Influencer recommendation system: choosing the right influencer using a network analysis approach

PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic inquiry. However, despite its prominence as an area for study, several significant challenges must be addressed. One significant challenge invo...

Full description

Saved in:
Bibliographic Details
Published inMarketing intelligence & planning Vol. 41; no. 8; pp. 1197 - 1212
Main Authors Jha, Abhishek Kumar, Ray, Sanjog
Format Journal Article
LanguageEnglish
Published Bradford Emerald Publishing Limited 07.11.2023
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN0263-4503
1758-8049
DOI10.1108/MIP-04-2023-0149

Cover

Loading…
Abstract PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic inquiry. However, despite its prominence as an area for study, several significant challenges must be addressed. One significant challenge involves identifying, assessing and recommending social media influencers (SMIs). This study proposes a semantic network model capable of measuring an influencer's performance on specific topics or subjects to address this issue. This study can assist managers in identifying suitable SMIs based on their estimated reach.Design/methodology/approachData from popular YouTube influencers and publicly available performance measures (views and likes) are extracted. Second, the titles of the past videos made by the influencer are used to develop a semantic network connecting all the videos to other videos based on similarity measures. Third, the nearest neighbor approach extracts the neighbors of the target title video. Finally, based on the set of neighbors, a range prediction is made for the views and likes of the target video with the influencer.FindingsThe results show that the model can predict an accurate range of views and likes based on the suggested video titles and the content creator, with 69–78% accuracy across different influencers on YouTube.Research limitations/implicationsThe current study introduces a novel and innovative approach that exploits the textual association between a SMI's previous content to forecast the outcome of their future content. Although the findings are encouraging, this research recognizes various constraints that upcoming researchers may tackle. Forecasting views of posts concerning novel subjects and precisely adjusting video view counts based on their age constitute two primary limitations of this study.Practical implicationsManagers interested in hiring influencers can employ the suggested approach to evaluate an influencer's potential performance on a specific topic. This research aids managers in making informed decisions regarding influencer selection, utilizing data-based metrics that are simple to comprehend and explain.Originality/valueThe study contributes to outreach evaluation and better estimating the impact of SMIs using a novel semantic network approach.
AbstractList PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic inquiry. However, despite its prominence as an area for study, several significant challenges must be addressed. One significant challenge involves identifying, assessing and recommending social media influencers (SMIs). This study proposes a semantic network model capable of measuring an influencer's performance on specific topics or subjects to address this issue. This study can assist managers in identifying suitable SMIs based on their estimated reach.Design/methodology/approachData from popular YouTube influencers and publicly available performance measures (views and likes) are extracted. Second, the titles of the past videos made by the influencer are used to develop a semantic network connecting all the videos to other videos based on similarity measures. Third, the nearest neighbor approach extracts the neighbors of the target title video. Finally, based on the set of neighbors, a range prediction is made for the views and likes of the target video with the influencer.FindingsThe results show that the model can predict an accurate range of views and likes based on the suggested video titles and the content creator, with 69–78% accuracy across different influencers on YouTube.Research limitations/implicationsThe current study introduces a novel and innovative approach that exploits the textual association between a SMI's previous content to forecast the outcome of their future content. Although the findings are encouraging, this research recognizes various constraints that upcoming researchers may tackle. Forecasting views of posts concerning novel subjects and precisely adjusting video view counts based on their age constitute two primary limitations of this study.Practical implicationsManagers interested in hiring influencers can employ the suggested approach to evaluate an influencer's potential performance on a specific topic. This research aids managers in making informed decisions regarding influencer selection, utilizing data-based metrics that are simple to comprehend and explain.Originality/valueThe study contributes to outreach evaluation and better estimating the impact of SMIs using a novel semantic network approach.
Author Ray, Sanjog
Jha, Abhishek Kumar
Author_xml – sequence: 1
  givenname: Abhishek Kumar
  orcidid: 0000-0001-6478-7525
  surname: Jha
  fullname: Jha, Abhishek Kumar
  email: f20abhishekj@iimidr.ac.in
– sequence: 2
  givenname: Sanjog
  orcidid: 0000-0002-6273-8022
  surname: Ray
  fullname: Ray, Sanjog
  email: sanjogr@iimidr.ac.in
BookMark eNp9kctLAzEQh4MoWB93jwHPq5PnZr2J-CgoetBzSLOJXd1NapIi_e_dWkEU8TSHmW9-wzd7aDvE4BA6InBCCKjTu-lDBbyiQFkFhDdbaEJqoSoFvNlGE6CSVVwA20V7Ob8AQM0YnSAzDb5fumBdwsnZOAwutKZ0MeC8ysUNZ9jOY8xdeMZl7nDqnucFd9_Q8rNlcHDlPaZXbILpV7nL2CwWKRo7P0A73vTZHX7VffR0dfl4cVPd3l9PL85vK8ukKhWVMwae1wKgBUEaM-PKC2g8GMWoktIS6QUVLTWKy8aL1tWCzxwnTHoiLNtHx5u9Y-zb0uWiX-IyjddkTZUSStaiIeMUbKZsijkn5_UidYNJK01Ar0XqUaQGrtci9VrkiMhfiO3Kp6KSTNf_B55uQDe4ZPr2r6gfP2Mf-ROIAA
CitedBy_id crossref_primary_10_1108_MIP_04_2024_0209
Cites_doi 10.1007/S10660-023-09719-Z
10.1016/J.JBUSRES.2022.04.068
10.1108/JRIM-11-2021-0276/FULL/PDF
10.1080/02650487.2020.1822104
10.1016/J.PUBREV.2010.11.001
10.1007/S11042-021-11857-1
10.1287/MKSC.2016.1001
10.1016/J.JRETCONSER.2021.102904
10.1108/MIP-08-2019-0413/FULL/PDF
10.1086/669042
10.1016/j.jretconser.2023.103507
10.1177/0038038514562852
10.1016/J.INTMAR.2021.05.002
10.1177/00222429221125131/ASSET/IMAGES/LARGE/10.1177_00222429221125131-FIG5.JPEG
10.1016/j.jbusres.2021.05.011
10.1080/02650487.2017.1348035
10.1016/J.JRETCONSER.2019.03.012
10.1145/1864708.1864770
10.1016/j.jbusres.2016.04.171
10.1145/2556288.2557285
10.1016/j.chb.2018.12.014
10.1080/02650487.2022.2075636
10.1177/1094428120971683
10.1016/j.jretconser.2023.103528
10.1080/02642069.2023.2209514
10.1108/MIP-06-2023-0246
10.1080/02650487.2019.1634898
10.1016/j.jretconser.2019.102027
10.1108/MIP-03-2021-0085
10.1111/ijcs.12647
10.1145/2959100
10.1080/0267257X.2020.1718740
10.1080/00913367.2021.1980470/SUPPL_FILE/UJOA_A_1980470_SM6247.DOCX
10.1108/JRIM-04-2020-0067/FULL/PDF
10.1111/IJCS.12901
10.1145/2339530.2339717
10.1016/J.IJINFOMGT.2017.12.002
10.1145/2600428
10.1177/00222429221102889/ASSET/IMAGES/LARGE/10.1177_00222429221102889-FIG2.JPEG
10.3758/S13428-011-0183-8
10.1504/IJWBC.2023.131410
10.1287/ISRE.1100.0339
10.1155/2018/3530123
10.1177/00222429221100750/ASSET/IMAGES/LARGE/10.1177_00222429221100750-FIG2
10.1287/ISRE.1100.0343
10.1177/0022242919854374
10.1016/J.KNOSYS.2017.11.021
10.1177/1354856517736979
10.1016/J.JBUSRES.2022.113606
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7WY
7WZ
7XB
8AO
8FI
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FYUFA
F~G
GNUQQ
K6~
L.-
L.0
M0C
M2M
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
DOI 10.1108/MIP-04-2023-0149
DatabaseName CrossRef
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Hospital Premium Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global (OCUL)
Psychology Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
Health Research Premium Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Business Premium Collection
ABI/INFORM Global
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Business Collection
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1758-8049
EndPage 1212
ExternalDocumentID 10_1108_MIP_04_2023_0149
10.1108/MIP-04-2023-0149
GroupedDBID .WV
0R~
1JL
1WG
29M
2RR
3FY
4.4
5GY
5VS
70U
7WY
9E0
9F-
AADTA
AADXL
AAGBP
AAMCF
AAPSD
AAUDR
ABEAN
ABIJV
ABIVO
ABJNI
ABSDC
ACBMB
ACGFO
ACGFS
ACMTK
ACTAU
ADBBV
ADFRT
ADOMW
AEBZA
AEDOK
AEMMR
AETHF
AEUCW
AFNZV
AHZQH
AIAFM
AJEBP
AJFKA
ALMA_UNASSIGNED_HOLDINGS
APPLU
ASMFL
ATGMP
AUCOK
AVELQ
BCDNB
BENPR
BLEHN
BUONS
CS3
EBS
FNNZZ
GEA
GEB
GEC
GEI
GMM
GMN
GMX
GQ.
GROUPED_ABI_INFORM_COMPLETE
HZ~
IAO
IGG
IJT
IOF
IPNFZ
J1Y
JI-
JL0
K6~
LXL
LXN
M42
N95
O9-
P2P
RIG
RXW
SCAQC
SDURG
SLOBJ
TAE
TAF
TDF
TEM
TET
TFD
TGG
TMD
TMF
TMI
TMK
TMT
V1G
YNT
YQT
Z11
Z12
Z21
ZYZAG
8AO
8FI
8FW
8R4
8R5
AAKOT
AAXBI
AAYXX
ABXQL
ABYQI
ACBFK
ACTSA
ADQHX
ADWNT
AFKRA
AFNTC
AGTVX
AGZLY
AHMHQ
AILOG
AJPYP
ALIPV
AODMV
AZQEC
BEZIV
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EOXHF
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
H13
M0C
M2M
PHGZM
PHGZT
PQBIZ
PQQKQ
PROAC
PSYQQ
Q2X
UKHRP
7XB
L.-
L.0
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c368t-26b30f47500d0519ab48f509f0a832866c16f525d2a8469f5de754be4136f15c3
IEDL.DBID ZYZAG
ISSN 0263-4503
IngestDate Sat Aug 23 14:58:06 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Thu Jul 31 00:35:08 EDT 2025
Tue Jan 16 21:21:17 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Social media influencers
Network analytics
Influencer marketing
Prediction model
Semantic network
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-26b30f47500d0519ab48f509f0a832866c16f525d2a8469f5de754be4136f15c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6478-7525
0000-0002-6273-8022
PQID 2885867591
PQPubID 37391
PageCount 16
ParticipantIDs emerald_primary_10_1108_MIP-04-2023-0149
crossref_citationtrail_10_1108_MIP_04_2023_0149
proquest_journals_2885867591
crossref_primary_10_1108_MIP_04_2023_0149
PublicationCentury 2000
PublicationDate 2023-11-07
PublicationDateYYYYMMDD 2023-11-07
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-07
  day: 07
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Marketing intelligence & planning
PublicationYear 2023
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2023110411374420200_ref071) 2021; 134
(key2023110411374420200_ref047) 2019; 93
(key2023110411374420200_ref057) 2018; 39
(key2023110411374420200_ref049) 2022; 56
(key2023110411374420200_ref008) 2012
Marketing Science Institute (key2023110411374420200_ref044) 2023
(key2023110411374420200_ref073) 2005
(key2023110411374420200_ref025) 2011; 23
(key2023110411374420200_ref007) 2022; 86
(key2023110411374420200_ref070) 2010
Statista (key2023110411374420200_ref056) 2023
(key2023110411374420200_ref015) 2016
(key2023110411374420200_ref039) 2022
(key2023110411374420200_ref040) 2014
(key2023110411374420200_ref005) 2011
(key2023110411374420200_ref031) 2023
(key2023110411374420200_ref061) 2022
(key2023110411374420200_ref013) 2016; 36
(key2023110411374420200_ref004) 2020; 38
(key2023110411374420200_ref043) 2022; 17
GMI Blogger (key2023110411374420200_ref024) 2023
(key2023110411374420200_ref034) 2023
(key2023110411374420200_ref037) 2016; 69
(key2023110411374420200_ref062) 2021
(key2023110411374420200_ref002) 2019; 49
(key2023110411374420200_ref030) 2022; 16
(key2023110411374420200_ref014) 2023
(key2023110411374420200_ref060) 2023; 157
(key2023110411374420200_ref017) 2010
(key2023110411374420200_ref058) 2011; 23
(key2023110411374420200_ref048) 2021; 50
(key2023110411374420200_ref051) 2019; 39
(key2023110411374420200_ref011) 2012; 44
(key2023110411374420200_ref050) 2023
Statista (key2023110411374420200_ref055) 2023
(key2023110411374420200_ref069) 2019
(key2023110411374420200_ref027) 2022; 25
(key2023110411374420200_ref022) 2011; 37
key2023110411374420200_ref035
(key2023110411374420200_ref001) 2021; 39
(key2023110411374420200_ref046) 2015; 49
key2023110411374420200_ref065
(key2023110411374420200_ref020) 2022
(key2023110411374420200_ref029) 2019; 83
(key2023110411374420200_ref054) 2022; 42
(key2023110411374420200_ref064) 2023; 75
(key2023110411374420200_ref067) 2018; 141
(key2023110411374420200_ref018) 2017; 36
(key2023110411374420200_ref023) 2023
(key2023110411374420200_ref042) 2022; 148
(key2023110411374420200_ref072) 2019
(key2023110411374420200_ref012) 2010
(key2023110411374420200_ref009) 1991
(key2023110411374420200_ref032) 2020; 36
(key2023110411374420200_ref066) 2021
(key2023110411374420200_ref006) 2023; 19
key2023110411374420200_ref028
key2023110411374420200_ref026
(key2023110411374420200_ref010) 2022; 66
(key2023110411374420200_ref036) 2020; 54
key2023110411374420200_ref052
(key2023110411374420200_ref016) 1993
(key2023110411374420200_ref063) 2023; 75
(key2023110411374420200_ref003) 2018; 24
(key2023110411374420200_ref053) 2008
(key2023110411374420200_ref045) 2013; 40
key2023110411374420200_ref019
(key2023110411374420200_ref021) 2014
(key2023110411374420200_ref041) 2018
(key2023110411374420200_ref033) 2023; 82
key2023110411374420200_ref059
(key2023110411374420200_ref038) 2022; 8
References_xml – ident: key2023110411374420200_ref035
– year: 2010
  ident: key2023110411374420200_ref012
  article-title: Global topology of word co-occurrence networks: beyond the two-regime power-law
  publication-title: Coling 2010: Posters
– volume-title: The inside Story of Papa John's Toxic Culture
  year: 2022
  ident: key2023110411374420200_ref020
– start-page: 1
  year: 2023
  ident: key2023110411374420200_ref031
  article-title: Social media influencer marketing: foundations, trends, and ways forward
  publication-title: Electronic Commerce Research
  doi: 10.1007/S10660-023-09719-Z
– volume: 148
  start-page: 325
  year: 2022
  ident: key2023110411374420200_ref042
  article-title: Customer engagement and social media: revisiting the past to inform the future
  publication-title: Journal of Business Research
  doi: 10.1016/J.JBUSRES.2022.04.068
– volume: 17
  start-page: 232
  issue: 2
  year: 2022
  ident: key2023110411374420200_ref043
  article-title: From direct marketing to interactive marketing: a retrospective review of the Journal of Research in Interactive Marketing
  publication-title: Journal of Research in Interactive Marketing
  doi: 10.1108/JRIM-11-2021-0276/FULL/PDF
– ident: key2023110411374420200_ref059
  doi: 10.1080/02650487.2020.1822104
– year: 2021
  ident: key2023110411374420200_ref062
  article-title: More than two-thirds of US marketers will use influencer marketing - insider Intelligence Trends, Forecasts and Statistics
  publication-title: EMarketer
– volume: 37
  start-page: 90
  issue: 1
  year: 2011
  ident: key2023110411374420200_ref022
  article-title: Who are the social media influencers? A study of public perceptions of personality
  publication-title: Public Relations Review
  doi: 10.1016/J.PUBREV.2010.11.001
– volume-title: Knowledge Representation and the Semantics of Natural Language
  year: 2005
  ident: key2023110411374420200_ref073
– volume: 82
  start-page: 8811
  issue: 6
  year: 2023
  ident: key2023110411374420200_ref033
  article-title: The homophily principle in social network analysis: a survey
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/S11042-021-11857-1
– volume: 36
  start-page: 89
  issue: 1
  year: 2016
  ident: key2023110411374420200_ref013
  article-title: Spillover effects in seeded word-of-mouth marketing campaigns
  publication-title: Marketing Science
  doi: 10.1287/MKSC.2016.1001
– volume: 66
  year: 2022
  ident: key2023110411374420200_ref010
  article-title: Influencer marketing: homophily, customer value co-creation behaviour and purchase intention
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/J.JRETCONSER.2021.102904
– ident: key2023110411374420200_ref019
– volume: 8
  start-page: 89
  issue: 1
  year: 2022
  ident: key2023110411374420200_ref038
  article-title: How to choose the right Influencer for a marketing strategy: ingenta Connect
  publication-title: Applied Marketing Analytics
– volume-title: MSI Announces 2020-22 Research Priorities – MSI – Marketing Science Institute
  year: 2023
  ident: key2023110411374420200_ref044
– volume: 38
  start-page: 847
  issue: 7
  year: 2020
  ident: key2023110411374420200_ref004
  article-title: Impact of consumer engagement on firm performance
  publication-title: Marketing Intelligence and Planning
  doi: 10.1108/MIP-08-2019-0413/FULL/PDF
– volume: 40
  start-page: 136
  issue: 1
  year: 2013
  ident: key2023110411374420200_ref045
  article-title: The megaphone effect: taste and audience in fashion blogging
  publication-title: Journal of Consumer Research
  doi: 10.1086/669042
– ident: key2023110411374420200_ref026
– volume: 75
  year: 2023
  ident: key2023110411374420200_ref063
  article-title: Persuasive cues and reciprocal behaviors in influencer-follower relationships: the mediating role of influencer defense
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2023.103507
– year: 1991
  ident: key2023110411374420200_ref009
  article-title: Principles of semantic networks: explorations in the representation of knowledge
– start-page: 164
  year: 1993
  ident: key2023110411374420200_ref016
  article-title: Contextual word similarity and estimation from sparse data
  publication-title: 31st Annual Meeting of the Association for Computational Linguistics
– volume-title: My videos are at the mercy of the YouTube algorithm: how content creators craft algorithmic personas and perceive the algorithm that dictates their work
  year: 2019
  ident: key2023110411374420200_ref069
– volume: 49
  start-page: 1200
  issue: 6
  year: 2015
  ident: key2023110411374420200_ref046
  article-title: ‘Charlie is so cool like’: authenticity, popularity and inclusive masculinity on YouTube
  publication-title: Sociology
  doi: 10.1177/0038038514562852
– volume: 56
  start-page: 70
  year: 2022
  ident: key2023110411374420200_ref049
  article-title: More trust in fewer followers: diverging effects of popularity metrics and green orientation social media influencers
  publication-title: Journal of Interactive Marketing
  doi: 10.1016/J.INTMAR.2021.05.002
– year: 2022
  ident: key2023110411374420200_ref061
  article-title: Finding goldilocks influencers: how follower count drives social media engagement
  publication-title: Journal of Marketing
  doi: 10.1177/00222429221125131/ASSET/IMAGES/LARGE/10.1177_00222429221125131-FIG5.JPEG
– year: 2023
  ident: key2023110411374420200_ref056
  article-title: Social media platforms used in influencer campaigns 2021 | Statista
  publication-title: Statista
– volume: 134
  start-page: 122
  year: 2021
  ident: key2023110411374420200_ref071
  article-title: How social media influencers’ narrative strategies benefit cultivating influencer marketing: tackling issues of cultural barriers, commercialised content, and sponsorship disclosure
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2021.05.011
– volume: 36
  start-page: 798
  issue: 5
  year: 2017
  ident: key2023110411374420200_ref018
  article-title: Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude
  publication-title: International Journal of Advertising
  doi: 10.1080/02650487.2017.1348035
– volume: 49
  start-page: 86
  year: 2019
  ident: key2023110411374420200_ref002
  article-title: Measuring social media influencer index- insights from facebook, Twitter and Instagram
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/J.JRETCONSER.2019.03.012
– start-page: 293
  year: 2010
  ident: key2023110411374420200_ref017
  article-title: The YouTube video recommendation system
  doi: 10.1145/1864708.1864770
– volume: 69
  start-page: 5753
  issue: 12
  year: 2016
  ident: key2023110411374420200_ref037
  article-title: YouTube vloggers' influence on consumer luxury brand perceptions and intentions
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2016.04.171
– start-page: 327
  year: 2011
  ident: key2023110411374420200_ref005
  article-title: Data mining in social media
  publication-title: Social Network Data Analytics
– start-page: 979
  year: 2014
  ident: key2023110411374420200_ref021
  article-title: Does content determine information popularity in social media?: a case study of youtube videos' content and their popularity
  doi: 10.1145/2556288.2557285
– start-page: 404
  year: 2010
  ident: key2023110411374420200_ref070
  article-title: The impact of YouTube recommendation system on video views
– volume: 93
  start-page: 226
  year: 2019
  ident: key2023110411374420200_ref047
  article-title: ‘Thanks for watching’. The effectiveness of YouTube vlogendorsements
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.12.014
– volume: 42
  start-page: 368
  issue: 2
  year: 2022
  ident: key2023110411374420200_ref054
  article-title: Explaining purchase intent via expressed reasons to follow an influencer, perceived homophily, and perceived authenticity
  publication-title: International Journal of Advertising
  doi: 10.1080/02650487.2022.2075636
– volume: 25
  start-page: 114
  issue: 1
  year: 2022
  ident: key2023110411374420200_ref027
  article-title: Text preprocessing for text mining in organizational research: review and recommendations
  publication-title: Organizational Research Methods
  doi: 10.1177/1094428120971683
– volume: 75
  year: 2023
  ident: key2023110411374420200_ref064
  article-title: Is beauty always good? Effects of visual presentation of Influencer's aesthetic labor on brand purchase intention
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2023.103528
– start-page: 1
  year: 2023
  ident: key2023110411374420200_ref014
  article-title: The influence of self-disclosure micro-celebrity endorsement on subsequent brand attachment: from an emotional connection perspective (Second revised version)
  publication-title: Service Industries Journal
  doi: 10.1080/02642069.2023.2209514
– year: 2023
  ident: key2023110411374420200_ref034
  article-title: How and when social media influencers' intimate self-disclosure fosters purchase intentions: the roles of congruency and parasocial relationships
  publication-title: Marketing Intelligence and Planning
  doi: 10.1108/MIP-06-2023-0246
– volume: 39
  start-page: 258
  issue: 2
  year: 2019
  ident: key2023110411374420200_ref051
  article-title: Celebrity vs. Influencer endorsements in advertising: the role of identification, credibility, and Product-Endorser fit
  publication-title: International Journal of Advertising
  doi: 10.1080/02650487.2019.1634898
– volume: 54
  year: 2020
  ident: key2023110411374420200_ref036
  article-title: YouTube vloggers' popularity and influence: the roles of homophily, emotional attachment, and expertise
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2019.102027
– year: 2023
  ident: key2023110411374420200_ref024
  article-title: YouTube statistics 2023 [users by country + demographics]
  publication-title: Global Media Insight
– ident: key2023110411374420200_ref052
– volume: 39
  start-page: 979
  issue: 7
  year: 2021
  ident: key2023110411374420200_ref001
  article-title: Mapping the influence of influencer marketing: a bibliometric analysis
  publication-title: Marketing Intelligence and Planning
  doi: 10.1108/MIP-03-2021-0085
– start-page: 617
  year: 2021
  ident: key2023110411374420200_ref066
  article-title: Social media influencer marketing: a systematic review, integrative framework and future research agenda
  publication-title: International Journal of Consumer Studies
  doi: 10.1111/ijcs.12647
– year: 2023
  ident: key2023110411374420200_ref023
  article-title: The state of influencer marketing benchmark report 2023
  publication-title: Influencer Marketing Hub
– year: 2016
  ident: key2023110411374420200_ref015
  article-title: Deep neural networks for YouTube recommendations
  doi: 10.1145/2959100
– volume: 36
  start-page: 248
  issue: 3-4
  year: 2020
  ident: key2023110411374420200_ref032
  article-title: When less is more: the impact of macro and micro social media influencers' disclosure
  publication-title: Journal of Marketing Management
  doi: 10.1080/0267257X.2020.1718740
– volume: 50
  start-page: 584
  issue: 5
  year: 2021
  ident: key2023110411374420200_ref048
  article-title: David and goliath: when and why micro-influencers are more persuasive than mega-influencers
  publication-title: Journal of Advertising
  doi: 10.1080/00913367.2021.1980470/SUPPL_FILE/UJOA_A_1980470_SM6247.DOCX
– volume: 16
  start-page: 137
  issue: 1
  year: 2022
  ident: key2023110411374420200_ref030
  article-title: How social media advertising features influence consumption and sharing intentions: the mediation of customer engagement
  publication-title: Journal of Research in Interactive Marketing
  doi: 10.1108/JRIM-04-2020-0067/FULL/PDF
– year: 2023
  ident: key2023110411374420200_ref050
  article-title: Social media influencers and consumer engagement: a review and future research agenda
  publication-title: International Journal of Consumer Studies
  doi: 10.1111/IJCS.12901
– start-page: 1186
  year: 2012
  ident: key2023110411374420200_ref008
  article-title: The untold story of the clones: content-agnostic factors that impact YouTube video popularity
  doi: 10.1145/2339530.2339717
– volume: 39
  start-page: 156
  year: 2018
  ident: key2023110411374420200_ref057
  article-title: Social media analytics – challenges in topic discovery, data collection, and data preparation
  publication-title: International Journal of Information Management
  doi: 10.1016/J.IJINFOMGT.2017.12.002
– year: 2014
  ident: key2023110411374420200_ref040
  doi: 10.1145/2600428
– year: 2022
  ident: key2023110411374420200_ref039
  article-title: Influencer marketing effectiveness
  publication-title: Journal of Marketing
  doi: 10.1177/00222429221102889/ASSET/IMAGES/LARGE/10.1177_00222429221102889-FIG2.JPEG
– volume: 44
  start-page: 890
  issue: 3
  year: 2012
  ident: key2023110411374420200_ref011
  article-title: Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD
  publication-title: Behavior Research Methods
  doi: 10.3758/S13428-011-0183-8
– volume: 19
  start-page: 222
  issue: 2/3
  year: 2023
  ident: key2023110411374420200_ref006
  article-title: Foundations of consumer engagement with social media influencers
  publication-title: International Journal of Web Based Communities
  doi: 10.1504/IJWBC.2023.131410
– volume: 23
  start-page: 23
  issue: 1
  year: 2011
  ident: key2023110411374420200_ref058
  article-title: Social networks and the diffusion of user-generated content: evidence from YouTube
  publication-title: Information Systems Research
  doi: 10.1287/ISRE.1100.0339
– ident: key2023110411374420200_ref028
– year: 2018
  ident: key2023110411374420200_ref041
  article-title: Differentially private recommendation system based on community detection in social network applications
  publication-title: Security and Communication Networks, 2018
  doi: 10.1155/2018/3530123
– volume: 86
  start-page: 1
  issue: 5
  year: 2022
  ident: key2023110411374420200_ref007
  article-title: Fields of gold: scraping web data for marketing insights
  publication-title: Journal of Marketing
  doi: 10.1177/00222429221100750/ASSET/IMAGES/LARGE/10.1177_00222429221100750-FIG2
– year: 2023
  ident: key2023110411374420200_ref055
  article-title: Global influencer market size 2023 | Statista
  publication-title: Statista
– volume: 23
  start-page: 182
  issue: 1
  year: 2011
  ident: key2023110411374420200_ref025
  article-title: Research note—the impact of external word-of-mouth sources on retailer sales of high-involvement products
  publication-title: Information Systems Research
  doi: 10.1287/ISRE.1100.0343
– volume: 83
  start-page: 78
  issue: 5
  year: 2019
  ident: key2023110411374420200_ref029
  article-title: Driving brand engagement through online social influencers: an empirical investigation of sponsored blogging campaigns
  publication-title: Journal of Marketing
  doi: 10.1177/0022242919854374
– volume: 141
  start-page: 211
  year: 2018
  ident: key2023110411374420200_ref067
  article-title: Identifying topical influencers on twitter based on user behavior and network topology
  publication-title: Knowledge-Based Systems
  doi: 10.1016/J.KNOSYS.2017.11.021
– start-page: 235
  year: 2019
  ident: key2023110411374420200_ref072
  article-title: Beyond personalization: social content recommendation for creator equality and consumer satisfaction
– volume: 24
  start-page: 16
  issue: 1
  year: 2018
  ident: key2023110411374420200_ref003
  article-title: YouTube channels, uploads and views: a statistical analysis of the past 10 years
  publication-title: Convergence
  doi: 10.1177/1354856517736979
– year: 2008
  ident: key2023110411374420200_ref053
  article-title: Semantic network analysis: techniques for extracting, representing, and querying media content
– ident: key2023110411374420200_ref065
– volume: 157
  year: 2023
  ident: key2023110411374420200_ref060
  article-title: Mega or macro social media influencers: who endorses brands better?
  publication-title: Journal of Business Research
  doi: 10.1016/J.JBUSRES.2022.113606
SSID ssj0007332
Score 2.3480737
Snippet PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1197
SubjectTerms Accuracy
Algorithms
Collaboration
Influencer marketing
Purchase intention
Recommender systems
Semantics
Social networks
Success
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7agngRn1itkoMHPSzd3WSzqRdRaWmFliIWegvZPECw29rH_3eym22piOdk9zCTzHwzSb4Pobt2pOI4snHAMk4DCnES9hwEQ5ZpQ4hjQNfuofBgyHpj-jZJJr7htvTXKquYWARqPVOuR96KOU84oNt29DT_DpxqlDtd9RIa-6gOIZhD8VV_6QxH75tYnJJCogwKDRLQJCTVQWXIW4P-yJ0KOPnwwNUJO4np1-vcbYQu0k73GB15vIifSwefoD2Tn6KD6rr6GZL9SmVkgV1xO50aL5OES5LmR-x4Nl1HAAPWw0Uxjj-3H62LIYnz8j44lp6lBFds4-do3O18vPYCL5sQKML4KohZRkJLAQqE2gE0mVFuARfYUML25YypiNkkTnQsAXy0baJNmtDMQDpjNkoUuUC1fJabS4StTXWWRdJoyyhjWhrOIwIln5KQ51XcQK3KZkJ5TnEnbfElitoi5AKsLEIqnJWFs3IDPWy-mJd8Gv_Mvfdu-GvqjvMaqFn5SfhNuBTbJXP1__A1Oiz-5LrFaRPVVou1uQGsscpu_YL6AcNbzz4
  priority: 102
  providerName: ProQuest
Title Influencer recommendation system: choosing the right influencer using a network analysis approach
URI https://www.emerald.com/insight/content/doi/10.1108/MIP-04-2023-0149/full/html
https://www.proquest.com/docview/2885867591
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60BfHiW6yPkoMHPazdTbJp6k2lagWLiIJ6WZLdBIt2lXZ78deb2UfFIoLgeZMsyWS_fDM7-QZgvxPElAaWekJL7nGHk-6bc2AodGIYQwX0BC8KX_fF5T2_eggf5qBf3YXJ0yqLcEyO04N0jE5qCxO3HQpPBQewes117wbj-lgA3EOm38KIdes5G77OQ50Gwpc1qD89Pp1cTLG5zfKSZc7xYB4PfVb9uPxhtG8H1cxt3S_Ezo-h82V4qyZQZJ-8HE0yfRR_zGg7_t8MV2CpZKzkpNhiqzBn0jVYqBLm10H1qjonI4Lu9XBoykJNpJCJPiao9IkxCeLYJsnDAWTw1WmSP1IkLTLSiSp1Ukild74B9-fdu7NLryzc4MVMyMyjQjPfckdG_AQpotJcWsdMrK8cgEgh4kDYkIYJVY7-dGyYmHbItXEHqrBBGLNNqKVvqdkCYm070TpQJrGCC5EoI2XAnNMZK8c0YtqAVmWlKC5VzbG4xmuUeze-jNwaRj6PcA0jXMMGHE57vBeKHr-0PShN9VPTb6ZpwG61M6ISBsYRlTKUziXrBNt_eOsOLObDYvC6vQu1bDQxe476ZLoJ9dNu_-a2We7rT70-_W8
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RIFEuqC2tCI_Wh1aCwyq7ttdxKiHUUlBSSIQqkLi53rUtIZHwCkL8qf5GZnbXRKCKG2c_DjPjmflsz3wAX3tZyXkWeKIKLROJfhLPHDpDVTgvBHVAd1QoPByp_on8fZqfzsG_WAtD3yqjT6wctbso6Y68w7XONWa3vWzn8ioh1ih6XY0UGrVZHPj7O4RsN9uDX6jfb5zv7x3v9pOGVSAphdLThKtCpEFipEwd5S-2kDpg2AypRevWSpWZCjnPHbcYm3shd76by8Kjt1chy0uB-76BeSkQyrRg_ufe6OjPo-_viooSDYGNSGSeivgwmurOcHBErxBEV54QLnkSCJ9VA88iQhXm9t_BUpOfsh-1Qb2HOT_5AAvxe_wy2EFkNblmBKbHY9_QMrG6KfR3Rn096QaCYW7JKvDPzmaLbqshyyb1_3Nmm64oLHY3_wgnryLQT9CaXEz8CrAQuq4oMutdUFIpZ73WmUCIWVrMK0rehk6UmSmbHuZEpXFuKiyTaoNSNqk0JGVDUm7D1uOKy7p_xwtzNxs1_G_qE-W1YT3qyTSH_sbMTHT15eEv8LZ_PDw0h4PRwRosVrvSTXV3HVrT61u_gXnOtPjcGBeDv69tzw9JQgoe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RTxQxEJ7gkRBfDKLGA5Q-YAIPm9ttu92eiTEKXDiRy8VIwlvtbtuEBA6EI8a_5q9zZrflgjG88dxuH2Zm55uZTucD2B4WDedF4Jmqtcwk-kn859AZqtp5IWgCuqOHwscTdXgiv5yWp0vwJ72FobbK5BNbR-0uG6qRD7jWpcbodlgMQmyLmO6PPl79zIhBim5aE51GZyJH_vcvTN9uPoz3UdfvOB8dfN87zCLDQNYIpecZV7XIg0TUzB3FMraWOiCEhtyipWulmkKFkpeOW8TpYSidr0pZe_T8KhRlI_DcJ7BcYVaU92D588Fk-u0OByrR0qNhkiMyWeYiXZLmenA8ntKNBFGXZ5Sj3APFf14GL9ChhbzRKjyLsSr71BnXc1jyszVYSa3yL8COE8PJNaPE-uLCR4om1g2Ifs9oxidVIxjGmawtBLCzxUe37ZJls64Xndk4IYWlSecv4eRRBPoKerPLmX8NLITK1XVhvQtKKuWs17oQmG42FmOMhvdhkGRmmjjPnGg1zk2b1-TaoJRNLg1J2ZCU-7B798VVN8vjgb07UQ3_23pPeX3YTHoy0QHcmIW5rj-8vAUraMfm63hytAFP20OpaF1tQm9-fevfYMgzr99G22Lw47HN-S-8qA5T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influencer+recommendation+system%3A+choosing+the+right+influencer+using+a+network+analysis+approach&rft.jtitle=Marketing+intelligence+%26+planning&rft.au=Jha%2C+Abhishek+Kumar&rft.au=Ray%2C+Sanjog&rft.date=2023-11-07&rft.issn=0263-4503&rft.volume=41&rft.issue=8&rft.spage=1197&rft.epage=1212&rft_id=info:doi/10.1108%2FMIP-04-2023-0149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_MIP_04_2023_0149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-4503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-4503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-4503&client=summon