Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology
•The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater geometries indicates that a larger heater is highly sensitive to flow.•Influence of flow direction on the sensor performance was studied. Do...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 279; pp. 293 - 305 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater geometries indicates that a larger heater is highly sensitive to flow.•Influence of flow direction on the sensor performance was studied. Downstream sensor is more sensitive.•A simple, low power consuming, highly sensitive and full dynamic range thermal flow sensor was developed.
This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications. |
---|---|
AbstractList | This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications. •The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater geometries indicates that a larger heater is highly sensitive to flow.•Influence of flow direction on the sensor performance was studied. Downstream sensor is more sensitive.•A simple, low power consuming, highly sensitive and full dynamic range thermal flow sensor was developed. This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications. |
Author | Balakrishnan, Vivekananthan Nguyen, Nam-Trung Phan, Hoang-Phuong Dao, Dzung Viet Dinh, Toan |
Author_xml | – sequence: 1 givenname: Vivekananthan orcidid: 0000-0002-6073-4829 surname: Balakrishnan fullname: Balakrishnan, Vivekananthan organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia – sequence: 2 givenname: Toan surname: Dinh fullname: Dinh, Toan organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia – sequence: 3 givenname: Hoang-Phuong surname: Phan fullname: Phan, Hoang-Phuong organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia – sequence: 4 givenname: Dzung Viet surname: Dao fullname: Dao, Dzung Viet organization: School of Engineering, Griffith University, Gold Coast, 4222, QLD, Australia – sequence: 5 givenname: Nam-Trung orcidid: 0000-0003-3626-5361 surname: Nguyen fullname: Nguyen, Nam-Trung email: nam-trung.nguyen@griffith.edu.au organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia |
BookMark | eNp9kD1PwzAQhi0EEm3hB7BZYk6wY9dJxYQqviQqBmBgsq7OJXUU7GK7ReXXEygTA9MN9z53ep8xOXTeISFnnOWccXXR5dFBXjBe5UzlrJgekBGvSpEJpmaHZMRmhcxkIctjMo6xY4wJUZYj8npn21W_oxFdtMlukYp59mTn1Dva9hAjXULEmqYVhjfoadP7j5-wDzQg9PZzWG6idS1dXC-eaEKzcr737e6EHDXQRzz9nRPycnP9PL_LHh5v7-dXD5kRqkoZr2veSDDLSop6BorVKGeNwoIBciGqBkWjqqkAvlxWrIaiQQlTMAKGBlJxMSHn-7vr4N83GJPu_Ca44aUuOFeSySmvhlS5T5ngYwzYaGMTJOtdCmB7zZn-9qg7PXjU3x41U3rwOJD8D7kO9g3C7l_mcs_gUHxrMehoLDqDtQ1okq69_Yf-ApsNjVs |
CitedBy_id | crossref_primary_10_1007_s12633_022_01998_9 crossref_primary_10_1038_s41378_024_00740_2 crossref_primary_10_1063_1_5065420 crossref_primary_10_1109_LED_2019_2899068 crossref_primary_10_1007_s44245_024_00077_0 crossref_primary_10_1016_j_ijthermalsci_2022_107626 crossref_primary_10_1109_JSEN_2024_3494013 crossref_primary_10_1109_JMEMS_2022_3195169 crossref_primary_10_1109_TED_2025_3532249 crossref_primary_10_1088_1361_6463_ad800a crossref_primary_10_1002_adem_202300007 crossref_primary_10_1109_JSEN_2020_3048236 crossref_primary_10_1016_j_sna_2021_112646 crossref_primary_10_1002_ange_202217329 crossref_primary_10_1016_j_sna_2023_114403 crossref_primary_10_1109_JSEN_2021_3072416 crossref_primary_10_46670_JSST_2023_32_1_44 crossref_primary_10_3389_fmech_2022_877754 crossref_primary_10_1109_JMEMS_2021_3067573 crossref_primary_10_1109_TIM_2022_3219491 crossref_primary_10_1155_2019_6246259 crossref_primary_10_1016_j_mtphys_2024_101346 crossref_primary_10_3390_s23177465 crossref_primary_10_1016_j_sna_2019_06_020 crossref_primary_10_1002_adsr_202300159 crossref_primary_10_1088_1361_6439_ac1f3a crossref_primary_10_1088_1361_6439_ab4aef crossref_primary_10_1088_1361_6641_ab200c crossref_primary_10_3390_chemosensors10050187 crossref_primary_10_1109_ACCESS_2021_3073958 crossref_primary_10_1109_JSEN_2023_3310271 crossref_primary_10_1016_j_bios_2020_112460 crossref_primary_10_1088_1361_6439_ab9d2a crossref_primary_10_1002_anie_202217329 |
Cites_doi | 10.1021/la301775d 10.3390/s17092061 10.1016/S0924-4247(97)80027-1 10.5369/JSST.2009.18.2.147 10.1016/j.proeng.2010.09.162 10.1016/j.surfcoat.2007.05.007 10.1007/s00542-010-1156-z 10.1111/j.1551-2916.2009.02990.x 10.1088/0960-1317/21/7/075025 10.1088/0960-1317/12/3/306 10.1088/0022-3727/11/5/012 10.1016/S0924-4247(99)00358-1 10.1109/JMEMS.2007.896700 10.3390/s140100144 10.1007/s11664-998-0207-z 10.1039/C5TC01650A 10.1115/1.4038829 10.1039/C5AY00517E 10.1088/0964-1726/16/6/034 10.1109/5.704265 10.1109/LED.2018.2808329 10.1088/1361-6439/aa7180 10.1016/j.matlet.2016.04.171 10.1109/JMEMS.2017.2710354 10.1021/nn507441c 10.1109/JMEMS.2012.2189366 10.1016/S0924-4247(00)00541-0 10.1021/acsami.7b06661 10.1063/1.3093680 10.1016/S0924-4247(01)00668-9 10.1049/el:19960717 10.1088/1361-6463/aa6cd6 10.3390/mi3030550 10.1039/C6TC02708C 10.1109/16.662776 10.1109/16.214734 10.1088/2043-6262/6/2/025001 10.1149/1.2043876 10.1039/c1lc20161a 10.1016/j.tsf.2011.04.224 10.1016/S0955-5986(97)00019-8 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Aug 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Aug 15, 2018 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2018.06.025 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 305 |
ExternalDocumentID | 10_1016_j_sna_2018_06_025 S0924424718301638 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c368t-1dd1f4acb843d9a60de49f6e20ae1338fe3f6853a1bb80da2fe4a5ac3a0334613 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Fri Jul 25 07:26:15 EDT 2025 Tue Jul 01 01:05:27 EDT 2025 Thu Apr 24 23:05:07 EDT 2025 Fri Feb 23 02:48:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Air flow Sensitivity Thermoresistive effect SiC flow sensor Glass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-1dd1f4acb843d9a60de49f6e20ae1338fe3f6853a1bb80da2fe4a5ac3a0334613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6073-4829 0000-0003-3626-5361 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924424718301638 |
PQID | 2116404518 |
PQPubID | 2045401 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2116404518 crossref_citationtrail_10_1016_j_sna_2018_06_025 crossref_primary_10_1016_j_sna_2018_06_025 elsevier_sciencedirect_doi_10_1016_j_sna_2018_06_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-15 |
PublicationDateYYYYMMDD | 2018-08-15 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Belov, Wingbrant, Spetz, Sundgren, Thuner, Svenningstorp, Leisner (bib0135) 2004 Mu, Suga, Fujino, Takahashi, Nakazawa, Iguchi (bib0175) 2014 Kasap (bib0005) 2006 Di Bartolomeo, Sarno, Giubileo, Altavilla, Iemmo, Piano, Bobba, Longobardi, Scarfato, Sannino (bib0240) 2009; 105 Feteira (bib0045) 2009; 92 Bahari, Leung (bib0065) 2011; 21 Dinh, Phan, Kozeki, Qamar, Fujii, Namazu, Nguyen, Dao (bib0015) 2016; 177 Tong, Gösele, Yuan, Steckl, Reiche (bib0165) 1995; 142 Wang, Dimitrijev, Han, Iacopi, Hold, Tanner, Harrison (bib0185) 2011; 519 Sosna, Walter, Lang (bib0260) 2010; 5 Wu, Lin, Yuen, Tai (bib0040) 2001; 89 Mailly, Giani, Bonnot, Temple-Boyer, Pascal-Delannoy, Foucaran, Boyer (bib0255) 2001; 94 Ma, Wang, Chiang, Lee (bib0275) 2011; 17 Balakrishnan, Dinh, Phan, Dao, Nguyen (bib0245) 2018; 140 Dinh, Phan, Dao, Woodfield, Qamar, Nguyen (bib0230) 2015; 3 Yan, Wang, Lee (bib0195) 2015; 9 Balakrishnan, Dinh, Phan, Kozeki, Namazu, Dao, Nguyen (bib0250) 2017; 27 Dao, Dau, Shiozawa, Sugiyama (bib0075) 2007; 16 Abeysinghe, Dasgupta, Jackson, Boyd (bib0055) 2002; 12 Harris (bib0115) 1995 Jiang, Kim, Zhang, Johnson, Salazar (bib0085) 2013; 14 Kong, Le, Li, Zunino, Lee (bib0205) 2012; 28 Dinh, Phan, Nguyen, Qamar, Woodfield, Zhu, Nguyen, Dao (bib0295) 2017; 50 Dau, Dao, Sugiyama (bib0070) 2007; 16 Shor, Goldstein, Kurtz (bib0215) 1993; 40 Wijesundara, Azevedo (bib0080) 2011 Thiruppathi, Ponnusamy, Vivekananathan (bib0095) 2015 Wang, Liu, Gau (bib0265) 2011 Balakrishnan, Phan, Dinh, Dao, Nguyen (bib0030) 2017; 17 Al-Mumen, Rao, Dong, Li (bib0235) 2013 Nguyen (bib0020) 1997; 8 Bahari, Jones, Leung (bib0060) 2012; 21 Kuo, Yu, Meng (bib0025) 2012; 3 Lyons, Friedberger, Welser, Muller, Krotz, Kassing (bib0125) 1998 Mehregany, Zorman, Rajan, Wu (bib0140) 1998; 86 Sze, Ng (bib0190) 2006 Liu, Mwangi, Li, O’Brien, Whitesides (bib0225) 2011; 11 Kimoto, Cooper (bib0150) 2014 Di Cioccio, Le Tiec, Letertre, Jaussaud, Bruel (bib0160) 1996; 32 Lei (bib0130) 2011 Vivekananathan, Ponnusamy, Thiruppathi (bib0090) 2015 Hung, Wong, Fang (bib0285) 2000; 84 Lin, Burns (bib0035) 2015; 7 Neda, Nakamura, Takumi (bib0280) 1996; 54 Zhang, Carraro, Howe, Maboudian (bib0110) 2007; 201 Vinod, Zorman, Yasseen, Mehregany (bib0170) 1998; 27 Warkusz (bib0210) 1978; 11 Okojie, Ned, Kurtz, Carr (bib0220) 1998; 45 Bosseboeuf, Allain, Parrain, Le Roux, Isac, Jacob, Poizat, Coste, Maaroufi, Walther (bib0270) 2015; 6 Jiang, Cheung (bib0145) 2009; 2 Spannhake, Helwig, Müller, Doll (bib0105) 2005 Dinh, Phan, Nguyen, Balakrishnan, Cheng, Hold, Lacopi, Nguyen, Dao (bib0200) 2018; 39 Colinge, Colinge (bib0010) 2005 Scott, Sadeghi, Peroulis (bib0050) 2009 Phan, Cheng, Dinh, Wood, Nguyen, Mu, Kamble, Vadivelu, Walker, Hold (bib0180) 2017; 9 Tanaka, Jinda, Tabuchi, Tanaka, Furubayashi, Inami, Hijikigawa (bib0155) 1986 Lee, Lei, Lee, Rajgopal, Mehregany (bib0120) 2009; 18 Dinh, Phan, Nguyen, Qamar, Foisal, Viet, Tran, Zhu, Nguyen, Dao (bib0290) 2016; 4 Dinh, Phan, Qamar, Woodfield, Nguyen, Dao (bib0100) 2017; 26 Lee (10.1016/j.sna.2018.06.025_bib0120) 2009; 18 Kasap (10.1016/j.sna.2018.06.025_bib0005) 2006 Abeysinghe (10.1016/j.sna.2018.06.025_bib0055) 2002; 12 Belov (10.1016/j.sna.2018.06.025_bib0135) 2004 Dinh (10.1016/j.sna.2018.06.025_bib0295) 2017; 50 Yan (10.1016/j.sna.2018.06.025_bib0195) 2015; 9 Sze (10.1016/j.sna.2018.06.025_bib0190) 2006 Lei (10.1016/j.sna.2018.06.025_bib0130) 2011 Balakrishnan (10.1016/j.sna.2018.06.025_bib0245) 2018; 140 Jiang (10.1016/j.sna.2018.06.025_bib0085) 2013; 14 Di Bartolomeo (10.1016/j.sna.2018.06.025_bib0240) 2009; 105 Mu (10.1016/j.sna.2018.06.025_bib0175) 2014 Sosna (10.1016/j.sna.2018.06.025_bib0260) 2010; 5 Di Cioccio (10.1016/j.sna.2018.06.025_bib0160) 1996; 32 Bosseboeuf (10.1016/j.sna.2018.06.025_bib0270) 2015; 6 Dinh (10.1016/j.sna.2018.06.025_bib0015) 2016; 177 Balakrishnan (10.1016/j.sna.2018.06.025_bib0250) 2017; 27 Colinge (10.1016/j.sna.2018.06.025_bib0010) 2005 Kimoto (10.1016/j.sna.2018.06.025_bib0150) 2014 Wang (10.1016/j.sna.2018.06.025_bib0265) 2011 Spannhake (10.1016/j.sna.2018.06.025_bib0105) 2005 Dao (10.1016/j.sna.2018.06.025_bib0075) 2007; 16 Feteira (10.1016/j.sna.2018.06.025_bib0045) 2009; 92 Warkusz (10.1016/j.sna.2018.06.025_bib0210) 1978; 11 Lin (10.1016/j.sna.2018.06.025_bib0035) 2015; 7 Bahari (10.1016/j.sna.2018.06.025_bib0060) 2012; 21 Neda (10.1016/j.sna.2018.06.025_bib0280) 1996; 54 Dinh (10.1016/j.sna.2018.06.025_bib0230) 2015; 3 Dinh (10.1016/j.sna.2018.06.025_bib0100) 2017; 26 Scott (10.1016/j.sna.2018.06.025_bib0050) 2009 Vivekananathan (10.1016/j.sna.2018.06.025_bib0090) 2015 Hung (10.1016/j.sna.2018.06.025_bib0285) 2000; 84 Phan (10.1016/j.sna.2018.06.025_bib0180) 2017; 9 Kuo (10.1016/j.sna.2018.06.025_bib0025) 2012; 3 Lyons (10.1016/j.sna.2018.06.025_bib0125) 1998 Vinod (10.1016/j.sna.2018.06.025_bib0170) 1998; 27 Thiruppathi (10.1016/j.sna.2018.06.025_bib0095) 2015 Bahari (10.1016/j.sna.2018.06.025_bib0065) 2011; 21 Dau (10.1016/j.sna.2018.06.025_bib0070) 2007; 16 Ma (10.1016/j.sna.2018.06.025_bib0275) 2011; 17 Jiang (10.1016/j.sna.2018.06.025_bib0145) 2009; 2 Liu (10.1016/j.sna.2018.06.025_bib0225) 2011; 11 Okojie (10.1016/j.sna.2018.06.025_bib0220) 1998; 45 Wang (10.1016/j.sna.2018.06.025_bib0185) 2011; 519 Mehregany (10.1016/j.sna.2018.06.025_bib0140) 1998; 86 Wu (10.1016/j.sna.2018.06.025_bib0040) 2001; 89 Harris (10.1016/j.sna.2018.06.025_bib0115) 1995 Balakrishnan (10.1016/j.sna.2018.06.025_bib0030) 2017; 17 Shor (10.1016/j.sna.2018.06.025_bib0215) 1993; 40 Nguyen (10.1016/j.sna.2018.06.025_bib0020) 1997; 8 Tanaka (10.1016/j.sna.2018.06.025_bib0155) 1986 Kong (10.1016/j.sna.2018.06.025_bib0205) 2012; 28 Wijesundara (10.1016/j.sna.2018.06.025_bib0080) 2011 Dinh (10.1016/j.sna.2018.06.025_bib0290) 2016; 4 Tong (10.1016/j.sna.2018.06.025_bib0165) 1995; 142 Al-Mumen (10.1016/j.sna.2018.06.025_bib0235) 2013 Mailly (10.1016/j.sna.2018.06.025_bib0255) 2001; 94 Dinh (10.1016/j.sna.2018.06.025_bib0200) 2018; 39 Zhang (10.1016/j.sna.2018.06.025_bib0110) 2007; 201 |
References_xml | – volume: 2 start-page: 227 year: 2009 ident: bib0145 article-title: A review of silicon carbide development in MEMS applications publication-title: Int. J. Comput. Mater. Sci. Surf. Eng. – volume: 7 start-page: 3981 year: 2015 end-page: 3987 ident: bib0035 article-title: Low-power micro-fabricated liquid flow-rate sensor publication-title: Anal. Methods – volume: 27 start-page: L17 year: 1998 end-page: L20 ident: bib0170 article-title: Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques publication-title: J. Electron. Mater. – volume: 16 start-page: 2308 year: 2007 ident: bib0070 article-title: A 2-DOF convective micro accelerometer with a low thermal stress sensing element publication-title: Smart Mater. Struct. – volume: 32 start-page: 1144 year: 1996 end-page: 1145 ident: bib0160 article-title: Silicon carbide on insulator formation using the smart cut process publication-title: Electron. Lett. – volume: 9 start-page: 27365 year: 2017 end-page: 27371 ident: bib0180 article-title: Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications publication-title: ACS Appl. Mater. Interf. – volume: 9 start-page: 2130 year: 2015 end-page: 2137 ident: bib0195 article-title: Stretchable graphene thermistor with tunable thermal index publication-title: ACS Nano – start-page: 1135 year: 2013 end-page: 1138 ident: bib0235 article-title: Design, fabrication, and characterization of graphene thermistor publication-title: Nano/Micro Eng. Mol. Syst. (NEMS), 2013 8th IEEE Int. Conf. – volume: 27 start-page: 75008 year: 2017 ident: bib0250 article-title: Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating publication-title: J. Micromech. Microeng. – start-page: 475 year: 2004 end-page: 482 ident: bib0135 article-title: Thermal and flow analysis of SiC-based gas sensors for automotive applications publication-title: Therm. Mech. Simul. Exp. Microelectron. Microsystems, 2004. EuroSimE 2004. Proc. 5th Int. Conf. – volume: 26 start-page: 966 year: 2017 end-page: 986 ident: bib0100 article-title: Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications publication-title: J. Microelectromech. Syst. – year: 2006 ident: bib0005 article-title: Principles of Electronic Materials and Devices – volume: 18 start-page: 147 year: 2009 end-page: 153 ident: bib0120 article-title: Micro flow sensor using polycrystalline silicon carbide publication-title: J. Sens. Sci. Technol. – start-page: 630 year: 2011 end-page: 633 ident: bib0265 article-title: Silicon nanowire temperature sensor and its characteristic publication-title: Nano/Micro Eng. Mol. Syst. (NEMS), 2011 IEEE Int. Conf. – volume: 28 start-page: 13467 year: 2012 end-page: 13472 ident: bib0205 article-title: Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials publication-title: Langmuir – year: 2006 ident: bib0190 article-title: Metal‐Semiconductor Contacts – volume: 5 start-page: 524 year: 2010 end-page: 527 ident: bib0260 article-title: Response time of thermal flow sensors publication-title: Procedia Eng. – volume: 45 start-page: 785 year: 1998 end-page: 790 ident: bib0220 article-title: Characterization of highly doped n-and p-type 6H-SiC piezoresistors publication-title: IEEE Trans. Electron. Devices – volume: 21 start-page: 75025 year: 2011 ident: bib0065 article-title: Micromachined three-axis thermal accelerometer with a single composite heater publication-title: J. Micromech. Microeng. – volume: 6 start-page: 25001 year: 2015 ident: bib0270 article-title: Thermal and electromechanical characterization of top-down fabricated p-type silicon nanowires publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. – volume: 17 start-page: 2061 year: 2017 ident: bib0030 article-title: Thermal flow sensors for harsh environments publication-title: Sensors – start-page: 31 year: 2005 ident: bib0105 article-title: SiC as a High-Performance Material for Microheaters, HeT-SiC-05 – volume: 16 start-page: 950 year: 2007 end-page: 958 ident: bib0075 article-title: Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element publication-title: J. Microelectromech. Syst. – year: 2011 ident: bib0130 article-title: Silicon Carbide High Temperature Thermoelectric Flow Sensor – volume: 50 start-page: 215401 year: 2017 ident: bib0295 article-title: Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring publication-title: J. Phys. D. Appl. Phys. – volume: 142 start-page: 232 year: 1995 end-page: 236 ident: bib0165 article-title: Silicon carbide wafer bonding publication-title: J. Electrochem. Soc. – volume: 89 start-page: 152 year: 2001 end-page: 158 ident: bib0040 article-title: MEMS flow sensors for nano-fluidic applications publication-title: Sens. Actuators A Phys. – start-page: 1 year: 2015 end-page: 5 ident: bib0090 article-title: Design and optimization of multivariable controller for CSTR system publication-title: Robot. Autom. Control Embed. Syst. (RACE), 2015 Int. Conf. – volume: 40 start-page: 1093 year: 1993 end-page: 1099 ident: bib0215 article-title: Characterization of n-type beta-SiC as a piezoresistor publication-title: IEEE Trans. Electron. Devices – volume: 21 start-page: 646 year: 2012 end-page: 655 ident: bib0060 article-title: Sensitivity improvement of micromachined convective accelerometers publication-title: J. Microelectromech. Syst. – volume: 14 start-page: 144 year: 2013 end-page: 169 ident: bib0085 article-title: High-temperature piezoelectric sensing publication-title: Sensors – volume: 519 start-page: 6443 year: 2011 end-page: 6446 ident: bib0185 article-title: Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C publication-title: Thin Solid Films – volume: 8 start-page: 7 year: 1997 end-page: 16 ident: bib0020 article-title: Micromachined flow sensors - a review publication-title: Flow Meas. Instrum. – year: 1995 ident: bib0115 article-title: Properties of Silicon Carbide – volume: 39 start-page: 580 year: 2018 end-page: 583 ident: bib0200 article-title: Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures publication-title: IEEE Electron. Device Lett. – volume: 84 start-page: 70 year: 2000 end-page: 75 ident: bib0285 article-title: The development and application of microthermal sensors with a mesh-membrane supporting structure publication-title: Sens. Actuators A Phys. – start-page: 125 year: 1986 end-page: 129 ident: bib0155 article-title: A micro flow sensor with a substrate having a low thermal conductivity publication-title: Proceeding 6th Sens. Symp. Inst. Electr. Eng. Japan – volume: 177 start-page: 80 year: 2016 end-page: 84 ident: bib0015 article-title: High thermosensitivity of silicon nanowires induced by amorphization publication-title: Mater. Lett. – volume: 17 start-page: 655 year: 2011 end-page: 660 ident: bib0275 article-title: Fabrication and characterization of MEMS-based flow sensors based on hot films publication-title: Microsyst. Technol. – volume: 12 start-page: 229 year: 2002 ident: bib0055 article-title: Novel MEMS pressure and temperature sensors fabricated on optical fibers publication-title: J. Micromechanics Microengineering – volume: 140 start-page: 72001 year: 2018 ident: bib0245 article-title: A generalized analytical model for Joule heating of segmented wires publication-title: J. Heat Transf. – year: 2005 ident: bib0010 article-title: Physics of Semiconductor Devices – volume: 201 start-page: 8893 year: 2007 end-page: 8898 ident: bib0110 article-title: Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments publication-title: Surf. Coatings Technol. – year: 2014 ident: bib0150 article-title: Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications – volume: 94 start-page: 32 year: 2001 end-page: 38 ident: bib0255 article-title: Anemometer with hot platinum thin film publication-title: Sens. Actuators A Phys. – start-page: 356 year: 1998 end-page: 360 ident: bib0125 article-title: A high-speed mass flow sensor with heated silicon carbide bridges publication-title: Micro Electro Mech. Syst. 1998. MEMS 98. Proceedings., Elev. Annu. Int. Work. – volume: 3 start-page: 8776 year: 2015 end-page: 8779 ident: bib0230 article-title: Graphite on paper as material for sensitive thermoresistive sensors publication-title: J. Mater. Chem. C – start-page: 55 year: 2014 ident: bib0175 article-title: SiC wafer bonding by modified suface activated bonding method publication-title: Low Temp. Bond. 3D Integr. (LTB-3D), 2014 4th IEEE Int. Work. – volume: 3 start-page: 550 year: 2012 end-page: 573 ident: bib0025 article-title: Micromachined thermal flow sensors-a review publication-title: Micromachines – volume: 11 start-page: 2189 year: 2011 end-page: 2196 ident: bib0225 article-title: Paper-based piezoresistive MEMS sensors publication-title: Lab Chip – start-page: 1 year: 2015 end-page: 6 ident: bib0095 article-title: Design and tuning of decoupled PI controllers for real time deep-sea conditions mimicking system publication-title: Robot. Autom. Control Embed. Syst. (RACE), 2015 Int. Conf. – year: 2011 ident: bib0080 article-title: Silicon Carbide Microsystems for Harsh Environments – volume: 86 start-page: 1594 year: 1998 end-page: 1609 ident: bib0140 article-title: Silicon carbide MEMS for harsh environments publication-title: Proc. IEEE – volume: 92 start-page: 967 year: 2009 end-page: 983 ident: bib0045 article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective publication-title: J. Am. Ceram. Soc. – volume: 105 start-page: 64518 year: 2009 ident: bib0240 article-title: Multiwalled carbon nanotube films as small-sized temperature sensors publication-title: J. Appl. Phys. – start-page: 975 year: 2009 end-page: 978 ident: bib0050 article-title: An inherently-robust 300 C MEMS temperature sensor for wireless health monitoring of ball and rolling element bearings publication-title: Sensors, 2009 IEEE – volume: 4 start-page: 10061 year: 2016 end-page: 10068 ident: bib0290 article-title: Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare publication-title: J. Mater. Chem. C. – volume: 11 start-page: 689 year: 1978 ident: bib0210 article-title: The size effect and the temperature coefficient of resistance in thin films publication-title: J. Phys. D. Appl. Phys. – volume: 54 start-page: 626 year: 1996 end-page: 631 ident: bib0280 article-title: A polysilicon flow sensor for gas flow meters publication-title: Sens. Actuators A Phys. – volume: 28 start-page: 13467 year: 2012 ident: 10.1016/j.sna.2018.06.025_bib0205 article-title: Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials publication-title: Langmuir doi: 10.1021/la301775d – start-page: 356 year: 1998 ident: 10.1016/j.sna.2018.06.025_bib0125 article-title: A high-speed mass flow sensor with heated silicon carbide bridges – year: 2011 ident: 10.1016/j.sna.2018.06.025_bib0130 – volume: 17 start-page: 2061 year: 2017 ident: 10.1016/j.sna.2018.06.025_bib0030 article-title: Thermal flow sensors for harsh environments publication-title: Sensors doi: 10.3390/s17092061 – volume: 54 start-page: 626 year: 1996 ident: 10.1016/j.sna.2018.06.025_bib0280 article-title: A polysilicon flow sensor for gas flow meters publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(97)80027-1 – volume: 18 start-page: 147 year: 2009 ident: 10.1016/j.sna.2018.06.025_bib0120 article-title: Micro flow sensor using polycrystalline silicon carbide publication-title: J. Sens. Sci. Technol. doi: 10.5369/JSST.2009.18.2.147 – volume: 5 start-page: 524 year: 2010 ident: 10.1016/j.sna.2018.06.025_bib0260 article-title: Response time of thermal flow sensors publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.09.162 – volume: 201 start-page: 8893 year: 2007 ident: 10.1016/j.sna.2018.06.025_bib0110 article-title: Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments publication-title: Surf. Coatings Technol. doi: 10.1016/j.surfcoat.2007.05.007 – volume: 17 start-page: 655 year: 2011 ident: 10.1016/j.sna.2018.06.025_bib0275 article-title: Fabrication and characterization of MEMS-based flow sensors based on hot films publication-title: Microsyst. Technol. doi: 10.1007/s00542-010-1156-z – year: 2006 ident: 10.1016/j.sna.2018.06.025_bib0190 – start-page: 31 year: 2005 ident: 10.1016/j.sna.2018.06.025_bib0105 – start-page: 55 year: 2014 ident: 10.1016/j.sna.2018.06.025_bib0175 article-title: SiC wafer bonding by modified suface activated bonding method – volume: 92 start-page: 967 year: 2009 ident: 10.1016/j.sna.2018.06.025_bib0045 article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.02990.x – volume: 2 start-page: 227 year: 2009 ident: 10.1016/j.sna.2018.06.025_bib0145 article-title: A review of silicon carbide development in MEMS applications publication-title: Int. J. Comput. Mater. Sci. Surf. Eng. – volume: 21 start-page: 75025 year: 2011 ident: 10.1016/j.sna.2018.06.025_bib0065 article-title: Micromachined three-axis thermal accelerometer with a single composite heater publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/21/7/075025 – start-page: 1 year: 2015 ident: 10.1016/j.sna.2018.06.025_bib0095 article-title: Design and tuning of decoupled PI controllers for real time deep-sea conditions mimicking system – volume: 12 start-page: 229 year: 2002 ident: 10.1016/j.sna.2018.06.025_bib0055 article-title: Novel MEMS pressure and temperature sensors fabricated on optical fibers publication-title: J. Micromechanics Microengineering doi: 10.1088/0960-1317/12/3/306 – volume: 11 start-page: 689 year: 1978 ident: 10.1016/j.sna.2018.06.025_bib0210 article-title: The size effect and the temperature coefficient of resistance in thin films publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/11/5/012 – volume: 84 start-page: 70 year: 2000 ident: 10.1016/j.sna.2018.06.025_bib0285 article-title: The development and application of microthermal sensors with a mesh-membrane supporting structure publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(99)00358-1 – volume: 16 start-page: 950 year: 2007 ident: 10.1016/j.sna.2018.06.025_bib0075 article-title: Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2007.896700 – volume: 14 start-page: 144 year: 2013 ident: 10.1016/j.sna.2018.06.025_bib0085 article-title: High-temperature piezoelectric sensing publication-title: Sensors doi: 10.3390/s140100144 – start-page: 975 year: 2009 ident: 10.1016/j.sna.2018.06.025_bib0050 article-title: An inherently-robust 300 C MEMS temperature sensor for wireless health monitoring of ball and rolling element bearings – volume: 27 start-page: L17 year: 1998 ident: 10.1016/j.sna.2018.06.025_bib0170 article-title: Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques publication-title: J. Electron. Mater. doi: 10.1007/s11664-998-0207-z – volume: 3 start-page: 8776 year: 2015 ident: 10.1016/j.sna.2018.06.025_bib0230 article-title: Graphite on paper as material for sensitive thermoresistive sensors publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01650A – volume: 140 start-page: 72001 year: 2018 ident: 10.1016/j.sna.2018.06.025_bib0245 article-title: A generalized analytical model for Joule heating of segmented wires publication-title: J. Heat Transf. doi: 10.1115/1.4038829 – start-page: 1 year: 2015 ident: 10.1016/j.sna.2018.06.025_bib0090 article-title: Design and optimization of multivariable controller for CSTR system – volume: 7 start-page: 3981 year: 2015 ident: 10.1016/j.sna.2018.06.025_bib0035 article-title: Low-power micro-fabricated liquid flow-rate sensor publication-title: Anal. Methods doi: 10.1039/C5AY00517E – volume: 16 start-page: 2308 year: 2007 ident: 10.1016/j.sna.2018.06.025_bib0070 article-title: A 2-DOF convective micro accelerometer with a low thermal stress sensing element publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/6/034 – volume: 86 start-page: 1594 year: 1998 ident: 10.1016/j.sna.2018.06.025_bib0140 article-title: Silicon carbide MEMS for harsh environments publication-title: Proc. IEEE doi: 10.1109/5.704265 – start-page: 125 year: 1986 ident: 10.1016/j.sna.2018.06.025_bib0155 article-title: A micro flow sensor with a substrate having a low thermal conductivity – volume: 39 start-page: 580 year: 2018 ident: 10.1016/j.sna.2018.06.025_bib0200 article-title: Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2018.2808329 – volume: 27 start-page: 75008 year: 2017 ident: 10.1016/j.sna.2018.06.025_bib0250 article-title: Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa7180 – volume: 177 start-page: 80 year: 2016 ident: 10.1016/j.sna.2018.06.025_bib0015 article-title: High thermosensitivity of silicon nanowires induced by amorphization publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.04.171 – year: 1995 ident: 10.1016/j.sna.2018.06.025_bib0115 – volume: 26 start-page: 966 year: 2017 ident: 10.1016/j.sna.2018.06.025_bib0100 article-title: Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2017.2710354 – start-page: 630 year: 2011 ident: 10.1016/j.sna.2018.06.025_bib0265 article-title: Silicon nanowire temperature sensor and its characteristic – volume: 9 start-page: 2130 year: 2015 ident: 10.1016/j.sna.2018.06.025_bib0195 article-title: Stretchable graphene thermistor with tunable thermal index publication-title: ACS Nano doi: 10.1021/nn507441c – volume: 21 start-page: 646 year: 2012 ident: 10.1016/j.sna.2018.06.025_bib0060 article-title: Sensitivity improvement of micromachined convective accelerometers publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2012.2189366 – volume: 89 start-page: 152 year: 2001 ident: 10.1016/j.sna.2018.06.025_bib0040 article-title: MEMS flow sensors for nano-fluidic applications publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(00)00541-0 – volume: 9 start-page: 27365 year: 2017 ident: 10.1016/j.sna.2018.06.025_bib0180 article-title: Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b06661 – volume: 105 start-page: 64518 year: 2009 ident: 10.1016/j.sna.2018.06.025_bib0240 article-title: Multiwalled carbon nanotube films as small-sized temperature sensors publication-title: J. Appl. Phys. doi: 10.1063/1.3093680 – volume: 94 start-page: 32 year: 2001 ident: 10.1016/j.sna.2018.06.025_bib0255 article-title: Anemometer with hot platinum thin film publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(01)00668-9 – year: 2014 ident: 10.1016/j.sna.2018.06.025_bib0150 – volume: 32 start-page: 1144 year: 1996 ident: 10.1016/j.sna.2018.06.025_bib0160 article-title: Silicon carbide on insulator formation using the smart cut process publication-title: Electron. Lett. doi: 10.1049/el:19960717 – volume: 50 start-page: 215401 year: 2017 ident: 10.1016/j.sna.2018.06.025_bib0295 article-title: Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/aa6cd6 – volume: 3 start-page: 550 year: 2012 ident: 10.1016/j.sna.2018.06.025_bib0025 article-title: Micromachined thermal flow sensors-a review publication-title: Micromachines doi: 10.3390/mi3030550 – volume: 4 start-page: 10061 year: 2016 ident: 10.1016/j.sna.2018.06.025_bib0290 article-title: Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC02708C – volume: 45 start-page: 785 year: 1998 ident: 10.1016/j.sna.2018.06.025_bib0220 article-title: Characterization of highly doped n-and p-type 6H-SiC piezoresistors publication-title: IEEE Trans. Electron. Devices doi: 10.1109/16.662776 – volume: 40 start-page: 1093 year: 1993 ident: 10.1016/j.sna.2018.06.025_bib0215 article-title: Characterization of n-type beta-SiC as a piezoresistor publication-title: IEEE Trans. Electron. Devices doi: 10.1109/16.214734 – start-page: 1135 year: 2013 ident: 10.1016/j.sna.2018.06.025_bib0235 article-title: Design, fabrication, and characterization of graphene thermistor – start-page: 475 year: 2004 ident: 10.1016/j.sna.2018.06.025_bib0135 article-title: Thermal and flow analysis of SiC-based gas sensors for automotive applications – year: 2011 ident: 10.1016/j.sna.2018.06.025_bib0080 – volume: 6 start-page: 25001 year: 2015 ident: 10.1016/j.sna.2018.06.025_bib0270 article-title: Thermal and electromechanical characterization of top-down fabricated p-type silicon nanowires publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. doi: 10.1088/2043-6262/6/2/025001 – volume: 142 start-page: 232 year: 1995 ident: 10.1016/j.sna.2018.06.025_bib0165 article-title: Silicon carbide wafer bonding publication-title: J. Electrochem. Soc. doi: 10.1149/1.2043876 – year: 2006 ident: 10.1016/j.sna.2018.06.025_bib0005 – volume: 11 start-page: 2189 year: 2011 ident: 10.1016/j.sna.2018.06.025_bib0225 article-title: Paper-based piezoresistive MEMS sensors publication-title: Lab Chip doi: 10.1039/c1lc20161a – year: 2005 ident: 10.1016/j.sna.2018.06.025_bib0010 – volume: 519 start-page: 6443 year: 2011 ident: 10.1016/j.sna.2018.06.025_bib0185 article-title: Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.04.224 – volume: 8 start-page: 7 year: 1997 ident: 10.1016/j.sna.2018.06.025_bib0020 article-title: Micromachined flow sensors - a review publication-title: Flow Meas. Instrum. doi: 10.1016/S0955-5986(97)00019-8 |
SSID | ssj0003377 |
Score | 2.4340177 |
Snippet | •The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater... This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 293 |
SubjectTerms | Aerodynamics Air flow Ambient temperature Flow velocity Fluid dynamics Glass Glass substrates Microelectromechanical systems Power consumption Sensitivity Sensitivity analysis Sensors SiC flow sensor Silicon carbide Temperature sensors Thermoresistive effect Turbulent flow Two dimensional flow |
Title | Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology |
URI | https://dx.doi.org/10.1016/j.sna.2018.06.025 https://www.proquest.com/docview/2116404518 |
Volume | 279 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpHqTwwIYUmseMmYxW1KqB2KZXKZNlxjIJKUrVBCAZ-O748ykOoA2OScxSdL9_d2Z_vELo0Hk4KYM84kQosGnnSkgGlFnOF1tqHmnCwozsas-GU3s68WQOF9VkYoFVW2F9ieoHW1Z1Opc3OIkk6E9ukDtQFcDVGaswITrDTLlj59ccXzYOQovsiCFsgXe9sFhyvVQqlh5yyhCd0y_7bN_1C6cL1DPbQbhUz4l75WfuoEacHaOdbJcFD9AB8jfkbXgEfHRAMk9CaJCHOUlwEyBjclcIQ7j2bd-l59loIZ0tswsZ58m4eAgf-EY_6ownO1yvuR2g66N-HQ6vqmmBFhPm55SjlaCoi6VOiAsFsFdNAs9i1RQwJqY6JZsZJC0dK31bC1TEVnoiIMLqixrsfo2aapfEJwqxLVQBJi2SK2r4ImFaBJBFzHaKoVKfIrvXFo6qkOHS2mPOaO_bEjYo5qJgDf871TtHVesiirKexSZjWk8B_GAU3eL9pWKueMF79kStuEl1GoZiOf_a_t56jbbiC9WTHa6FmvnyJL0xAkst2YXFttNW7uRuOPwEqNd7L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4ikeBTwwIUVNYsckYxUVFUq7FCSYLDuOUVFIK1qE4Nfjy6MChDqwxg9F58t3d_aXzwDnNsIpiewZL9GRw5JAOSpizOG-NMaEqAmHJ7qDIe_ds5uH4KEBcf0vDNIqK-wvMb1A6-pJu7Jmezoet0euLR2Yj-BqndS60QqsojpV0ITVznW_N1wAMqXFBYzY38EB9eFmQfOa5ag-5JUqnnhh9t_h6RdQF9Hnags2q7SRdMo324ZGmu_AxjcxwV14RMpG9kFmSElHECM0dkbjmExyUuTIBCOWJpjxvdi5TDZ5LzpPXonNHLPxp21EGvwTGXQHIzJfbLrvwf1V9y7uOdXFCU5CeTh3PK09w2SiQkZ1JLmrUxYZnvquTLEmNSk13MZp6SkVulr6JmUykAmV1lbMBvh9aOaTPD0Awi-ZjrBuUVwzN5QRNzpSNOG-RzVT-hDc2l4iqVTF8XKLTNT0sWdhTSzQxAIpdH5wCBeLIdNSUmNZZ1YvgvjhF8JC_rJhrXrBRPVRzoStdTlDPZ3w6H-znsFa725wK26vh_1jWMcW3F72ghY0569v6YnNT-bqtPK_L9iR4Xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+3C-SiC+on+glass+based+thermal+flow+sensor+realized+using+MEMS+technology&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Balakrishnan%2C+Vivekananthan&rft.au=Dinh%2C+Toan&rft.au=Phan%2C+Hoang-Phuong&rft.au=Dao%2C+Dzung+Viet&rft.date=2018-08-15&rft.issn=0924-4247&rft.volume=279&rft.spage=293&rft.epage=305&rft_id=info:doi/10.1016%2Fj.sna.2018.06.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2018_06_025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |