Influencer recommendation system: choosing the right influencer using a network analysis approach
PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic inquiry. However, despite its prominence as an area for study, several significant challenges must be addressed. One significant challenge invo...
Saved in:
Published in | Marketing intelligence & planning Vol. 41; no. 8; pp. 1197 - 1212 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bradford
Emerald Publishing Limited
07.11.2023
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0263-4503 1758-8049 |
DOI | 10.1108/MIP-04-2023-0149 |
Cover
Loading…
Abstract | PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic inquiry. However, despite its prominence as an area for study, several significant challenges must be addressed. One significant challenge involves identifying, assessing and recommending social media influencers (SMIs). This study proposes a semantic network model capable of measuring an influencer's performance on specific topics or subjects to address this issue. This study can assist managers in identifying suitable SMIs based on their estimated reach.Design/methodology/approachData from popular YouTube influencers and publicly available performance measures (views and likes) are extracted. Second, the titles of the past videos made by the influencer are used to develop a semantic network connecting all the videos to other videos based on similarity measures. Third, the nearest neighbor approach extracts the neighbors of the target title video. Finally, based on the set of neighbors, a range prediction is made for the views and likes of the target video with the influencer.FindingsThe results show that the model can predict an accurate range of views and likes based on the suggested video titles and the content creator, with 69–78% accuracy across different influencers on YouTube.Research limitations/implicationsThe current study introduces a novel and innovative approach that exploits the textual association between a SMI's previous content to forecast the outcome of their future content. Although the findings are encouraging, this research recognizes various constraints that upcoming researchers may tackle. Forecasting views of posts concerning novel subjects and precisely adjusting video view counts based on their age constitute two primary limitations of this study.Practical implicationsManagers interested in hiring influencers can employ the suggested approach to evaluate an influencer's potential performance on a specific topic. This research aids managers in making informed decisions regarding influencer selection, utilizing data-based metrics that are simple to comprehend and explain.Originality/valueThe study contributes to outreach evaluation and better estimating the impact of SMIs using a novel semantic network approach. |
---|---|
AbstractList | PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic inquiry. However, despite its prominence as an area for study, several significant challenges must be addressed. One significant challenge involves identifying, assessing and recommending social media influencers (SMIs). This study proposes a semantic network model capable of measuring an influencer's performance on specific topics or subjects to address this issue. This study can assist managers in identifying suitable SMIs based on their estimated reach.Design/methodology/approachData from popular YouTube influencers and publicly available performance measures (views and likes) are extracted. Second, the titles of the past videos made by the influencer are used to develop a semantic network connecting all the videos to other videos based on similarity measures. Third, the nearest neighbor approach extracts the neighbors of the target title video. Finally, based on the set of neighbors, a range prediction is made for the views and likes of the target video with the influencer.FindingsThe results show that the model can predict an accurate range of views and likes based on the suggested video titles and the content creator, with 69–78% accuracy across different influencers on YouTube.Research limitations/implicationsThe current study introduces a novel and innovative approach that exploits the textual association between a SMI's previous content to forecast the outcome of their future content. Although the findings are encouraging, this research recognizes various constraints that upcoming researchers may tackle. Forecasting views of posts concerning novel subjects and precisely adjusting video view counts based on their age constitute two primary limitations of this study.Practical implicationsManagers interested in hiring influencers can employ the suggested approach to evaluate an influencer's potential performance on a specific topic. This research aids managers in making informed decisions regarding influencer selection, utilizing data-based metrics that are simple to comprehend and explain.Originality/valueThe study contributes to outreach evaluation and better estimating the impact of SMIs using a novel semantic network approach. |
Author | Ray, Sanjog Jha, Abhishek Kumar |
Author_xml | – sequence: 1 givenname: Abhishek Kumar orcidid: 0000-0001-6478-7525 surname: Jha fullname: Jha, Abhishek Kumar email: f20abhishekj@iimidr.ac.in – sequence: 2 givenname: Sanjog orcidid: 0000-0002-6273-8022 surname: Ray fullname: Ray, Sanjog email: sanjogr@iimidr.ac.in |
BookMark | eNp9kctLAzEQh4MoWB93jwHPq5PnZr2J-CgoetBzSLOJXd1NapIi_e_dWkEU8TSHmW9-wzd7aDvE4BA6InBCCKjTu-lDBbyiQFkFhDdbaEJqoSoFvNlGE6CSVVwA20V7Ob8AQM0YnSAzDb5fumBdwsnZOAwutKZ0MeC8ysUNZ9jOY8xdeMZl7nDqnucFd9_Q8rNlcHDlPaZXbILpV7nL2CwWKRo7P0A73vTZHX7VffR0dfl4cVPd3l9PL85vK8ukKhWVMwae1wKgBUEaM-PKC2g8GMWoktIS6QUVLTWKy8aL1tWCzxwnTHoiLNtHx5u9Y-zb0uWiX-IyjddkTZUSStaiIeMUbKZsijkn5_UidYNJK01Ar0XqUaQGrtci9VrkiMhfiO3Kp6KSTNf_B55uQDe4ZPr2r6gfP2Mf-ROIAA |
CitedBy_id | crossref_primary_10_1108_MIP_04_2024_0209 |
Cites_doi | 10.1007/S10660-023-09719-Z 10.1016/J.JBUSRES.2022.04.068 10.1108/JRIM-11-2021-0276/FULL/PDF 10.1080/02650487.2020.1822104 10.1016/J.PUBREV.2010.11.001 10.1007/S11042-021-11857-1 10.1287/MKSC.2016.1001 10.1016/J.JRETCONSER.2021.102904 10.1108/MIP-08-2019-0413/FULL/PDF 10.1086/669042 10.1016/j.jretconser.2023.103507 10.1177/0038038514562852 10.1016/J.INTMAR.2021.05.002 10.1177/00222429221125131/ASSET/IMAGES/LARGE/10.1177_00222429221125131-FIG5.JPEG 10.1016/j.jbusres.2021.05.011 10.1080/02650487.2017.1348035 10.1016/J.JRETCONSER.2019.03.012 10.1145/1864708.1864770 10.1016/j.jbusres.2016.04.171 10.1145/2556288.2557285 10.1016/j.chb.2018.12.014 10.1080/02650487.2022.2075636 10.1177/1094428120971683 10.1016/j.jretconser.2023.103528 10.1080/02642069.2023.2209514 10.1108/MIP-06-2023-0246 10.1080/02650487.2019.1634898 10.1016/j.jretconser.2019.102027 10.1108/MIP-03-2021-0085 10.1111/ijcs.12647 10.1145/2959100 10.1080/0267257X.2020.1718740 10.1080/00913367.2021.1980470/SUPPL_FILE/UJOA_A_1980470_SM6247.DOCX 10.1108/JRIM-04-2020-0067/FULL/PDF 10.1111/IJCS.12901 10.1145/2339530.2339717 10.1016/J.IJINFOMGT.2017.12.002 10.1145/2600428 10.1177/00222429221102889/ASSET/IMAGES/LARGE/10.1177_00222429221102889-FIG2.JPEG 10.3758/S13428-011-0183-8 10.1504/IJWBC.2023.131410 10.1287/ISRE.1100.0339 10.1155/2018/3530123 10.1177/00222429221100750/ASSET/IMAGES/LARGE/10.1177_00222429221100750-FIG2 10.1287/ISRE.1100.0343 10.1177/0022242919854374 10.1016/J.KNOSYS.2017.11.021 10.1177/1354856517736979 10.1016/J.JBUSRES.2022.113606 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
DBID | AAYXX CITATION 7WY 7WZ 7XB 8AO 8FI AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FYUFA F~G GNUQQ K6~ L.- L.0 M0C M2M PHGZM PHGZT PKEHL PQBIZ PQEST PQQKQ PQUKI PSYQQ Q9U |
DOI | 10.1108/MIP-04-2023-0149 |
DatabaseName | CrossRef ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Hospital Premium Collection ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global (OCUL) Psychology Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced Health Research Premium Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Business Premium Collection ABI/INFORM Global ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Business Collection ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1758-8049 |
EndPage | 1212 |
ExternalDocumentID | 10_1108_MIP_04_2023_0149 10.1108/MIP-04-2023-0149 |
GroupedDBID | .WV 0R~ 1JL 1WG 29M 2RR 3FY 4.4 5GY 5VS 70U 7WY 9E0 9F- AADTA AADXL AAGBP AAMCF AAPSD AAUDR ABEAN ABIJV ABIVO ABJNI ABSDC ACBMB ACGFO ACGFS ACMTK ACTAU ADBBV ADFRT ADOMW AEBZA AEDOK AEMMR AETHF AEUCW AFNZV AHZQH AIAFM AJEBP AJFKA ALMA_UNASSIGNED_HOLDINGS APPLU ASMFL ATGMP AUCOK AVELQ BCDNB BENPR BLEHN BUONS CS3 EBS FNNZZ GEA GEB GEC GEI GMM GMN GMX GQ. GROUPED_ABI_INFORM_COMPLETE HZ~ IAO IGG IJT IOF IPNFZ J1Y JI- JL0 K6~ LXL LXN M42 N95 O9- P2P RIG RXW SCAQC SDURG SLOBJ TAE TAF TDF TEM TET TFD TGG TMD TMF TMI TMK TMT V1G YNT YQT Z11 Z12 Z21 ZYZAG 8AO 8FI 8FW 8R4 8R5 AAKOT AAXBI AAYXX ABXQL ABYQI ACBFK ACTSA ADQHX ADWNT AFKRA AFNTC AGTVX AGZLY AHMHQ AILOG AJPYP ALIPV AODMV AZQEC BEZIV BPHCQ BVXVI CCPQU CITATION DWQXO EOXHF FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH H13 M0C M2M PHGZM PHGZT PQBIZ PQQKQ PROAC PSYQQ Q2X UKHRP 7XB L.- L.0 PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c368t-26b30f47500d0519ab48f509f0a832866c16f525d2a8469f5de754be4136f15c3 |
IEDL.DBID | ZYZAG |
ISSN | 0263-4503 |
IngestDate | Sat Aug 23 14:58:06 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Thu Jul 31 00:35:08 EDT 2025 Tue Jan 16 21:21:17 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Keywords | Social media influencers Network analytics Influencer marketing Prediction model Semantic network |
Language | English |
License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-26b30f47500d0519ab48f509f0a832866c16f525d2a8469f5de754be4136f15c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6478-7525 0000-0002-6273-8022 |
PQID | 2885867591 |
PQPubID | 37391 |
PageCount | 16 |
ParticipantIDs | emerald_primary_10_1108_MIP-04-2023-0149 crossref_citationtrail_10_1108_MIP_04_2023_0149 proquest_journals_2885867591 crossref_primary_10_1108_MIP_04_2023_0149 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-07 |
PublicationDateYYYYMMDD | 2023-11-07 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Bradford |
PublicationPlace_xml | – name: Bradford |
PublicationTitle | Marketing intelligence & planning |
PublicationYear | 2023 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | (key2023110411374420200_ref071) 2021; 134 (key2023110411374420200_ref047) 2019; 93 (key2023110411374420200_ref057) 2018; 39 (key2023110411374420200_ref049) 2022; 56 (key2023110411374420200_ref008) 2012 Marketing Science Institute (key2023110411374420200_ref044) 2023 (key2023110411374420200_ref073) 2005 (key2023110411374420200_ref025) 2011; 23 (key2023110411374420200_ref007) 2022; 86 (key2023110411374420200_ref070) 2010 Statista (key2023110411374420200_ref056) 2023 (key2023110411374420200_ref015) 2016 (key2023110411374420200_ref039) 2022 (key2023110411374420200_ref040) 2014 (key2023110411374420200_ref005) 2011 (key2023110411374420200_ref031) 2023 (key2023110411374420200_ref061) 2022 (key2023110411374420200_ref013) 2016; 36 (key2023110411374420200_ref004) 2020; 38 (key2023110411374420200_ref043) 2022; 17 GMI Blogger (key2023110411374420200_ref024) 2023 (key2023110411374420200_ref034) 2023 (key2023110411374420200_ref037) 2016; 69 (key2023110411374420200_ref062) 2021 (key2023110411374420200_ref002) 2019; 49 (key2023110411374420200_ref030) 2022; 16 (key2023110411374420200_ref014) 2023 (key2023110411374420200_ref060) 2023; 157 (key2023110411374420200_ref017) 2010 (key2023110411374420200_ref058) 2011; 23 (key2023110411374420200_ref048) 2021; 50 (key2023110411374420200_ref051) 2019; 39 (key2023110411374420200_ref011) 2012; 44 (key2023110411374420200_ref050) 2023 Statista (key2023110411374420200_ref055) 2023 (key2023110411374420200_ref069) 2019 (key2023110411374420200_ref027) 2022; 25 (key2023110411374420200_ref022) 2011; 37 key2023110411374420200_ref035 (key2023110411374420200_ref001) 2021; 39 (key2023110411374420200_ref046) 2015; 49 key2023110411374420200_ref065 (key2023110411374420200_ref020) 2022 (key2023110411374420200_ref029) 2019; 83 (key2023110411374420200_ref054) 2022; 42 (key2023110411374420200_ref064) 2023; 75 (key2023110411374420200_ref067) 2018; 141 (key2023110411374420200_ref018) 2017; 36 (key2023110411374420200_ref023) 2023 (key2023110411374420200_ref042) 2022; 148 (key2023110411374420200_ref072) 2019 (key2023110411374420200_ref012) 2010 (key2023110411374420200_ref009) 1991 (key2023110411374420200_ref032) 2020; 36 (key2023110411374420200_ref066) 2021 (key2023110411374420200_ref006) 2023; 19 key2023110411374420200_ref028 key2023110411374420200_ref026 (key2023110411374420200_ref010) 2022; 66 (key2023110411374420200_ref036) 2020; 54 key2023110411374420200_ref052 (key2023110411374420200_ref016) 1993 (key2023110411374420200_ref063) 2023; 75 (key2023110411374420200_ref003) 2018; 24 (key2023110411374420200_ref053) 2008 (key2023110411374420200_ref045) 2013; 40 key2023110411374420200_ref019 (key2023110411374420200_ref021) 2014 (key2023110411374420200_ref041) 2018 (key2023110411374420200_ref033) 2023; 82 key2023110411374420200_ref059 (key2023110411374420200_ref038) 2022; 8 |
References_xml | – ident: key2023110411374420200_ref035 – year: 2010 ident: key2023110411374420200_ref012 article-title: Global topology of word co-occurrence networks: beyond the two-regime power-law publication-title: Coling 2010: Posters – volume-title: The inside Story of Papa John's Toxic Culture year: 2022 ident: key2023110411374420200_ref020 – start-page: 1 year: 2023 ident: key2023110411374420200_ref031 article-title: Social media influencer marketing: foundations, trends, and ways forward publication-title: Electronic Commerce Research doi: 10.1007/S10660-023-09719-Z – volume: 148 start-page: 325 year: 2022 ident: key2023110411374420200_ref042 article-title: Customer engagement and social media: revisiting the past to inform the future publication-title: Journal of Business Research doi: 10.1016/J.JBUSRES.2022.04.068 – volume: 17 start-page: 232 issue: 2 year: 2022 ident: key2023110411374420200_ref043 article-title: From direct marketing to interactive marketing: a retrospective review of the Journal of Research in Interactive Marketing publication-title: Journal of Research in Interactive Marketing doi: 10.1108/JRIM-11-2021-0276/FULL/PDF – ident: key2023110411374420200_ref059 doi: 10.1080/02650487.2020.1822104 – year: 2021 ident: key2023110411374420200_ref062 article-title: More than two-thirds of US marketers will use influencer marketing - insider Intelligence Trends, Forecasts and Statistics publication-title: EMarketer – volume: 37 start-page: 90 issue: 1 year: 2011 ident: key2023110411374420200_ref022 article-title: Who are the social media influencers? A study of public perceptions of personality publication-title: Public Relations Review doi: 10.1016/J.PUBREV.2010.11.001 – volume-title: Knowledge Representation and the Semantics of Natural Language year: 2005 ident: key2023110411374420200_ref073 – volume: 82 start-page: 8811 issue: 6 year: 2023 ident: key2023110411374420200_ref033 article-title: The homophily principle in social network analysis: a survey publication-title: Multimedia Tools and Applications doi: 10.1007/S11042-021-11857-1 – volume: 36 start-page: 89 issue: 1 year: 2016 ident: key2023110411374420200_ref013 article-title: Spillover effects in seeded word-of-mouth marketing campaigns publication-title: Marketing Science doi: 10.1287/MKSC.2016.1001 – volume: 66 year: 2022 ident: key2023110411374420200_ref010 article-title: Influencer marketing: homophily, customer value co-creation behaviour and purchase intention publication-title: Journal of Retailing and Consumer Services doi: 10.1016/J.JRETCONSER.2021.102904 – ident: key2023110411374420200_ref019 – volume: 8 start-page: 89 issue: 1 year: 2022 ident: key2023110411374420200_ref038 article-title: How to choose the right Influencer for a marketing strategy: ingenta Connect publication-title: Applied Marketing Analytics – volume-title: MSI Announces 2020-22 Research Priorities – MSI – Marketing Science Institute year: 2023 ident: key2023110411374420200_ref044 – volume: 38 start-page: 847 issue: 7 year: 2020 ident: key2023110411374420200_ref004 article-title: Impact of consumer engagement on firm performance publication-title: Marketing Intelligence and Planning doi: 10.1108/MIP-08-2019-0413/FULL/PDF – volume: 40 start-page: 136 issue: 1 year: 2013 ident: key2023110411374420200_ref045 article-title: The megaphone effect: taste and audience in fashion blogging publication-title: Journal of Consumer Research doi: 10.1086/669042 – ident: key2023110411374420200_ref026 – volume: 75 year: 2023 ident: key2023110411374420200_ref063 article-title: Persuasive cues and reciprocal behaviors in influencer-follower relationships: the mediating role of influencer defense publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2023.103507 – year: 1991 ident: key2023110411374420200_ref009 article-title: Principles of semantic networks: explorations in the representation of knowledge – start-page: 164 year: 1993 ident: key2023110411374420200_ref016 article-title: Contextual word similarity and estimation from sparse data publication-title: 31st Annual Meeting of the Association for Computational Linguistics – volume-title: My videos are at the mercy of the YouTube algorithm: how content creators craft algorithmic personas and perceive the algorithm that dictates their work year: 2019 ident: key2023110411374420200_ref069 – volume: 49 start-page: 1200 issue: 6 year: 2015 ident: key2023110411374420200_ref046 article-title: ‘Charlie is so cool like’: authenticity, popularity and inclusive masculinity on YouTube publication-title: Sociology doi: 10.1177/0038038514562852 – volume: 56 start-page: 70 year: 2022 ident: key2023110411374420200_ref049 article-title: More trust in fewer followers: diverging effects of popularity metrics and green orientation social media influencers publication-title: Journal of Interactive Marketing doi: 10.1016/J.INTMAR.2021.05.002 – year: 2022 ident: key2023110411374420200_ref061 article-title: Finding goldilocks influencers: how follower count drives social media engagement publication-title: Journal of Marketing doi: 10.1177/00222429221125131/ASSET/IMAGES/LARGE/10.1177_00222429221125131-FIG5.JPEG – year: 2023 ident: key2023110411374420200_ref056 article-title: Social media platforms used in influencer campaigns 2021 | Statista publication-title: Statista – volume: 134 start-page: 122 year: 2021 ident: key2023110411374420200_ref071 article-title: How social media influencers’ narrative strategies benefit cultivating influencer marketing: tackling issues of cultural barriers, commercialised content, and sponsorship disclosure publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2021.05.011 – volume: 36 start-page: 798 issue: 5 year: 2017 ident: key2023110411374420200_ref018 article-title: Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude publication-title: International Journal of Advertising doi: 10.1080/02650487.2017.1348035 – volume: 49 start-page: 86 year: 2019 ident: key2023110411374420200_ref002 article-title: Measuring social media influencer index- insights from facebook, Twitter and Instagram publication-title: Journal of Retailing and Consumer Services doi: 10.1016/J.JRETCONSER.2019.03.012 – start-page: 293 year: 2010 ident: key2023110411374420200_ref017 article-title: The YouTube video recommendation system doi: 10.1145/1864708.1864770 – volume: 69 start-page: 5753 issue: 12 year: 2016 ident: key2023110411374420200_ref037 article-title: YouTube vloggers' influence on consumer luxury brand perceptions and intentions publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2016.04.171 – start-page: 327 year: 2011 ident: key2023110411374420200_ref005 article-title: Data mining in social media publication-title: Social Network Data Analytics – start-page: 979 year: 2014 ident: key2023110411374420200_ref021 article-title: Does content determine information popularity in social media?: a case study of youtube videos' content and their popularity doi: 10.1145/2556288.2557285 – start-page: 404 year: 2010 ident: key2023110411374420200_ref070 article-title: The impact of YouTube recommendation system on video views – volume: 93 start-page: 226 year: 2019 ident: key2023110411374420200_ref047 article-title: ‘Thanks for watching’. The effectiveness of YouTube vlogendorsements publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.12.014 – volume: 42 start-page: 368 issue: 2 year: 2022 ident: key2023110411374420200_ref054 article-title: Explaining purchase intent via expressed reasons to follow an influencer, perceived homophily, and perceived authenticity publication-title: International Journal of Advertising doi: 10.1080/02650487.2022.2075636 – volume: 25 start-page: 114 issue: 1 year: 2022 ident: key2023110411374420200_ref027 article-title: Text preprocessing for text mining in organizational research: review and recommendations publication-title: Organizational Research Methods doi: 10.1177/1094428120971683 – volume: 75 year: 2023 ident: key2023110411374420200_ref064 article-title: Is beauty always good? Effects of visual presentation of Influencer's aesthetic labor on brand purchase intention publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2023.103528 – start-page: 1 year: 2023 ident: key2023110411374420200_ref014 article-title: The influence of self-disclosure micro-celebrity endorsement on subsequent brand attachment: from an emotional connection perspective (Second revised version) publication-title: Service Industries Journal doi: 10.1080/02642069.2023.2209514 – year: 2023 ident: key2023110411374420200_ref034 article-title: How and when social media influencers' intimate self-disclosure fosters purchase intentions: the roles of congruency and parasocial relationships publication-title: Marketing Intelligence and Planning doi: 10.1108/MIP-06-2023-0246 – volume: 39 start-page: 258 issue: 2 year: 2019 ident: key2023110411374420200_ref051 article-title: Celebrity vs. Influencer endorsements in advertising: the role of identification, credibility, and Product-Endorser fit publication-title: International Journal of Advertising doi: 10.1080/02650487.2019.1634898 – volume: 54 year: 2020 ident: key2023110411374420200_ref036 article-title: YouTube vloggers' popularity and influence: the roles of homophily, emotional attachment, and expertise publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2019.102027 – year: 2023 ident: key2023110411374420200_ref024 article-title: YouTube statistics 2023 [users by country + demographics] publication-title: Global Media Insight – ident: key2023110411374420200_ref052 – volume: 39 start-page: 979 issue: 7 year: 2021 ident: key2023110411374420200_ref001 article-title: Mapping the influence of influencer marketing: a bibliometric analysis publication-title: Marketing Intelligence and Planning doi: 10.1108/MIP-03-2021-0085 – start-page: 617 year: 2021 ident: key2023110411374420200_ref066 article-title: Social media influencer marketing: a systematic review, integrative framework and future research agenda publication-title: International Journal of Consumer Studies doi: 10.1111/ijcs.12647 – year: 2023 ident: key2023110411374420200_ref023 article-title: The state of influencer marketing benchmark report 2023 publication-title: Influencer Marketing Hub – year: 2016 ident: key2023110411374420200_ref015 article-title: Deep neural networks for YouTube recommendations doi: 10.1145/2959100 – volume: 36 start-page: 248 issue: 3-4 year: 2020 ident: key2023110411374420200_ref032 article-title: When less is more: the impact of macro and micro social media influencers' disclosure publication-title: Journal of Marketing Management doi: 10.1080/0267257X.2020.1718740 – volume: 50 start-page: 584 issue: 5 year: 2021 ident: key2023110411374420200_ref048 article-title: David and goliath: when and why micro-influencers are more persuasive than mega-influencers publication-title: Journal of Advertising doi: 10.1080/00913367.2021.1980470/SUPPL_FILE/UJOA_A_1980470_SM6247.DOCX – volume: 16 start-page: 137 issue: 1 year: 2022 ident: key2023110411374420200_ref030 article-title: How social media advertising features influence consumption and sharing intentions: the mediation of customer engagement publication-title: Journal of Research in Interactive Marketing doi: 10.1108/JRIM-04-2020-0067/FULL/PDF – year: 2023 ident: key2023110411374420200_ref050 article-title: Social media influencers and consumer engagement: a review and future research agenda publication-title: International Journal of Consumer Studies doi: 10.1111/IJCS.12901 – start-page: 1186 year: 2012 ident: key2023110411374420200_ref008 article-title: The untold story of the clones: content-agnostic factors that impact YouTube video popularity doi: 10.1145/2339530.2339717 – volume: 39 start-page: 156 year: 2018 ident: key2023110411374420200_ref057 article-title: Social media analytics – challenges in topic discovery, data collection, and data preparation publication-title: International Journal of Information Management doi: 10.1016/J.IJINFOMGT.2017.12.002 – year: 2014 ident: key2023110411374420200_ref040 doi: 10.1145/2600428 – year: 2022 ident: key2023110411374420200_ref039 article-title: Influencer marketing effectiveness publication-title: Journal of Marketing doi: 10.1177/00222429221102889/ASSET/IMAGES/LARGE/10.1177_00222429221102889-FIG2.JPEG – volume: 44 start-page: 890 issue: 3 year: 2012 ident: key2023110411374420200_ref011 article-title: Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD publication-title: Behavior Research Methods doi: 10.3758/S13428-011-0183-8 – volume: 19 start-page: 222 issue: 2/3 year: 2023 ident: key2023110411374420200_ref006 article-title: Foundations of consumer engagement with social media influencers publication-title: International Journal of Web Based Communities doi: 10.1504/IJWBC.2023.131410 – volume: 23 start-page: 23 issue: 1 year: 2011 ident: key2023110411374420200_ref058 article-title: Social networks and the diffusion of user-generated content: evidence from YouTube publication-title: Information Systems Research doi: 10.1287/ISRE.1100.0339 – ident: key2023110411374420200_ref028 – year: 2018 ident: key2023110411374420200_ref041 article-title: Differentially private recommendation system based on community detection in social network applications publication-title: Security and Communication Networks, 2018 doi: 10.1155/2018/3530123 – volume: 86 start-page: 1 issue: 5 year: 2022 ident: key2023110411374420200_ref007 article-title: Fields of gold: scraping web data for marketing insights publication-title: Journal of Marketing doi: 10.1177/00222429221100750/ASSET/IMAGES/LARGE/10.1177_00222429221100750-FIG2 – year: 2023 ident: key2023110411374420200_ref055 article-title: Global influencer market size 2023 | Statista publication-title: Statista – volume: 23 start-page: 182 issue: 1 year: 2011 ident: key2023110411374420200_ref025 article-title: Research note—the impact of external word-of-mouth sources on retailer sales of high-involvement products publication-title: Information Systems Research doi: 10.1287/ISRE.1100.0343 – volume: 83 start-page: 78 issue: 5 year: 2019 ident: key2023110411374420200_ref029 article-title: Driving brand engagement through online social influencers: an empirical investigation of sponsored blogging campaigns publication-title: Journal of Marketing doi: 10.1177/0022242919854374 – volume: 141 start-page: 211 year: 2018 ident: key2023110411374420200_ref067 article-title: Identifying topical influencers on twitter based on user behavior and network topology publication-title: Knowledge-Based Systems doi: 10.1016/J.KNOSYS.2017.11.021 – start-page: 235 year: 2019 ident: key2023110411374420200_ref072 article-title: Beyond personalization: social content recommendation for creator equality and consumer satisfaction – volume: 24 start-page: 16 issue: 1 year: 2018 ident: key2023110411374420200_ref003 article-title: YouTube channels, uploads and views: a statistical analysis of the past 10 years publication-title: Convergence doi: 10.1177/1354856517736979 – year: 2008 ident: key2023110411374420200_ref053 article-title: Semantic network analysis: techniques for extracting, representing, and querying media content – ident: key2023110411374420200_ref065 – volume: 157 year: 2023 ident: key2023110411374420200_ref060 article-title: Mega or macro social media influencers: who endorses brands better? publication-title: Journal of Business Research doi: 10.1016/J.JBUSRES.2022.113606 |
SSID | ssj0007332 |
Score | 2.3480737 |
Snippet | PurposeThe rise of social media has led to the emergence of influencers and influencer marketing (IM) domains, which have become important areas of academic... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1197 |
SubjectTerms | Accuracy Algorithms Collaboration Influencer marketing Purchase intention Recommender systems Semantics Social networks Success |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7agngRn1itkoMHPSzd3WSzqRdRaWmFliIWegvZPECw29rH_3eym22piOdk9zCTzHwzSb4Pobt2pOI4snHAMk4DCnES9hwEQ5ZpQ4hjQNfuofBgyHpj-jZJJr7htvTXKquYWARqPVOuR96KOU84oNt29DT_DpxqlDtd9RIa-6gOIZhD8VV_6QxH75tYnJJCogwKDRLQJCTVQWXIW4P-yJ0KOPnwwNUJO4np1-vcbYQu0k73GB15vIifSwefoD2Tn6KD6rr6GZL9SmVkgV1xO50aL5OES5LmR-x4Nl1HAAPWw0Uxjj-3H62LIYnz8j44lp6lBFds4-do3O18vPYCL5sQKML4KohZRkJLAQqE2gE0mVFuARfYUML25YypiNkkTnQsAXy0baJNmtDMQDpjNkoUuUC1fJabS4StTXWWRdJoyyhjWhrOIwIln5KQ51XcQK3KZkJ5TnEnbfElitoi5AKsLEIqnJWFs3IDPWy-mJd8Gv_Mvfdu-GvqjvMaqFn5SfhNuBTbJXP1__A1Oiz-5LrFaRPVVou1uQGsscpu_YL6AcNbzz4 priority: 102 providerName: ProQuest |
Title | Influencer recommendation system: choosing the right influencer using a network analysis approach |
URI | https://www.emerald.com/insight/content/doi/10.1108/MIP-04-2023-0149/full/html https://www.proquest.com/docview/2885867591 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60BfHiW6yPkoMHPazdTbJp6k2lagWLiIJ6WZLdBIt2lXZ78deb2UfFIoLgeZMsyWS_fDM7-QZgvxPElAaWekJL7nGHk-6bc2AodGIYQwX0BC8KX_fF5T2_eggf5qBf3YXJ0yqLcEyO04N0jE5qCxO3HQpPBQewes117wbj-lgA3EOm38KIdes5G77OQ50Gwpc1qD89Pp1cTLG5zfKSZc7xYB4PfVb9uPxhtG8H1cxt3S_Ezo-h82V4qyZQZJ-8HE0yfRR_zGg7_t8MV2CpZKzkpNhiqzBn0jVYqBLm10H1qjonI4Lu9XBoykJNpJCJPiao9IkxCeLYJsnDAWTw1WmSP1IkLTLSiSp1Ukild74B9-fdu7NLryzc4MVMyMyjQjPfckdG_AQpotJcWsdMrK8cgEgh4kDYkIYJVY7-dGyYmHbItXEHqrBBGLNNqKVvqdkCYm070TpQJrGCC5EoI2XAnNMZK8c0YtqAVmWlKC5VzbG4xmuUeze-jNwaRj6PcA0jXMMGHE57vBeKHr-0PShN9VPTb6ZpwG61M6ISBsYRlTKUziXrBNt_eOsOLObDYvC6vQu1bDQxe476ZLoJ9dNu_-a2We7rT70-_W8 |
linkProvider | Emerald |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RIFEuqC2tCI_Wh1aCwyq7ttdxKiHUUlBSSIQqkLi53rUtIZHwCkL8qf5GZnbXRKCKG2c_DjPjmflsz3wAX3tZyXkWeKIKLROJfhLPHDpDVTgvBHVAd1QoPByp_on8fZqfzsG_WAtD3yqjT6wctbso6Y68w7XONWa3vWzn8ioh1ih6XY0UGrVZHPj7O4RsN9uDX6jfb5zv7x3v9pOGVSAphdLThKtCpEFipEwd5S-2kDpg2AypRevWSpWZCjnPHbcYm3shd76by8Kjt1chy0uB-76BeSkQyrRg_ufe6OjPo-_viooSDYGNSGSeivgwmurOcHBErxBEV54QLnkSCJ9VA88iQhXm9t_BUpOfsh-1Qb2HOT_5AAvxe_wy2EFkNblmBKbHY9_QMrG6KfR3Rn096QaCYW7JKvDPzmaLbqshyyb1_3Nmm64oLHY3_wgnryLQT9CaXEz8CrAQuq4oMutdUFIpZ73WmUCIWVrMK0rehk6UmSmbHuZEpXFuKiyTaoNSNqk0JGVDUm7D1uOKy7p_xwtzNxs1_G_qE-W1YT3qyTSH_sbMTHT15eEv8LZ_PDw0h4PRwRosVrvSTXV3HVrT61u_gXnOtPjcGBeDv69tzw9JQgoe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RTxQxEJ7gkRBfDKLGA5Q-YAIPm9ttu92eiTEKXDiRy8VIwlvtbtuEBA6EI8a_5q9zZrflgjG88dxuH2Zm55uZTucD2B4WDedF4Jmqtcwk-kn859AZqtp5IWgCuqOHwscTdXgiv5yWp0vwJ72FobbK5BNbR-0uG6qRD7jWpcbodlgMQmyLmO6PPl79zIhBim5aE51GZyJH_vcvTN9uPoz3UdfvOB8dfN87zCLDQNYIpecZV7XIg0TUzB3FMraWOiCEhtyipWulmkKFkpeOW8TpYSidr0pZe_T8KhRlI_DcJ7BcYVaU92D588Fk-u0OByrR0qNhkiMyWeYiXZLmenA8ntKNBFGXZ5Sj3APFf14GL9ChhbzRKjyLsSr71BnXc1jyszVYSa3yL8COE8PJNaPE-uLCR4om1g2Ifs9oxidVIxjGmawtBLCzxUe37ZJls64Xndk4IYWlSecv4eRRBPoKerPLmX8NLITK1XVhvQtKKuWs17oQmG42FmOMhvdhkGRmmjjPnGg1zk2b1-TaoJRNLg1J2ZCU-7B798VVN8vjgb07UQ3_23pPeX3YTHoy0QHcmIW5rj-8vAUraMfm63hytAFP20OpaF1tQm9-fevfYMgzr99G22Lw47HN-S-8qA5T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influencer+recommendation+system%3A+choosing+the+right+influencer+using+a+network+analysis+approach&rft.jtitle=Marketing+intelligence+%26+planning&rft.au=Jha%2C+Abhishek+Kumar&rft.au=Ray%2C+Sanjog&rft.date=2023-11-07&rft.issn=0263-4503&rft.volume=41&rft.issue=8&rft.spage=1197&rft.epage=1212&rft_id=info:doi/10.1108%2FMIP-04-2023-0149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_MIP_04_2023_0149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-4503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-4503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-4503&client=summon |