Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology

•The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater geometries indicates that a larger heater is highly sensitive to flow.•Influence of flow direction on the sensor performance was studied. Do...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 279; pp. 293 - 305
Main Authors Balakrishnan, Vivekananthan, Dinh, Toan, Phan, Hoang-Phuong, Dao, Dzung Viet, Nguyen, Nam-Trung
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.08.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater geometries indicates that a larger heater is highly sensitive to flow.•Influence of flow direction on the sensor performance was studied. Downstream sensor is more sensitive.•A simple, low power consuming, highly sensitive and full dynamic range thermal flow sensor was developed. This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications.
AbstractList This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications.
•The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater geometries indicates that a larger heater is highly sensitive to flow.•Influence of flow direction on the sensor performance was studied. Downstream sensor is more sensitive.•A simple, low power consuming, highly sensitive and full dynamic range thermal flow sensor was developed. This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications.
Author Balakrishnan, Vivekananthan
Nguyen, Nam-Trung
Phan, Hoang-Phuong
Dao, Dzung Viet
Dinh, Toan
Author_xml – sequence: 1
  givenname: Vivekananthan
  orcidid: 0000-0002-6073-4829
  surname: Balakrishnan
  fullname: Balakrishnan, Vivekananthan
  organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
– sequence: 2
  givenname: Toan
  surname: Dinh
  fullname: Dinh, Toan
  organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
– sequence: 3
  givenname: Hoang-Phuong
  surname: Phan
  fullname: Phan, Hoang-Phuong
  organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
– sequence: 4
  givenname: Dzung Viet
  surname: Dao
  fullname: Dao, Dzung Viet
  organization: School of Engineering, Griffith University, Gold Coast, 4222, QLD, Australia
– sequence: 5
  givenname: Nam-Trung
  orcidid: 0000-0003-3626-5361
  surname: Nguyen
  fullname: Nguyen, Nam-Trung
  email: nam-trung.nguyen@griffith.edu.au
  organization: Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
BookMark eNp9kD1PwzAQhi0EEm3hB7BZYk6wY9dJxYQqviQqBmBgsq7OJXUU7GK7ReXXEygTA9MN9z53ep8xOXTeISFnnOWccXXR5dFBXjBe5UzlrJgekBGvSpEJpmaHZMRmhcxkIctjMo6xY4wJUZYj8npn21W_oxFdtMlukYp59mTn1Dva9hAjXULEmqYVhjfoadP7j5-wDzQg9PZzWG6idS1dXC-eaEKzcr737e6EHDXQRzz9nRPycnP9PL_LHh5v7-dXD5kRqkoZr2veSDDLSop6BorVKGeNwoIBciGqBkWjqqkAvlxWrIaiQQlTMAKGBlJxMSHn-7vr4N83GJPu_Ca44aUuOFeSySmvhlS5T5ngYwzYaGMTJOtdCmB7zZn-9qg7PXjU3x41U3rwOJD8D7kO9g3C7l_mcs_gUHxrMehoLDqDtQ1okq69_Yf-ApsNjVs
CitedBy_id crossref_primary_10_1007_s12633_022_01998_9
crossref_primary_10_1038_s41378_024_00740_2
crossref_primary_10_1063_1_5065420
crossref_primary_10_1109_LED_2019_2899068
crossref_primary_10_1007_s44245_024_00077_0
crossref_primary_10_1016_j_ijthermalsci_2022_107626
crossref_primary_10_1109_JSEN_2024_3494013
crossref_primary_10_1109_JMEMS_2022_3195169
crossref_primary_10_1109_TED_2025_3532249
crossref_primary_10_1088_1361_6463_ad800a
crossref_primary_10_1002_adem_202300007
crossref_primary_10_1109_JSEN_2020_3048236
crossref_primary_10_1016_j_sna_2021_112646
crossref_primary_10_1002_ange_202217329
crossref_primary_10_1016_j_sna_2023_114403
crossref_primary_10_1109_JSEN_2021_3072416
crossref_primary_10_46670_JSST_2023_32_1_44
crossref_primary_10_3389_fmech_2022_877754
crossref_primary_10_1109_JMEMS_2021_3067573
crossref_primary_10_1109_TIM_2022_3219491
crossref_primary_10_1155_2019_6246259
crossref_primary_10_1016_j_mtphys_2024_101346
crossref_primary_10_3390_s23177465
crossref_primary_10_1016_j_sna_2019_06_020
crossref_primary_10_1002_adsr_202300159
crossref_primary_10_1088_1361_6439_ac1f3a
crossref_primary_10_1088_1361_6439_ab4aef
crossref_primary_10_1088_1361_6641_ab200c
crossref_primary_10_3390_chemosensors10050187
crossref_primary_10_1109_ACCESS_2021_3073958
crossref_primary_10_1109_JSEN_2023_3310271
crossref_primary_10_1016_j_bios_2020_112460
crossref_primary_10_1088_1361_6439_ab9d2a
crossref_primary_10_1002_anie_202217329
Cites_doi 10.1021/la301775d
10.3390/s17092061
10.1016/S0924-4247(97)80027-1
10.5369/JSST.2009.18.2.147
10.1016/j.proeng.2010.09.162
10.1016/j.surfcoat.2007.05.007
10.1007/s00542-010-1156-z
10.1111/j.1551-2916.2009.02990.x
10.1088/0960-1317/21/7/075025
10.1088/0960-1317/12/3/306
10.1088/0022-3727/11/5/012
10.1016/S0924-4247(99)00358-1
10.1109/JMEMS.2007.896700
10.3390/s140100144
10.1007/s11664-998-0207-z
10.1039/C5TC01650A
10.1115/1.4038829
10.1039/C5AY00517E
10.1088/0964-1726/16/6/034
10.1109/5.704265
10.1109/LED.2018.2808329
10.1088/1361-6439/aa7180
10.1016/j.matlet.2016.04.171
10.1109/JMEMS.2017.2710354
10.1021/nn507441c
10.1109/JMEMS.2012.2189366
10.1016/S0924-4247(00)00541-0
10.1021/acsami.7b06661
10.1063/1.3093680
10.1016/S0924-4247(01)00668-9
10.1049/el:19960717
10.1088/1361-6463/aa6cd6
10.3390/mi3030550
10.1039/C6TC02708C
10.1109/16.662776
10.1109/16.214734
10.1088/2043-6262/6/2/025001
10.1149/1.2043876
10.1039/c1lc20161a
10.1016/j.tsf.2011.04.224
10.1016/S0955-5986(97)00019-8
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Aug 15, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 15, 2018
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2018.06.025
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 305
ExternalDocumentID 10_1016_j_sna_2018_06_025
S0924424718301638
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c368t-1dd1f4acb843d9a60de49f6e20ae1338fe3f6853a1bb80da2fe4a5ac3a0334613
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 25 07:26:15 EDT 2025
Tue Jul 01 01:05:27 EDT 2025
Thu Apr 24 23:05:07 EDT 2025
Fri Feb 23 02:48:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Air flow
Sensitivity
Thermoresistive effect
SiC flow sensor
Glass
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-1dd1f4acb843d9a60de49f6e20ae1338fe3f6853a1bb80da2fe4a5ac3a0334613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6073-4829
0000-0003-3626-5361
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924424718301638
PQID 2116404518
PQPubID 2045401
PageCount 13
ParticipantIDs proquest_journals_2116404518
crossref_citationtrail_10_1016_j_sna_2018_06_025
crossref_primary_10_1016_j_sna_2018_06_025
elsevier_sciencedirect_doi_10_1016_j_sna_2018_06_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-15
PublicationDateYYYYMMDD 2018-08-15
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Belov, Wingbrant, Spetz, Sundgren, Thuner, Svenningstorp, Leisner (bib0135) 2004
Mu, Suga, Fujino, Takahashi, Nakazawa, Iguchi (bib0175) 2014
Kasap (bib0005) 2006
Di Bartolomeo, Sarno, Giubileo, Altavilla, Iemmo, Piano, Bobba, Longobardi, Scarfato, Sannino (bib0240) 2009; 105
Feteira (bib0045) 2009; 92
Bahari, Leung (bib0065) 2011; 21
Dinh, Phan, Kozeki, Qamar, Fujii, Namazu, Nguyen, Dao (bib0015) 2016; 177
Tong, Gösele, Yuan, Steckl, Reiche (bib0165) 1995; 142
Wang, Dimitrijev, Han, Iacopi, Hold, Tanner, Harrison (bib0185) 2011; 519
Sosna, Walter, Lang (bib0260) 2010; 5
Wu, Lin, Yuen, Tai (bib0040) 2001; 89
Mailly, Giani, Bonnot, Temple-Boyer, Pascal-Delannoy, Foucaran, Boyer (bib0255) 2001; 94
Ma, Wang, Chiang, Lee (bib0275) 2011; 17
Balakrishnan, Dinh, Phan, Dao, Nguyen (bib0245) 2018; 140
Dinh, Phan, Dao, Woodfield, Qamar, Nguyen (bib0230) 2015; 3
Yan, Wang, Lee (bib0195) 2015; 9
Balakrishnan, Dinh, Phan, Kozeki, Namazu, Dao, Nguyen (bib0250) 2017; 27
Dao, Dau, Shiozawa, Sugiyama (bib0075) 2007; 16
Abeysinghe, Dasgupta, Jackson, Boyd (bib0055) 2002; 12
Harris (bib0115) 1995
Jiang, Kim, Zhang, Johnson, Salazar (bib0085) 2013; 14
Kong, Le, Li, Zunino, Lee (bib0205) 2012; 28
Dinh, Phan, Nguyen, Qamar, Woodfield, Zhu, Nguyen, Dao (bib0295) 2017; 50
Dau, Dao, Sugiyama (bib0070) 2007; 16
Shor, Goldstein, Kurtz (bib0215) 1993; 40
Wijesundara, Azevedo (bib0080) 2011
Thiruppathi, Ponnusamy, Vivekananathan (bib0095) 2015
Wang, Liu, Gau (bib0265) 2011
Balakrishnan, Phan, Dinh, Dao, Nguyen (bib0030) 2017; 17
Al-Mumen, Rao, Dong, Li (bib0235) 2013
Nguyen (bib0020) 1997; 8
Bahari, Jones, Leung (bib0060) 2012; 21
Kuo, Yu, Meng (bib0025) 2012; 3
Lyons, Friedberger, Welser, Muller, Krotz, Kassing (bib0125) 1998
Mehregany, Zorman, Rajan, Wu (bib0140) 1998; 86
Sze, Ng (bib0190) 2006
Liu, Mwangi, Li, O’Brien, Whitesides (bib0225) 2011; 11
Kimoto, Cooper (bib0150) 2014
Di Cioccio, Le Tiec, Letertre, Jaussaud, Bruel (bib0160) 1996; 32
Lei (bib0130) 2011
Vivekananathan, Ponnusamy, Thiruppathi (bib0090) 2015
Hung, Wong, Fang (bib0285) 2000; 84
Lin, Burns (bib0035) 2015; 7
Neda, Nakamura, Takumi (bib0280) 1996; 54
Zhang, Carraro, Howe, Maboudian (bib0110) 2007; 201
Vinod, Zorman, Yasseen, Mehregany (bib0170) 1998; 27
Warkusz (bib0210) 1978; 11
Okojie, Ned, Kurtz, Carr (bib0220) 1998; 45
Bosseboeuf, Allain, Parrain, Le Roux, Isac, Jacob, Poizat, Coste, Maaroufi, Walther (bib0270) 2015; 6
Jiang, Cheung (bib0145) 2009; 2
Spannhake, Helwig, Müller, Doll (bib0105) 2005
Dinh, Phan, Nguyen, Balakrishnan, Cheng, Hold, Lacopi, Nguyen, Dao (bib0200) 2018; 39
Colinge, Colinge (bib0010) 2005
Scott, Sadeghi, Peroulis (bib0050) 2009
Phan, Cheng, Dinh, Wood, Nguyen, Mu, Kamble, Vadivelu, Walker, Hold (bib0180) 2017; 9
Tanaka, Jinda, Tabuchi, Tanaka, Furubayashi, Inami, Hijikigawa (bib0155) 1986
Lee, Lei, Lee, Rajgopal, Mehregany (bib0120) 2009; 18
Dinh, Phan, Nguyen, Qamar, Foisal, Viet, Tran, Zhu, Nguyen, Dao (bib0290) 2016; 4
Dinh, Phan, Qamar, Woodfield, Nguyen, Dao (bib0100) 2017; 26
Lee (10.1016/j.sna.2018.06.025_bib0120) 2009; 18
Kasap (10.1016/j.sna.2018.06.025_bib0005) 2006
Abeysinghe (10.1016/j.sna.2018.06.025_bib0055) 2002; 12
Belov (10.1016/j.sna.2018.06.025_bib0135) 2004
Dinh (10.1016/j.sna.2018.06.025_bib0295) 2017; 50
Yan (10.1016/j.sna.2018.06.025_bib0195) 2015; 9
Sze (10.1016/j.sna.2018.06.025_bib0190) 2006
Lei (10.1016/j.sna.2018.06.025_bib0130) 2011
Balakrishnan (10.1016/j.sna.2018.06.025_bib0245) 2018; 140
Jiang (10.1016/j.sna.2018.06.025_bib0085) 2013; 14
Di Bartolomeo (10.1016/j.sna.2018.06.025_bib0240) 2009; 105
Mu (10.1016/j.sna.2018.06.025_bib0175) 2014
Sosna (10.1016/j.sna.2018.06.025_bib0260) 2010; 5
Di Cioccio (10.1016/j.sna.2018.06.025_bib0160) 1996; 32
Bosseboeuf (10.1016/j.sna.2018.06.025_bib0270) 2015; 6
Dinh (10.1016/j.sna.2018.06.025_bib0015) 2016; 177
Balakrishnan (10.1016/j.sna.2018.06.025_bib0250) 2017; 27
Colinge (10.1016/j.sna.2018.06.025_bib0010) 2005
Kimoto (10.1016/j.sna.2018.06.025_bib0150) 2014
Wang (10.1016/j.sna.2018.06.025_bib0265) 2011
Spannhake (10.1016/j.sna.2018.06.025_bib0105) 2005
Dao (10.1016/j.sna.2018.06.025_bib0075) 2007; 16
Feteira (10.1016/j.sna.2018.06.025_bib0045) 2009; 92
Warkusz (10.1016/j.sna.2018.06.025_bib0210) 1978; 11
Lin (10.1016/j.sna.2018.06.025_bib0035) 2015; 7
Bahari (10.1016/j.sna.2018.06.025_bib0060) 2012; 21
Neda (10.1016/j.sna.2018.06.025_bib0280) 1996; 54
Dinh (10.1016/j.sna.2018.06.025_bib0230) 2015; 3
Dinh (10.1016/j.sna.2018.06.025_bib0100) 2017; 26
Scott (10.1016/j.sna.2018.06.025_bib0050) 2009
Vivekananathan (10.1016/j.sna.2018.06.025_bib0090) 2015
Hung (10.1016/j.sna.2018.06.025_bib0285) 2000; 84
Phan (10.1016/j.sna.2018.06.025_bib0180) 2017; 9
Kuo (10.1016/j.sna.2018.06.025_bib0025) 2012; 3
Lyons (10.1016/j.sna.2018.06.025_bib0125) 1998
Vinod (10.1016/j.sna.2018.06.025_bib0170) 1998; 27
Thiruppathi (10.1016/j.sna.2018.06.025_bib0095) 2015
Bahari (10.1016/j.sna.2018.06.025_bib0065) 2011; 21
Dau (10.1016/j.sna.2018.06.025_bib0070) 2007; 16
Ma (10.1016/j.sna.2018.06.025_bib0275) 2011; 17
Jiang (10.1016/j.sna.2018.06.025_bib0145) 2009; 2
Liu (10.1016/j.sna.2018.06.025_bib0225) 2011; 11
Okojie (10.1016/j.sna.2018.06.025_bib0220) 1998; 45
Wang (10.1016/j.sna.2018.06.025_bib0185) 2011; 519
Mehregany (10.1016/j.sna.2018.06.025_bib0140) 1998; 86
Wu (10.1016/j.sna.2018.06.025_bib0040) 2001; 89
Harris (10.1016/j.sna.2018.06.025_bib0115) 1995
Balakrishnan (10.1016/j.sna.2018.06.025_bib0030) 2017; 17
Shor (10.1016/j.sna.2018.06.025_bib0215) 1993; 40
Nguyen (10.1016/j.sna.2018.06.025_bib0020) 1997; 8
Tanaka (10.1016/j.sna.2018.06.025_bib0155) 1986
Kong (10.1016/j.sna.2018.06.025_bib0205) 2012; 28
Wijesundara (10.1016/j.sna.2018.06.025_bib0080) 2011
Dinh (10.1016/j.sna.2018.06.025_bib0290) 2016; 4
Tong (10.1016/j.sna.2018.06.025_bib0165) 1995; 142
Al-Mumen (10.1016/j.sna.2018.06.025_bib0235) 2013
Mailly (10.1016/j.sna.2018.06.025_bib0255) 2001; 94
Dinh (10.1016/j.sna.2018.06.025_bib0200) 2018; 39
Zhang (10.1016/j.sna.2018.06.025_bib0110) 2007; 201
References_xml – volume: 2
  start-page: 227
  year: 2009
  ident: bib0145
  article-title: A review of silicon carbide development in MEMS applications
  publication-title: Int. J. Comput. Mater. Sci. Surf. Eng.
– volume: 7
  start-page: 3981
  year: 2015
  end-page: 3987
  ident: bib0035
  article-title: Low-power micro-fabricated liquid flow-rate sensor
  publication-title: Anal. Methods
– volume: 27
  start-page: L17
  year: 1998
  end-page: L20
  ident: bib0170
  article-title: Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques
  publication-title: J. Electron. Mater.
– volume: 16
  start-page: 2308
  year: 2007
  ident: bib0070
  article-title: A 2-DOF convective micro accelerometer with a low thermal stress sensing element
  publication-title: Smart Mater. Struct.
– volume: 32
  start-page: 1144
  year: 1996
  end-page: 1145
  ident: bib0160
  article-title: Silicon carbide on insulator formation using the smart cut process
  publication-title: Electron. Lett.
– volume: 9
  start-page: 27365
  year: 2017
  end-page: 27371
  ident: bib0180
  article-title: Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications
  publication-title: ACS Appl. Mater. Interf.
– volume: 9
  start-page: 2130
  year: 2015
  end-page: 2137
  ident: bib0195
  article-title: Stretchable graphene thermistor with tunable thermal index
  publication-title: ACS Nano
– start-page: 1135
  year: 2013
  end-page: 1138
  ident: bib0235
  article-title: Design, fabrication, and characterization of graphene thermistor
  publication-title: Nano/Micro Eng. Mol. Syst. (NEMS), 2013 8th IEEE Int. Conf.
– volume: 27
  start-page: 75008
  year: 2017
  ident: bib0250
  article-title: Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating
  publication-title: J. Micromech. Microeng.
– start-page: 475
  year: 2004
  end-page: 482
  ident: bib0135
  article-title: Thermal and flow analysis of SiC-based gas sensors for automotive applications
  publication-title: Therm. Mech. Simul. Exp. Microelectron. Microsystems, 2004. EuroSimE 2004. Proc. 5th Int. Conf.
– volume: 26
  start-page: 966
  year: 2017
  end-page: 986
  ident: bib0100
  article-title: Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications
  publication-title: J. Microelectromech. Syst.
– year: 2006
  ident: bib0005
  article-title: Principles of Electronic Materials and Devices
– volume: 18
  start-page: 147
  year: 2009
  end-page: 153
  ident: bib0120
  article-title: Micro flow sensor using polycrystalline silicon carbide
  publication-title: J. Sens. Sci. Technol.
– start-page: 630
  year: 2011
  end-page: 633
  ident: bib0265
  article-title: Silicon nanowire temperature sensor and its characteristic
  publication-title: Nano/Micro Eng. Mol. Syst. (NEMS), 2011 IEEE Int. Conf.
– volume: 28
  start-page: 13467
  year: 2012
  end-page: 13472
  ident: bib0205
  article-title: Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials
  publication-title: Langmuir
– year: 2006
  ident: bib0190
  article-title: Metal‐Semiconductor Contacts
– volume: 5
  start-page: 524
  year: 2010
  end-page: 527
  ident: bib0260
  article-title: Response time of thermal flow sensors
  publication-title: Procedia Eng.
– volume: 45
  start-page: 785
  year: 1998
  end-page: 790
  ident: bib0220
  article-title: Characterization of highly doped n-and p-type 6H-SiC piezoresistors
  publication-title: IEEE Trans. Electron. Devices
– volume: 21
  start-page: 75025
  year: 2011
  ident: bib0065
  article-title: Micromachined three-axis thermal accelerometer with a single composite heater
  publication-title: J. Micromech. Microeng.
– volume: 6
  start-page: 25001
  year: 2015
  ident: bib0270
  article-title: Thermal and electromechanical characterization of top-down fabricated p-type silicon nanowires
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– volume: 17
  start-page: 2061
  year: 2017
  ident: bib0030
  article-title: Thermal flow sensors for harsh environments
  publication-title: Sensors
– start-page: 31
  year: 2005
  ident: bib0105
  article-title: SiC as a High-Performance Material for Microheaters, HeT-SiC-05
– volume: 16
  start-page: 950
  year: 2007
  end-page: 958
  ident: bib0075
  article-title: Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element
  publication-title: J. Microelectromech. Syst.
– year: 2011
  ident: bib0130
  article-title: Silicon Carbide High Temperature Thermoelectric Flow Sensor
– volume: 50
  start-page: 215401
  year: 2017
  ident: bib0295
  article-title: Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring
  publication-title: J. Phys. D. Appl. Phys.
– volume: 142
  start-page: 232
  year: 1995
  end-page: 236
  ident: bib0165
  article-title: Silicon carbide wafer bonding
  publication-title: J. Electrochem. Soc.
– volume: 89
  start-page: 152
  year: 2001
  end-page: 158
  ident: bib0040
  article-title: MEMS flow sensors for nano-fluidic applications
  publication-title: Sens. Actuators A Phys.
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib0090
  article-title: Design and optimization of multivariable controller for CSTR system
  publication-title: Robot. Autom. Control Embed. Syst. (RACE), 2015 Int. Conf.
– volume: 40
  start-page: 1093
  year: 1993
  end-page: 1099
  ident: bib0215
  article-title: Characterization of n-type beta-SiC as a piezoresistor
  publication-title: IEEE Trans. Electron. Devices
– volume: 21
  start-page: 646
  year: 2012
  end-page: 655
  ident: bib0060
  article-title: Sensitivity improvement of micromachined convective accelerometers
  publication-title: J. Microelectromech. Syst.
– volume: 14
  start-page: 144
  year: 2013
  end-page: 169
  ident: bib0085
  article-title: High-temperature piezoelectric sensing
  publication-title: Sensors
– volume: 519
  start-page: 6443
  year: 2011
  end-page: 6446
  ident: bib0185
  article-title: Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C
  publication-title: Thin Solid Films
– volume: 8
  start-page: 7
  year: 1997
  end-page: 16
  ident: bib0020
  article-title: Micromachined flow sensors - a review
  publication-title: Flow Meas. Instrum.
– year: 1995
  ident: bib0115
  article-title: Properties of Silicon Carbide
– volume: 39
  start-page: 580
  year: 2018
  end-page: 583
  ident: bib0200
  article-title: Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures
  publication-title: IEEE Electron. Device Lett.
– volume: 84
  start-page: 70
  year: 2000
  end-page: 75
  ident: bib0285
  article-title: The development and application of microthermal sensors with a mesh-membrane supporting structure
  publication-title: Sens. Actuators A Phys.
– start-page: 125
  year: 1986
  end-page: 129
  ident: bib0155
  article-title: A micro flow sensor with a substrate having a low thermal conductivity
  publication-title: Proceeding 6th Sens. Symp. Inst. Electr. Eng. Japan
– volume: 177
  start-page: 80
  year: 2016
  end-page: 84
  ident: bib0015
  article-title: High thermosensitivity of silicon nanowires induced by amorphization
  publication-title: Mater. Lett.
– volume: 17
  start-page: 655
  year: 2011
  end-page: 660
  ident: bib0275
  article-title: Fabrication and characterization of MEMS-based flow sensors based on hot films
  publication-title: Microsyst. Technol.
– volume: 12
  start-page: 229
  year: 2002
  ident: bib0055
  article-title: Novel MEMS pressure and temperature sensors fabricated on optical fibers
  publication-title: J. Micromechanics Microengineering
– volume: 140
  start-page: 72001
  year: 2018
  ident: bib0245
  article-title: A generalized analytical model for Joule heating of segmented wires
  publication-title: J. Heat Transf.
– year: 2005
  ident: bib0010
  article-title: Physics of Semiconductor Devices
– volume: 201
  start-page: 8893
  year: 2007
  end-page: 8898
  ident: bib0110
  article-title: Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments
  publication-title: Surf. Coatings Technol.
– year: 2014
  ident: bib0150
  article-title: Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications
– volume: 94
  start-page: 32
  year: 2001
  end-page: 38
  ident: bib0255
  article-title: Anemometer with hot platinum thin film
  publication-title: Sens. Actuators A Phys.
– start-page: 356
  year: 1998
  end-page: 360
  ident: bib0125
  article-title: A high-speed mass flow sensor with heated silicon carbide bridges
  publication-title: Micro Electro Mech. Syst. 1998. MEMS 98. Proceedings., Elev. Annu. Int. Work.
– volume: 3
  start-page: 8776
  year: 2015
  end-page: 8779
  ident: bib0230
  article-title: Graphite on paper as material for sensitive thermoresistive sensors
  publication-title: J. Mater. Chem. C
– start-page: 55
  year: 2014
  ident: bib0175
  article-title: SiC wafer bonding by modified suface activated bonding method
  publication-title: Low Temp. Bond. 3D Integr. (LTB-3D), 2014 4th IEEE Int. Work.
– volume: 3
  start-page: 550
  year: 2012
  end-page: 573
  ident: bib0025
  article-title: Micromachined thermal flow sensors-a review
  publication-title: Micromachines
– volume: 11
  start-page: 2189
  year: 2011
  end-page: 2196
  ident: bib0225
  article-title: Paper-based piezoresistive MEMS sensors
  publication-title: Lab Chip
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0095
  article-title: Design and tuning of decoupled PI controllers for real time deep-sea conditions mimicking system
  publication-title: Robot. Autom. Control Embed. Syst. (RACE), 2015 Int. Conf.
– year: 2011
  ident: bib0080
  article-title: Silicon Carbide Microsystems for Harsh Environments
– volume: 86
  start-page: 1594
  year: 1998
  end-page: 1609
  ident: bib0140
  article-title: Silicon carbide MEMS for harsh environments
  publication-title: Proc. IEEE
– volume: 92
  start-page: 967
  year: 2009
  end-page: 983
  ident: bib0045
  article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective
  publication-title: J. Am. Ceram. Soc.
– volume: 105
  start-page: 64518
  year: 2009
  ident: bib0240
  article-title: Multiwalled carbon nanotube films as small-sized temperature sensors
  publication-title: J. Appl. Phys.
– start-page: 975
  year: 2009
  end-page: 978
  ident: bib0050
  article-title: An inherently-robust 300 C MEMS temperature sensor for wireless health monitoring of ball and rolling element bearings
  publication-title: Sensors, 2009 IEEE
– volume: 4
  start-page: 10061
  year: 2016
  end-page: 10068
  ident: bib0290
  article-title: Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare
  publication-title: J. Mater. Chem. C.
– volume: 11
  start-page: 689
  year: 1978
  ident: bib0210
  article-title: The size effect and the temperature coefficient of resistance in thin films
  publication-title: J. Phys. D. Appl. Phys.
– volume: 54
  start-page: 626
  year: 1996
  end-page: 631
  ident: bib0280
  article-title: A polysilicon flow sensor for gas flow meters
  publication-title: Sens. Actuators A Phys.
– volume: 28
  start-page: 13467
  year: 2012
  ident: 10.1016/j.sna.2018.06.025_bib0205
  article-title: Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials
  publication-title: Langmuir
  doi: 10.1021/la301775d
– start-page: 356
  year: 1998
  ident: 10.1016/j.sna.2018.06.025_bib0125
  article-title: A high-speed mass flow sensor with heated silicon carbide bridges
– year: 2011
  ident: 10.1016/j.sna.2018.06.025_bib0130
– volume: 17
  start-page: 2061
  year: 2017
  ident: 10.1016/j.sna.2018.06.025_bib0030
  article-title: Thermal flow sensors for harsh environments
  publication-title: Sensors
  doi: 10.3390/s17092061
– volume: 54
  start-page: 626
  year: 1996
  ident: 10.1016/j.sna.2018.06.025_bib0280
  article-title: A polysilicon flow sensor for gas flow meters
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(97)80027-1
– volume: 18
  start-page: 147
  year: 2009
  ident: 10.1016/j.sna.2018.06.025_bib0120
  article-title: Micro flow sensor using polycrystalline silicon carbide
  publication-title: J. Sens. Sci. Technol.
  doi: 10.5369/JSST.2009.18.2.147
– volume: 5
  start-page: 524
  year: 2010
  ident: 10.1016/j.sna.2018.06.025_bib0260
  article-title: Response time of thermal flow sensors
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.09.162
– volume: 201
  start-page: 8893
  year: 2007
  ident: 10.1016/j.sna.2018.06.025_bib0110
  article-title: Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2007.05.007
– volume: 17
  start-page: 655
  year: 2011
  ident: 10.1016/j.sna.2018.06.025_bib0275
  article-title: Fabrication and characterization of MEMS-based flow sensors based on hot films
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-010-1156-z
– year: 2006
  ident: 10.1016/j.sna.2018.06.025_bib0190
– start-page: 31
  year: 2005
  ident: 10.1016/j.sna.2018.06.025_bib0105
– start-page: 55
  year: 2014
  ident: 10.1016/j.sna.2018.06.025_bib0175
  article-title: SiC wafer bonding by modified suface activated bonding method
– volume: 92
  start-page: 967
  year: 2009
  ident: 10.1016/j.sna.2018.06.025_bib0045
  article-title: Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.02990.x
– volume: 2
  start-page: 227
  year: 2009
  ident: 10.1016/j.sna.2018.06.025_bib0145
  article-title: A review of silicon carbide development in MEMS applications
  publication-title: Int. J. Comput. Mater. Sci. Surf. Eng.
– volume: 21
  start-page: 75025
  year: 2011
  ident: 10.1016/j.sna.2018.06.025_bib0065
  article-title: Micromachined three-axis thermal accelerometer with a single composite heater
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/21/7/075025
– start-page: 1
  year: 2015
  ident: 10.1016/j.sna.2018.06.025_bib0095
  article-title: Design and tuning of decoupled PI controllers for real time deep-sea conditions mimicking system
– volume: 12
  start-page: 229
  year: 2002
  ident: 10.1016/j.sna.2018.06.025_bib0055
  article-title: Novel MEMS pressure and temperature sensors fabricated on optical fibers
  publication-title: J. Micromechanics Microengineering
  doi: 10.1088/0960-1317/12/3/306
– volume: 11
  start-page: 689
  year: 1978
  ident: 10.1016/j.sna.2018.06.025_bib0210
  article-title: The size effect and the temperature coefficient of resistance in thin films
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/11/5/012
– volume: 84
  start-page: 70
  year: 2000
  ident: 10.1016/j.sna.2018.06.025_bib0285
  article-title: The development and application of microthermal sensors with a mesh-membrane supporting structure
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(99)00358-1
– volume: 16
  start-page: 950
  year: 2007
  ident: 10.1016/j.sna.2018.06.025_bib0075
  article-title: Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2007.896700
– volume: 14
  start-page: 144
  year: 2013
  ident: 10.1016/j.sna.2018.06.025_bib0085
  article-title: High-temperature piezoelectric sensing
  publication-title: Sensors
  doi: 10.3390/s140100144
– start-page: 975
  year: 2009
  ident: 10.1016/j.sna.2018.06.025_bib0050
  article-title: An inherently-robust 300 C MEMS temperature sensor for wireless health monitoring of ball and rolling element bearings
– volume: 27
  start-page: L17
  year: 1998
  ident: 10.1016/j.sna.2018.06.025_bib0170
  article-title: Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-998-0207-z
– volume: 3
  start-page: 8776
  year: 2015
  ident: 10.1016/j.sna.2018.06.025_bib0230
  article-title: Graphite on paper as material for sensitive thermoresistive sensors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC01650A
– volume: 140
  start-page: 72001
  year: 2018
  ident: 10.1016/j.sna.2018.06.025_bib0245
  article-title: A generalized analytical model for Joule heating of segmented wires
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4038829
– start-page: 1
  year: 2015
  ident: 10.1016/j.sna.2018.06.025_bib0090
  article-title: Design and optimization of multivariable controller for CSTR system
– volume: 7
  start-page: 3981
  year: 2015
  ident: 10.1016/j.sna.2018.06.025_bib0035
  article-title: Low-power micro-fabricated liquid flow-rate sensor
  publication-title: Anal. Methods
  doi: 10.1039/C5AY00517E
– volume: 16
  start-page: 2308
  year: 2007
  ident: 10.1016/j.sna.2018.06.025_bib0070
  article-title: A 2-DOF convective micro accelerometer with a low thermal stress sensing element
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/6/034
– volume: 86
  start-page: 1594
  year: 1998
  ident: 10.1016/j.sna.2018.06.025_bib0140
  article-title: Silicon carbide MEMS for harsh environments
  publication-title: Proc. IEEE
  doi: 10.1109/5.704265
– start-page: 125
  year: 1986
  ident: 10.1016/j.sna.2018.06.025_bib0155
  article-title: A micro flow sensor with a substrate having a low thermal conductivity
– volume: 39
  start-page: 580
  year: 2018
  ident: 10.1016/j.sna.2018.06.025_bib0200
  article-title: Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2018.2808329
– volume: 27
  start-page: 75008
  year: 2017
  ident: 10.1016/j.sna.2018.06.025_bib0250
  article-title: Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa7180
– volume: 177
  start-page: 80
  year: 2016
  ident: 10.1016/j.sna.2018.06.025_bib0015
  article-title: High thermosensitivity of silicon nanowires induced by amorphization
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.04.171
– year: 1995
  ident: 10.1016/j.sna.2018.06.025_bib0115
– volume: 26
  start-page: 966
  year: 2017
  ident: 10.1016/j.sna.2018.06.025_bib0100
  article-title: Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2017.2710354
– start-page: 630
  year: 2011
  ident: 10.1016/j.sna.2018.06.025_bib0265
  article-title: Silicon nanowire temperature sensor and its characteristic
– volume: 9
  start-page: 2130
  year: 2015
  ident: 10.1016/j.sna.2018.06.025_bib0195
  article-title: Stretchable graphene thermistor with tunable thermal index
  publication-title: ACS Nano
  doi: 10.1021/nn507441c
– volume: 21
  start-page: 646
  year: 2012
  ident: 10.1016/j.sna.2018.06.025_bib0060
  article-title: Sensitivity improvement of micromachined convective accelerometers
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2012.2189366
– volume: 89
  start-page: 152
  year: 2001
  ident: 10.1016/j.sna.2018.06.025_bib0040
  article-title: MEMS flow sensors for nano-fluidic applications
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(00)00541-0
– volume: 9
  start-page: 27365
  year: 2017
  ident: 10.1016/j.sna.2018.06.025_bib0180
  article-title: Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.7b06661
– volume: 105
  start-page: 64518
  year: 2009
  ident: 10.1016/j.sna.2018.06.025_bib0240
  article-title: Multiwalled carbon nanotube films as small-sized temperature sensors
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3093680
– volume: 94
  start-page: 32
  year: 2001
  ident: 10.1016/j.sna.2018.06.025_bib0255
  article-title: Anemometer with hot platinum thin film
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(01)00668-9
– year: 2014
  ident: 10.1016/j.sna.2018.06.025_bib0150
– volume: 32
  start-page: 1144
  year: 1996
  ident: 10.1016/j.sna.2018.06.025_bib0160
  article-title: Silicon carbide on insulator formation using the smart cut process
  publication-title: Electron. Lett.
  doi: 10.1049/el:19960717
– volume: 50
  start-page: 215401
  year: 2017
  ident: 10.1016/j.sna.2018.06.025_bib0295
  article-title: Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aa6cd6
– volume: 3
  start-page: 550
  year: 2012
  ident: 10.1016/j.sna.2018.06.025_bib0025
  article-title: Micromachined thermal flow sensors-a review
  publication-title: Micromachines
  doi: 10.3390/mi3030550
– volume: 4
  start-page: 10061
  year: 2016
  ident: 10.1016/j.sna.2018.06.025_bib0290
  article-title: Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C6TC02708C
– volume: 45
  start-page: 785
  year: 1998
  ident: 10.1016/j.sna.2018.06.025_bib0220
  article-title: Characterization of highly doped n-and p-type 6H-SiC piezoresistors
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/16.662776
– volume: 40
  start-page: 1093
  year: 1993
  ident: 10.1016/j.sna.2018.06.025_bib0215
  article-title: Characterization of n-type beta-SiC as a piezoresistor
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/16.214734
– start-page: 1135
  year: 2013
  ident: 10.1016/j.sna.2018.06.025_bib0235
  article-title: Design, fabrication, and characterization of graphene thermistor
– start-page: 475
  year: 2004
  ident: 10.1016/j.sna.2018.06.025_bib0135
  article-title: Thermal and flow analysis of SiC-based gas sensors for automotive applications
– year: 2011
  ident: 10.1016/j.sna.2018.06.025_bib0080
– volume: 6
  start-page: 25001
  year: 2015
  ident: 10.1016/j.sna.2018.06.025_bib0270
  article-title: Thermal and electromechanical characterization of top-down fabricated p-type silicon nanowires
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
  doi: 10.1088/2043-6262/6/2/025001
– volume: 142
  start-page: 232
  year: 1995
  ident: 10.1016/j.sna.2018.06.025_bib0165
  article-title: Silicon carbide wafer bonding
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2043876
– year: 2006
  ident: 10.1016/j.sna.2018.06.025_bib0005
– volume: 11
  start-page: 2189
  year: 2011
  ident: 10.1016/j.sna.2018.06.025_bib0225
  article-title: Paper-based piezoresistive MEMS sensors
  publication-title: Lab Chip
  doi: 10.1039/c1lc20161a
– year: 2005
  ident: 10.1016/j.sna.2018.06.025_bib0010
– volume: 519
  start-page: 6443
  year: 2011
  ident: 10.1016/j.sna.2018.06.025_bib0185
  article-title: Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.04.224
– volume: 8
  start-page: 7
  year: 1997
  ident: 10.1016/j.sna.2018.06.025_bib0020
  article-title: Micromachined flow sensors - a review
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/S0955-5986(97)00019-8
SSID ssj0003377
Score 2.4340177
Snippet •The NTC characteristics observed in 3C-SiC/glass sensor leads to an increasing signal with increasing flow velocity.•The relationship among various SiC heater...
This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms Aerodynamics
Air flow
Ambient temperature
Flow velocity
Fluid dynamics
Glass
Glass substrates
Microelectromechanical systems
Power consumption
Sensitivity
Sensitivity analysis
Sensors
SiC flow sensor
Silicon carbide
Temperature sensors
Thermoresistive effect
Turbulent flow
Two dimensional flow
Title Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology
URI https://dx.doi.org/10.1016/j.sna.2018.06.025
https://www.proquest.com/docview/2116404518
Volume 279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpHqTwwIYUmseMmYxW1KqB2KZXKZNlxjIJKUrVBCAZ-O748ykOoA2OScxSdL9_d2Z_vELo0Hk4KYM84kQosGnnSkgGlFnOF1tqHmnCwozsas-GU3s68WQOF9VkYoFVW2F9ieoHW1Z1Opc3OIkk6E9ukDtQFcDVGaswITrDTLlj59ccXzYOQovsiCFsgXe9sFhyvVQqlh5yyhCd0y_7bN_1C6cL1DPbQbhUz4l75WfuoEacHaOdbJcFD9AB8jfkbXgEfHRAMk9CaJCHOUlwEyBjclcIQ7j2bd-l59loIZ0tswsZ58m4eAgf-EY_6ownO1yvuR2g66N-HQ6vqmmBFhPm55SjlaCoi6VOiAsFsFdNAs9i1RQwJqY6JZsZJC0dK31bC1TEVnoiIMLqixrsfo2aapfEJwqxLVQBJi2SK2r4ImFaBJBFzHaKoVKfIrvXFo6qkOHS2mPOaO_bEjYo5qJgDf871TtHVesiirKexSZjWk8B_GAU3eL9pWKueMF79kStuEl1GoZiOf_a_t56jbbiC9WTHa6FmvnyJL0xAkst2YXFttNW7uRuOPwEqNd7L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4ikeBTwwIUVNYsckYxUVFUq7FCSYLDuOUVFIK1qE4Nfjy6MChDqwxg9F58t3d_aXzwDnNsIpiewZL9GRw5JAOSpizOG-NMaEqAmHJ7qDIe_ds5uH4KEBcf0vDNIqK-wvMb1A6-pJu7Jmezoet0euLR2Yj-BqndS60QqsojpV0ITVznW_N1wAMqXFBYzY38EB9eFmQfOa5ag-5JUqnnhh9t_h6RdQF9Hnags2q7SRdMo324ZGmu_AxjcxwV14RMpG9kFmSElHECM0dkbjmExyUuTIBCOWJpjxvdi5TDZ5LzpPXonNHLPxp21EGvwTGXQHIzJfbLrvwf1V9y7uOdXFCU5CeTh3PK09w2SiQkZ1JLmrUxYZnvquTLEmNSk13MZp6SkVulr6JmUykAmV1lbMBvh9aOaTPD0Awi-ZjrBuUVwzN5QRNzpSNOG-RzVT-hDc2l4iqVTF8XKLTNT0sWdhTSzQxAIpdH5wCBeLIdNSUmNZZ1YvgvjhF8JC_rJhrXrBRPVRzoStdTlDPZ3w6H-znsFa725wK26vh_1jWMcW3F72ghY0569v6YnNT-bqtPK_L9iR4Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+3C-SiC+on+glass+based+thermal+flow+sensor+realized+using+MEMS+technology&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Balakrishnan%2C+Vivekananthan&rft.au=Dinh%2C+Toan&rft.au=Phan%2C+Hoang-Phuong&rft.au=Dao%2C+Dzung+Viet&rft.date=2018-08-15&rft.issn=0924-4247&rft.volume=279&rft.spage=293&rft.epage=305&rft_id=info:doi/10.1016%2Fj.sna.2018.06.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2018_06_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon