracy, it is shown that the span-wise functionally graded beam is computationally more demanding compared to the cross-sectional functionally graded beam. In addition to classical problems, two examples demonstrating 3D deflections of highly flexible structures made from porous material subject to combined loads are investigated. It is shown that the current paradigm, while being computationally efficient, can effectively capture the large deflections of functionally graded beams with excellent accuracy.
Author Khaneh Masjedi, Pedram
Maheri, Alireza
Weaver, Paul M.
Author_xml – sequence: 1
  givenname: Pedram
  orcidid: 0000-0001-5811-0710
  surname: Khaneh Masjedi
  fullname: Khaneh Masjedi, Pedram
  email: pedram.masjedi@ul.ie, pk.masjedi@gmail.com
  organization: Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
– sequence: 2
  givenname: Alireza
  surname: Maheri
  fullname: Maheri, Alireza
  organization: School of Engineering, University of Aberdeen, Aberdeen, UK
– sequence: 3
  givenname: Paul M.
  surname: Weaver
  fullname: Weaver, Paul M.
  organization: Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
BookMark eNp9kU9PxCAQxYnRRF39AN5IPG-FtpQ2nozxX7KJF028kVmYrmzasgJV9-B3l931YDx4YQbm9yDvcUz2BzcgIWecZZzx6mKZwarPcsabjMmM8XqPHLGCyWnDypf9X_0hOQ5hyRgTaXdEvmbgF0gNth3qaN1AXUvbcdj20HVruvBg0NCV824MdI7QpxVCOkow0AW6HqO3egvjJ-hI4ys6v6YfNr4moh03EzskaAhW09b5fuxg88AJOWihC3j6Uyfk-fbm6fp-Onu8e7i-mk11UdVxmoOp55UsBUjOTK0LiaI20AoJEkSqJkddzss0qLDApmzyxrBcACITVWGKCTnf3bvy7m3EENXSjT75CyrPm4ZXeSNEoviO0t6F4LFVK2978GvFmdqkrJYqpaw2KSsmVUo5aeQfjbZx6y16sN2_ysudEpPxd4teBW1x0GisT1-hjLP_qL8BDRacaQ
CitedBy_id crossref_primary_10_1016_j_ijnonlinmec_2022_104152
crossref_primary_10_3390_jcs7080344
crossref_primary_10_1016_j_tws_2021_108812
crossref_primary_10_1108_EC_01_2021_0044
crossref_primary_10_1016_j_tws_2021_107823
crossref_primary_10_1177_09544062241297120
crossref_primary_10_1016_j_compstruct_2021_114437
crossref_primary_10_3390_math10040565
crossref_primary_10_1016_j_euromechsol_2020_103975
crossref_primary_10_1016_j_tws_2022_109501
crossref_primary_10_1007_s40997_022_00485_1
crossref_primary_10_1016_j_compstruct_2020_112975
crossref_primary_10_1007_s40996_024_01482_x
crossref_primary_10_1155_2021_3835440
crossref_primary_10_1016_j_engstruct_2022_114568
crossref_primary_10_1016_j_compstruct_2020_113110
crossref_primary_10_3103_S0025654422050119
crossref_primary_10_1016_j_apm_2021_10_037
crossref_primary_10_1016_j_istruc_2024_106021
crossref_primary_10_5802_crmeca_274
crossref_primary_10_1007_s00707_022_03196_5
crossref_primary_10_1007_s13369_024_09729_5
crossref_primary_10_1007_s00419_022_02140_2
crossref_primary_10_1016_j_apm_2020_12_001
crossref_primary_10_1007_s00419_021_01882_9
crossref_primary_10_1016_j_finmec_2022_100093
crossref_primary_10_1016_j_tws_2021_107479
crossref_primary_10_1016_j_euromechsol_2021_104284
crossref_primary_10_1007_s10999_022_09601_0
crossref_primary_10_1007_s00419_023_02474_5
crossref_primary_10_1007_s00707_021_03043_z
crossref_primary_10_1007_s00707_025_04265_1
crossref_primary_10_1016_j_euromechsol_2021_104245
crossref_primary_10_3390_mca25020025
crossref_primary_10_1016_j_eml_2020_101089
crossref_primary_10_1177_10775463211027883
crossref_primary_10_1016_j_compstruct_2020_112593
crossref_primary_10_1007_s42417_023_00893_w
crossref_primary_10_1016_j_apm_2019_12_010
crossref_primary_10_1016_j_engstruct_2021_113169
crossref_primary_10_1007_s00419_020_01797_x
crossref_primary_10_1007_s00419_024_02708_0
crossref_primary_10_1016_j_compstruct_2023_117063
Cites_doi 10.1016/j.compstruct.2012.12.024
10.1016/j.compstruct.2017.11.082
10.1115/1.4028859
10.1038/srep28907
10.1016/j.cma.2013.07.017
10.1016/j.jmapro.2011.01.004
10.1016/j.medengphy.2015.10.002
10.1016/j.ijnonlinmec.2014.05.011
10.1515/secm.2011.005
10.1016/j.ijengsci.2018.11.005
10.1016/j.mechrescom.2011.07.006
10.1016/j.compstruct.2018.07.045
10.1002/adma.201503464
10.1002/adem.200700266
10.1016/j.ijsolstr.2014.10.016
10.1016/j.apm.2013.11.032
10.1016/j.compscitech.2017.02.008
10.1177/1045389X12461722
10.1108/EC-08-2015-0225
10.1016/j.euromechsol.2017.07.014
10.1016/j.compositesb.2013.06.024
10.1016/j.actaastro.2015.06.014
10.1016/j.compstruct.2017.10.087
10.1038/srep08064
10.1177/0731684409103340
10.1007/s00707-014-1281-3
10.1115/1.4003239
10.1152/jn.00707.2006
10.1016/j.ijnonlinmec.2009.02.016
10.1016/0045-7825(81)90131-6
10.3390/s100100994
10.1016/j.compstruct.2015.10.017
10.1155/2008/520417
10.1016/j.compositesb.2011.09.003
10.1016/j.compstruct.2018.01.063
10.1016/j.compstruct.2015.07.024
10.1016/j.tws.2016.05.025
10.1016/j.compstruct.2018.07.063
10.1016/j.acme.2013.11.007
10.1002/zamm.19860661027
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Dec 2019
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Dec 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.07.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 957
ExternalDocumentID 10_1016_j_apm_2019_07_018
S0307904X19304196
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c368t-2ad8b6745a710d8c37e58daf57a7a5af5d2ec4b4c376e3e94929d025aee0563d3
IEDL.DBID .~1
ISSN 0307-904X
1088-8691
IngestDate Fri Jul 25 05:09:35 EDT 2025
Tue Jul 01 04:23:58 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Fri Feb 23 02:28:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Intrinsic formulation
Bioinspired materials
Large deflection
Functionally graded beams
Geometrically exact beam
Porous materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-2ad8b6745a710d8c37e58daf57a7a5af5d2ec4b4c376e3e94929d025aee0563d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5811-0710
OpenAccessLink https://hdl.handle.net/2164/14717
PQID 2299162955
PQPubID 2045280
PageCount 20
ParticipantIDs proquest_journals_2299162955
crossref_primary_10_1016_j_apm_2019_07_018
crossref_citationtrail_10_1016_j_apm_2019_07_018
elsevier_sciencedirect_doi_10_1016_j_apm_2019_07_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Gonzalez, Nguyen (bib0004) 2017; 12
Rafsanjani, Brulé, Western, Pasini (bib0002) 2015; 5
Pascon (bib0025) 2016; 33
Heyland, Trepczynski, Duda, Zehn, Schaser, Märdian (bib0006) 2015; 37
Trivedi, Rahn, Kier, Walker (bib0010) 2008; 5
Ebrahimi, Zia (bib0027) 2015; 116
Li, Liu, Stefanini, Fu, Dario (bib0008) 2010; 10
Chen, Kitipornchai, Yang (bib0028) 2016; 107
Khaneh Masjedi, Maheri (bib0039) 2017; 66
Nguyen (bib0019) 2013; 55
Khaneh Masjedi, Ovesy (bib0037) 2015; 54
Chen, Yang, Kitipornchai (bib0029) 2017; 142
Yoon, Lee, Kim (bib0024) 2015; 132
Rao, Rao (bib0048) 1986; 66
Nguyen, Nguyen, Gan, Alexandrov (bib0036) 2018; 333
Bottlang, Long (bib0005) 2015
She, Yuan, Ren, Liu, Xiao (bib0030) 2018; 203
Nguyen (bib0020) 2014; 237
Rahimi, Davoodinik (bib0015) 2010; 17
Mac Murray, An, Robinson, van Meerbeek, O’Brien, Zhao, Shepherd (bib0011) 2015; 27
Eroglu (bib0026) 2016; 136
Zhao, Liu, Feng (bib0003) 2016; 6
Nguyen, Gan (bib0021) 2014; 38
Li, Li, Hu (bib0032) 2018; 184
Kang, Li (bib0013) 2009; 44
Lin, Li, Guan, Zhao, Naceur, Coutellier (bib0033) 2018; 189
Khaneh Masjedi, Ovesy (bib0038) 2015; 226
Yang, Tang, Li, Yang (bib0035) 2018; 204
Parthasarathy, Starly, Raman (bib0012) 2011; 13
Kováčik (bib0044) 2008; 10
Argyris, Symeonidis (bib0049) 1981; 26
Birdwell, Solomon, Thajchayapong, Taylor, Cheely, Towal, Conradt, Hartmann (bib0007) 2007; 98
Washizu (bib0043) 1975
She, Yuan, Karami, Ren, Xiao (bib0031) 2019; 135
Gibson, Ashby (bib0045) 1999
Sitar, Kosel, Brojan (bib0022) 2014; 14
Sahmani, Aghdam, Rabczuk (bib0034) 2018; 186
Schillinger, Evans, Reali, Scott, Hughes (bib0041) 2013; 267
Kocatürk, Şimşek, Akbaş (bib0016) 2011; 18
Almeida, Albino, Menezes, Paulino (bib0017) 2011; 38
Niknam, Fallah, Aghdam (bib0023) 2014; 65
Sotoudeh, Hodges (bib0040) 2011; 78
Mongeau, Demir, Dallmann, Jayaram, Cowan, Full (bib0009) 2014; 217
Zhang (bib0018) 2013; 100
Kang, Li (bib0014) 2010; 29
Saavedra Flores, Friswell, Xia (bib0001) 2013; 24
Hodges (bib0047) 2006
Tornabene, Fantuzzi, Ubertini, Viola (bib0042) 2015; 67
Bîrsan, Altenbach, Sadowski, Eremeyev, Pietras (bib0046) 2012; 43
Yang (10.1016/j.apm.2019.07.018_bib0035) 2018; 204
Parthasarathy (10.1016/j.apm.2019.07.018_bib0012) 2011; 13
Khaneh Masjedi (10.1016/j.apm.2019.07.018_bib0037) 2015; 54
Zhang (10.1016/j.apm.2019.07.018_bib0018) 2013; 100
Heyland (10.1016/j.apm.2019.07.018_bib0006) 2015; 37
Sitar (10.1016/j.apm.2019.07.018_bib0022) 2014; 14
Kocatürk (10.1016/j.apm.2019.07.018_bib0016) 2011; 18
She (10.1016/j.apm.2019.07.018_bib0031) 2019; 135
Tornabene (10.1016/j.apm.2019.07.018_bib0042) 2015; 67
Li (10.1016/j.apm.2019.07.018_bib0032) 2018; 184
Sahmani (10.1016/j.apm.2019.07.018_bib0034) 2018; 186
Rao (10.1016/j.apm.2019.07.018_bib0048) 1986; 66
Gibson (10.1016/j.apm.2019.07.018_bib0045) 1999
Bottlang (10.1016/j.apm.2019.07.018_bib0005) 2015
Argyris (10.1016/j.apm.2019.07.018_bib0049) 1981; 26
Rahimi (10.1016/j.apm.2019.07.018_bib0015) 2010; 17
Trivedi (10.1016/j.apm.2019.07.018_bib0010) 2008; 5
Chen (10.1016/j.apm.2019.07.018_bib0028) 2016; 107
Nguyen (10.1016/j.apm.2019.07.018_bib0019) 2013; 55
Kováčik (10.1016/j.apm.2019.07.018_bib0044) 2008; 10
Zhao (10.1016/j.apm.2019.07.018_bib0003) 2016; 6
Almeida (10.1016/j.apm.2019.07.018_bib0017) 2011; 38
Mongeau (10.1016/j.apm.2019.07.018_bib0009) 2014; 217
Kang (10.1016/j.apm.2019.07.018_bib0013) 2009; 44
Washizu (10.1016/j.apm.2019.07.018_bib0043) 1975
Li (10.1016/j.apm.2019.07.018_bib0008) 2010; 10
Pascon (10.1016/j.apm.2019.07.018_bib0025) 2016; 33
Yoon (10.1016/j.apm.2019.07.018_bib0024) 2015; 132
She (10.1016/j.apm.2019.07.018_bib0030) 2018; 203
Nguyen (10.1016/j.apm.2019.07.018_bib0020) 2014; 237
Birdwell (10.1016/j.apm.2019.07.018_bib0007) 2007; 98
Khaneh Masjedi (10.1016/j.apm.2019.07.018_bib0039) 2017; 66
Schillinger (10.1016/j.apm.2019.07.018_bib0041) 2013; 267
Ebrahimi (10.1016/j.apm.2019.07.018_bib0027) 2015; 116
Sotoudeh (10.1016/j.apm.2019.07.018_bib0040) 2011; 78
Rafsanjani (10.1016/j.apm.2019.07.018_bib0002) 2015; 5
Khaneh Masjedi (10.1016/j.apm.2019.07.018_bib0038) 2015; 226
Bîrsan (10.1016/j.apm.2019.07.018_bib0046) 2012; 43
Mac Murray (10.1016/j.apm.2019.07.018_bib0011) 2015; 27
Gonzalez (10.1016/j.apm.2019.07.018_bib0004) 2017; 12
Saavedra Flores (10.1016/j.apm.2019.07.018_bib0001) 2013; 24
Kang (10.1016/j.apm.2019.07.018_bib0014) 2010; 29
Lin (10.1016/j.apm.2019.07.018_bib0033) 2018; 189
Chen (10.1016/j.apm.2019.07.018_bib0029) 2017; 142
Nguyen (10.1016/j.apm.2019.07.018_bib0036) 2018; 333
Hodges (10.1016/j.apm.2019.07.018_bib0047) 2006
Nguyen (10.1016/j.apm.2019.07.018_bib0021) 2014; 38
Niknam (10.1016/j.apm.2019.07.018_bib0023) 2014; 65
Eroglu (10.1016/j.apm.2019.07.018_bib0026) 2016; 136
References_xml – volume: 135
  start-page: 58
  year: 2019
  end-page: 74
  ident: bib0031
  article-title: On nonlinear bending behavior of FG porous curved nanotubes
  publication-title: Int. J. Eng. Sci.
– volume: 267
  start-page: 170
  year: 2013
  end-page: 232
  ident: bib0041
  article-title: Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical nurbs discretizations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 10
  start-page: 994
  year: 2010
  end-page: 1011
  ident: bib0008
  article-title: A novel bioinspired pvdf micro/nano hair receptor for a robot sensing system
  publication-title: Sensors
– volume: 100
  start-page: 121
  year: 2013
  end-page: 126
  ident: bib0018
  article-title: Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory
  publication-title: Composite Structures
– volume: 55
  start-page: 298
  year: 2013
  end-page: 305
  ident: bib0019
  article-title: Large displacement response of tapered cantilever beams made of axially functionally graded material
  publication-title: Compos. Part B Eng.
– year: 2006
  ident: bib0047
  article-title: Nonlinear composite beam theory
  publication-title: Proceedings of the AIAA
– volume: 65
  start-page: 141
  year: 2014
  end-page: 147
  ident: bib0023
  article-title: Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading
  publication-title: Int. J. NonLinear Mech.
– volume: 24
  start-page: 529
  year: 2013
  end-page: 540
  ident: bib0001
  article-title: Variable stiffness biological and bio-inspired materials
  publication-title: J. Intell. Mater. Syst. Struct.
– year: 1999
  ident: bib0045
  article-title: Cellular Solids: Structure and Properties
– volume: 136
  start-page: 204
  year: 2016
  end-page: 216
  ident: bib0026
  article-title: Large deflection analysis of planar curved beams made of functionally graded materials using variational iterational method
  publication-title: Compos. Struct.
– volume: 43
  start-page: 1315
  year: 2012
  end-page: 1328
  ident: bib0046
  article-title: Deformation analysis of functionally graded beams by the direct approach
  publication-title: Compos. Part B Eng.
– volume: 67
  start-page: 020801
  year: 2015
  ident: bib0042
  article-title: Strong formulation finite element method based on differential quadrature: a survey
  publication-title: Appl. Mech. Rev.
– volume: 66
  start-page: 507
  year: 1986
  end-page: 509
  ident: bib0048
  article-title: On the large deflection of cantilever beams with end rotational load
  publication-title: ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mecha.
– volume: 186
  start-page: 68
  year: 2018
  end-page: 78
  ident: bib0034
  article-title: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory
  publication-title: Compos. Struct.
– volume: 116
  start-page: 117
  year: 2015
  end-page: 125
  ident: bib0027
  article-title: Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities
  publication-title: Acta Astron.
– volume: 54
  start-page: 183
  year: 2015
  end-page: 191
  ident: bib0037
  article-title: Chebyshev collocation method for static intrinsic equations of geometrically exact beams
  publication-title: Int. J. Solids Struct.
– volume: 38
  start-page: 3054
  year: 2014
  end-page: 3066
  ident: bib0021
  article-title: Large deflections of tapered functionally graded beams subjected to end forces
  publication-title: Appl. Math. Modell.
– volume: 217
  start-page: 3333
  year: 2014
  end-page: 3345
  ident: bib0009
  article-title: Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate control during rapid running
  publication-title: J. Exp. Biol.
– volume: 44
  start-page: 696
  year: 2009
  end-page: 703
  ident: bib0013
  article-title: Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force
  publication-title: Int. J. Non Linear Mech.
– volume: 33
  start-page: 2421
  year: 2016
  end-page: 2447
  ident: bib0025
  article-title: Finite element analysis of flexible functionally graded beams with variable Poisson ratio
  publication-title: Eng. Comput.
– volume: 27
  start-page: 6334
  year: 2015
  end-page: 6340
  ident: bib0011
  article-title: Poroelastic foams for simple fabrication of complex soft robots
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1761
  year: 2010
  end-page: 1774
  ident: bib0014
  article-title: Large deflections of a non-linear cantilever functionally graded beam
  publication-title: J. Reinforc. Plast. Compos.
– volume: 98
  start-page: 2439
  year: 2007
  end-page: 2455
  ident: bib0007
  article-title: Biomechanical models for radial distance determination by the rat vibrissal system
  publication-title: J. Neurophysiol.
– volume: 12
  start-page: 98
  year: 2017
  end-page: 117
  ident: bib0004
  article-title: Senile coconut palms: Functional design and biomechanics of stem green tissue
  publication-title: Wood Mater. Sci. Eng.
– year: 1975
  ident: bib0043
  article-title: Variational Methods in Elasticity and Plasticity
– volume: 204
  start-page: 313
  year: 2018
  end-page: 319
  ident: bib0035
  article-title: Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams
  publication-title: Compos. Struct.
– volume: 18
  start-page: 21
  year: 2011
  end-page: 34
  ident: bib0016
  article-title: Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material
  publication-title: Sci. Eng. Compos. Mater.
– start-page: 53
  year: 2015
  end-page: 71
  ident: bib0005
  article-title: Biomechanics of rib fracture fixation
  publication-title: Injuries to the Chest Wall
– volume: 132
  start-page: 1231
  year: 2015
  end-page: 1247
  ident: bib0024
  article-title: Geometrically nonlinear finite element analysis of functionally graded 3d beams considering warping effects
  publication-title: Compos. Struct.
– volume: 78
  start-page: 031010
  year: 2011
  ident: bib0040
  article-title: Modeling beams with various boundary conditions using fully intrinsic equations
  publication-title: J. Appl. Mech.
– volume: 237
  start-page: 340
  year: 2014
  end-page: 355
  ident: bib0020
  article-title: Large displacement behaviour of tapered cantilever euler–bernoulli beams made of functionally graded material
  publication-title: Appl. Math. Comput.
– volume: 142
  start-page: 235
  year: 2017
  end-page: 245
  ident: bib0029
  article-title: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams
  publication-title: Compos. Sci. Technol.
– volume: 66
  start-page: 329
  year: 2017
  end-page: 340
  ident: bib0039
  article-title: Chebyshev collocation method for the free vibration analysis of geometrically exact beams with fully intrinsic formulation
  publication-title: Eur. J. Mech. A Solids
– volume: 226
  start-page: 1689
  year: 2015
  end-page: 1706
  ident: bib0038
  article-title: Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations
  publication-title: Acta Mech.
– volume: 26
  start-page: 75
  year: 1981
  end-page: 123
  ident: bib0049
  article-title: Nonlinear finite element analysis of elastic systems under nonconservative loading-natural formulation. Part I. quasistatic problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 37
  start-page: 1180
  year: 2015
  end-page: 1185
  ident: bib0006
  article-title: Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load
  publication-title: Med. Eng. Phys.
– volume: 14
  start-page: 700
  year: 2014
  end-page: 709
  ident: bib0022
  article-title: Large deflections of nonlinearly elastic functionally graded composite beams
  publication-title: Arch. Civ. Mech. Eng.
– volume: 5
  year: 2015
  ident: bib0002
  article-title: Hydro-responsive curling of the resurrection plant selaginella lepidophylla
  publication-title: Sci. Rep.
– volume: 6
  start-page: 28907
  year: 2016
  ident: bib0003
  article-title: Chirality-dependent flutter of Typha blades in wind
  publication-title: Sci. Rep.
– volume: 333
  start-page: 443
  year: 2018
  end-page: 459
  ident: bib0036
  article-title: Nonlinear bending of elastoplastic functionally graded ceramic-metal beams subjected to nonuniform distributed loads
  publication-title: Appl. Math. Comput.
– volume: 189
  start-page: 239
  year: 2018
  end-page: 246
  ident: bib0033
  article-title: Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method
  publication-title: Compos. Struct.
– volume: 203
  start-page: 614
  year: 2018
  end-page: 623
  ident: bib0030
  article-title: Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory
  publication-title: Compos. Struct.
– volume: 5
  start-page: 99
  year: 2008
  end-page: 117
  ident: bib0010
  article-title: Soft robotics: Biological inspiration, state of the art, and future research
  publication-title: Appl. Bion. Biomech.
– volume: 184
  start-page: 1049
  year: 2018
  end-page: 1061
  ident: bib0032
  article-title: Nonlinear bending of a two-dimensionally functionally graded beam
  publication-title: Compos. Struct.
– volume: 38
  start-page: 553
  year: 2011
  end-page: 559
  ident: bib0017
  article-title: Geometric nonlinear analyses of functionally graded beams using a tailored lagrangian formulation
  publication-title: Mech. Res. Commun.
– volume: 17
  start-page: 25
  year: 2010
  ident: bib0015
  article-title: Large deflection of functionally graded cantilever flexible beam with geometric non-linearity: analytical and numerical approaches
  publication-title: Sci. Iranica. Trans. B Mech. Eng.
– volume: 13
  start-page: 160
  year: 2011
  end-page: 170
  ident: bib0012
  article-title: A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications
  publication-title: J. Manufact. Process.
– volume: 107
  start-page: 39
  year: 2016
  end-page: 48
  ident: bib0028
  article-title: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core
  publication-title: Thin Walled Struct.
– volume: 10
  start-page: 250
  year: 2008
  ident: bib0044
  article-title: Correlation between elastic modulus, shear modulus, Poissons ratio and porosity in porous materials
  publication-title: Adv. Eng. Mater.
– volume: 100
  start-page: 121
  year: 2013
  ident: 10.1016/j.apm.2019.07.018_bib0018
  article-title: Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2012.12.024
– volume: 186
  start-page: 68
  year: 2018
  ident: 10.1016/j.apm.2019.07.018_bib0034
  article-title: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.11.082
– volume: 333
  start-page: 443
  year: 2018
  ident: 10.1016/j.apm.2019.07.018_bib0036
  article-title: Nonlinear bending of elastoplastic functionally graded ceramic-metal beams subjected to nonuniform distributed loads
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 98
  issue: 2
  year: 2017
  ident: 10.1016/j.apm.2019.07.018_bib0004
  article-title: Senile coconut palms: Functional design and biomechanics of stem green tissue
  publication-title: Wood Mater. Sci. Eng.
– volume: 67
  start-page: 020801
  issue: 2
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0042
  article-title: Strong formulation finite element method based on differential quadrature: a survey
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4028859
– year: 2006
  ident: 10.1016/j.apm.2019.07.018_bib0047
  article-title: Nonlinear composite beam theory
– volume: 6
  start-page: 28907
  year: 2016
  ident: 10.1016/j.apm.2019.07.018_bib0003
  article-title: Chirality-dependent flutter of Typha blades in wind
  publication-title: Sci. Rep.
  doi: 10.1038/srep28907
– volume: 267
  start-page: 170
  year: 2013
  ident: 10.1016/j.apm.2019.07.018_bib0041
  article-title: Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical nurbs discretizations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2013.07.017
– volume: 13
  start-page: 160
  issue: 2
  year: 2011
  ident: 10.1016/j.apm.2019.07.018_bib0012
  article-title: A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications
  publication-title: J. Manufact. Process.
  doi: 10.1016/j.jmapro.2011.01.004
– volume: 17
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.apm.2019.07.018_bib0015
  article-title: Large deflection of functionally graded cantilever flexible beam with geometric non-linearity: analytical and numerical approaches
  publication-title: Sci. Iranica. Trans. B Mech. Eng.
– volume: 37
  start-page: 1180
  issue: 12
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0006
  article-title: Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.10.002
– volume: 65
  start-page: 141
  year: 2014
  ident: 10.1016/j.apm.2019.07.018_bib0023
  article-title: Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading
  publication-title: Int. J. NonLinear Mech.
  doi: 10.1016/j.ijnonlinmec.2014.05.011
– volume: 18
  start-page: 21
  issue: 1–2
  year: 2011
  ident: 10.1016/j.apm.2019.07.018_bib0016
  article-title: Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material
  publication-title: Sci. Eng. Compos. Mater.
  doi: 10.1515/secm.2011.005
– volume: 135
  start-page: 58
  year: 2019
  ident: 10.1016/j.apm.2019.07.018_bib0031
  article-title: On nonlinear bending behavior of FG porous curved nanotubes
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2018.11.005
– volume: 38
  start-page: 553
  issue: 8
  year: 2011
  ident: 10.1016/j.apm.2019.07.018_bib0017
  article-title: Geometric nonlinear analyses of functionally graded beams using a tailored lagrangian formulation
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2011.07.006
– volume: 237
  start-page: 340
  year: 2014
  ident: 10.1016/j.apm.2019.07.018_bib0020
  article-title: Large displacement behaviour of tapered cantilever euler–bernoulli beams made of functionally graded material
  publication-title: Appl. Math. Comput.
– volume: 204
  start-page: 313
  year: 2018
  ident: 10.1016/j.apm.2019.07.018_bib0035
  article-title: Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.07.045
– volume: 27
  start-page: 6334
  issue: 41
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0011
  article-title: Poroelastic foams for simple fabrication of complex soft robots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503464
– volume: 10
  start-page: 250
  issue: 3
  year: 2008
  ident: 10.1016/j.apm.2019.07.018_bib0044
  article-title: Correlation between elastic modulus, shear modulus, Poissons ratio and porosity in porous materials
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200700266
– volume: 54
  start-page: 183
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0037
  article-title: Chebyshev collocation method for static intrinsic equations of geometrically exact beams
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.10.016
– volume: 38
  start-page: 3054
  issue: 11–12
  year: 2014
  ident: 10.1016/j.apm.2019.07.018_bib0021
  article-title: Large deflections of tapered functionally graded beams subjected to end forces
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2013.11.032
– volume: 217
  start-page: 3333
  issue: 18
  year: 2014
  ident: 10.1016/j.apm.2019.07.018_bib0009
  article-title: Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate control during rapid running
  publication-title: J. Exp. Biol.
– volume: 142
  start-page: 235
  year: 2017
  ident: 10.1016/j.apm.2019.07.018_bib0029
  article-title: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.02.008
– volume: 24
  start-page: 529
  issue: 5
  year: 2013
  ident: 10.1016/j.apm.2019.07.018_bib0001
  article-title: Variable stiffness biological and bio-inspired materials
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12461722
– volume: 33
  start-page: 2421
  issue: 8
  year: 2016
  ident: 10.1016/j.apm.2019.07.018_bib0025
  article-title: Finite element analysis of flexible functionally graded beams with variable Poisson ratio
  publication-title: Eng. Comput.
  doi: 10.1108/EC-08-2015-0225
– volume: 66
  start-page: 329
  year: 2017
  ident: 10.1016/j.apm.2019.07.018_bib0039
  article-title: Chebyshev collocation method for the free vibration analysis of geometrically exact beams with fully intrinsic formulation
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2017.07.014
– volume: 55
  start-page: 298
  year: 2013
  ident: 10.1016/j.apm.2019.07.018_bib0019
  article-title: Large displacement response of tapered cantilever beams made of axially functionally graded material
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2013.06.024
– volume: 116
  start-page: 117
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0027
  article-title: Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities
  publication-title: Acta Astron.
  doi: 10.1016/j.actaastro.2015.06.014
– year: 1975
  ident: 10.1016/j.apm.2019.07.018_bib0043
– volume: 184
  start-page: 1049
  year: 2018
  ident: 10.1016/j.apm.2019.07.018_bib0032
  article-title: Nonlinear bending of a two-dimensionally functionally graded beam
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.10.087
– volume: 5
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0002
  article-title: Hydro-responsive curling of the resurrection plant selaginella lepidophylla
  publication-title: Sci. Rep.
  doi: 10.1038/srep08064
– volume: 29
  start-page: 1761
  issue: 12
  year: 2010
  ident: 10.1016/j.apm.2019.07.018_bib0014
  article-title: Large deflections of a non-linear cantilever functionally graded beam
  publication-title: J. Reinforc. Plast. Compos.
  doi: 10.1177/0731684409103340
– volume: 226
  start-page: 1689
  issue: 6
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0038
  article-title: Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations
  publication-title: Acta Mech.
  doi: 10.1007/s00707-014-1281-3
– volume: 78
  start-page: 031010
  issue: 3
  year: 2011
  ident: 10.1016/j.apm.2019.07.018_bib0040
  article-title: Modeling beams with various boundary conditions using fully intrinsic equations
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4003239
– volume: 98
  start-page: 2439
  issue: 4
  year: 2007
  ident: 10.1016/j.apm.2019.07.018_bib0007
  article-title: Biomechanical models for radial distance determination by the rat vibrissal system
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00707.2006
– volume: 44
  start-page: 696
  issue: 6
  year: 2009
  ident: 10.1016/j.apm.2019.07.018_bib0013
  article-title: Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2009.02.016
– volume: 26
  start-page: 75
  issue: 1
  year: 1981
  ident: 10.1016/j.apm.2019.07.018_bib0049
  article-title: Nonlinear finite element analysis of elastic systems under nonconservative loading-natural formulation. Part I. quasistatic problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(81)90131-6
– volume: 10
  start-page: 994
  issue: 1
  year: 2010
  ident: 10.1016/j.apm.2019.07.018_bib0008
  article-title: A novel bioinspired pvdf micro/nano hair receptor for a robot sensing system
  publication-title: Sensors
  doi: 10.3390/s100100994
– volume: 136
  start-page: 204
  year: 2016
  ident: 10.1016/j.apm.2019.07.018_bib0026
  article-title: Large deflection analysis of planar curved beams made of functionally graded materials using variational iterational method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.10.017
– volume: 5
  start-page: 99
  issue: 3
  year: 2008
  ident: 10.1016/j.apm.2019.07.018_bib0010
  article-title: Soft robotics: Biological inspiration, state of the art, and future research
  publication-title: Appl. Bion. Biomech.
  doi: 10.1155/2008/520417
– volume: 43
  start-page: 1315
  issue: 3
  year: 2012
  ident: 10.1016/j.apm.2019.07.018_bib0046
  article-title: Deformation analysis of functionally graded beams by the direct approach
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2011.09.003
– start-page: 53
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0005
  article-title: Biomechanics of rib fracture fixation
– volume: 189
  start-page: 239
  year: 2018
  ident: 10.1016/j.apm.2019.07.018_bib0033
  article-title: Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.01.063
– volume: 132
  start-page: 1231
  year: 2015
  ident: 10.1016/j.apm.2019.07.018_bib0024
  article-title: Geometrically nonlinear finite element analysis of functionally graded 3d beams considering warping effects
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.07.024
– volume: 107
  start-page: 39
  year: 2016
  ident: 10.1016/j.apm.2019.07.018_bib0028
  article-title: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core
  publication-title: Thin Walled Struct.
  doi: 10.1016/j.tws.2016.05.025
– volume: 203
  start-page: 614
  year: 2018
  ident: 10.1016/j.apm.2019.07.018_bib0030
  article-title: Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.07.063
– year: 1999
  ident: 10.1016/j.apm.2019.07.018_bib0045
– volume: 14
  start-page: 700
  issue: 4
  year: 2014
  ident: 10.1016/j.apm.2019.07.018_bib0022
  article-title: Large deflections of nonlinearly elastic functionally graded composite beams
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2013.11.007
– volume: 66
  start-page: 507
  issue: 10
  year: 1986
  ident: 10.1016/j.apm.2019.07.018_bib0048
  article-title: On the large deflection of cantilever beams with end rotational load
  publication-title: ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mecha.
  doi: 10.1002/zamm.19860661027
SSID ssj0005904
ssj0012860
Score 2.4552262
Snippet •3D large deflections of FG porous beams are studied using a geometrically exact beam theory.•Constitutive relation is obtained based on the concepts of...
Porous graded materials found in nature can be regarded as variable stiffness optimised load carrier elements that exhibit beneficial properties for real-life...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 938
SubjectTerms Accuracy
Beams (structural)
Bioinspired materials
Biomimetics
Chebyshev approximation
Collocation methods
Cross-sections
Deflection
Flexible structures
Functionally graded beams
Functionally gradient materials
Geometrically exact beam
Intrinsic formulation
Large deflection
Porosity
Porous materials
Stiffness
Title Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation
URI https://dx.doi.org/10.1016/j.apm.2019.07.018
https://www.proquest.com/docview/2299162955
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMVbHpiQQtPEcZIRECg82oGH1M1y7AsqKmkFRaID_HbunKQChBhYEjk5R5Hvcvedcw_GDtAqQ2Eh8YwN0EGRUntadAJP5qKT-0VohEsS6_Zkdi8u-1G_xU6bXBgKq6x1f6XTnbaur7Tr1WyPB4P2LYln6os-QhBfoCBRBruIScqPPr6EeaS-aIohEnXzZ9PFeOkxJaN3Ule_k_p-_G6bfmhpZ3rOl9lSjRn5cfVaK6wF5Spb7M4Krr6ssfdriujmFoqhi60q-ajgZLOqrb7hlD88awuWI9xGX5_noJ_wiCbMciTW_AFGT9RcyzhieNNmwl2S45TTVi1S0Eb9lA9KJCqRtZzQbt37a53dn5_dnWZe3VnBM6FMJl6gbZLLWEQaAYZNTBhDlFhdRLGOdYRnG4ARucAbEkJIBYIoi-hIAyBgCm24webKUQmbjFMBL4QQEForRJEWKTooudQdmegil6HZYn6zpsrUZcep-8VQNfFljwrZoIgNyo8VsmGLHc6mjKuaG38Ri4ZR6pvgKLQJf03bbZiq6q_2RQUBoeUgjaLt_z11hy3QqAp32WVzk-dX2EPQMsn3nVTus_nji6ush6OL_gmO7m4us-wTUwDwhw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIry9MCEFJomjpOMCIEKtCyA1M1y7AsqatMKikQH-O3cOQkChBhYEik-R5HvfPedcw_GjtAqQ24h8YwN0EGRUntatANPZqKd-XlohEsS693Izr246kf9OXZW58JQWGWl-0ud7rR19aRVrWZrMhi0bkk8U1_0EYL4AgVpni0I3L7UxuDk_UucR-qLuhoikde_Nl2Ql55QNno7dQU8qfHH78bph5p2tudila1UoJGflt-1xuagWGfLvc-Kq88b7K1LId3cQj50wVUFH-ecjFZ51jec8YcnbcFyxNvo7PMM9AivaMMsR2LNH2A8ou5axhHDqzZT7rIcZ5zOapGCTupnfFAgUYG85QR3q-Zfm-z-4vzurONVrRU8E8pk6gXaJpmMRaQRYdjEhDFEidV5FOtYR3i3ARiRCRyQEEIqEEVZhEcaABFTaMMt1ijGBWwzThW8EENAaK0QeZqn6KFkUrdlovNMhqbJ_HpNlanqjlP7i6GqA8weFbJBERuUHytkQ5Mdf06ZlEU3_iIWNaPUN8lRaBT-mrZXM1VV2_ZZBQHB5SCNop3_vfWQLXbuel3Vvby53mVLNFLGvuyxxvTpBfYRwUyzAyehH7XO724
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+deflection+of+functionally+graded+porous+beams+based+on+a+geometrically+exact+theory+with+a+fully+intrinsic+formulation&rft.jtitle=Applied+mathematical+modelling&rft.au=Khaneh+Masjedi%2C+Pedram&rft.au=Maheri%2C+Alireza&rft.au=Weaver%2C+Paul+M.&rft.date=2019-12-01&rft.issn=0307-904X&rft.volume=76&rft.spage=938&rft.epage=957&rft_id=info:doi/10.1016%2Fj.apm.2019.07.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2019_07_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon