Sum-perfect graphs

Inspired by a famous characterization of perfect graphs due to Lovász, we define a graph G to be sum-perfect if for every induced subgraph H of G, α(H)+ω(H)≥|V(H)|. (Here α and ω denote the stability number and clique number, respectively.) We give a set of 27 graphs and we prove that a graph G is s...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 259; pp. 232 - 239
Main Authors Litjens, Bart, Polak, Sven, Sivaraman, Vaidy
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 30.04.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0166-218X
1872-6771
DOI10.1016/j.dam.2018.12.015

Cover

Abstract Inspired by a famous characterization of perfect graphs due to Lovász, we define a graph G to be sum-perfect if for every induced subgraph H of G, α(H)+ω(H)≥|V(H)|. (Here α and ω denote the stability number and clique number, respectively.) We give a set of 27 graphs and we prove that a graph G is sum-perfect if and only if G does not contain any of the graphs in the set as an induced subgraph.
AbstractList Inspired by a famous characterization of perfect graphs due to Lovász, we define a graph G to be sum-perfect if for every induced subgraph H of G, α (H) + w (H) ≥ |V (H)|. (Here α and w denote the stability number and clique number, respectively.) We give a set of 27 graphs and we prove that a graph G is sum-perfect if and only if G does not contain any of the graphs in the set as an induced subgraph.
Inspired by a famous characterization of perfect graphs due to Lovász, we define a graph G to be sum-perfect if for every induced subgraph H of G, α(H)+ω(H)≥|V(H)|. (Here α and ω denote the stability number and clique number, respectively.) We give a set of 27 graphs and we prove that a graph G is sum-perfect if and only if G does not contain any of the graphs in the set as an induced subgraph.
Author Polak, Sven
Litjens, Bart
Sivaraman, Vaidy
Author_xml – sequence: 1
  givenname: Bart
  orcidid: 0000-0002-3138-1737
  surname: Litjens
  fullname: Litjens, Bart
  email: bart_litjens@hotmail.com
– sequence: 2
  givenname: Sven
  orcidid: 0000-0002-4287-6479
  surname: Polak
  fullname: Polak, Sven
  email: s.c.polak@uva.nl
– sequence: 3
  givenname: Vaidy
  surname: Sivaraman
  fullname: Sivaraman, Vaidy
  email: vaidysivaraman@gmail.com
BookMark eNp9kE1LAzEQhoNUcFu9ePMmeN41k-xusniS4hcUPKjgLaTJRLN0P0y2gv_elHryUOYwDLzPDPPMyawfeiTkAmgBFOrrtrC6KxgFWQArKFRHJAMpWF4LATOSpUydM5DvJ2QeY0sphTRl5Pxl2-UjBodmuvwIevyMp-TY6U3Es7--IG_3d6_Lx3z1_PC0vF3lhtdyyoE3rpLrshGM1ShLwanktWZgtK2sA4nNWoMuLSA46yQXIClvoHG2gdI5viBX-71jGL62GCfVDtvQp5OKMVYxnkqmlNinTBhiDOiU8ZOe_NBPQfuNAqp2AlSrkgC1E6CAqSQgkfCPHIPvdPg5yNzsGUyPf3sMKhqPvUHrQzKk7OAP0L94anJi
CitedBy_id crossref_primary_10_1080_09728600_2024_2329927
crossref_primary_10_1016_j_dam_2025_02_010
Cites_doi 10.1016/0095-8956(85)90050-4
10.1016/j.tcs.2005.08.038
10.1016/0095-8956(72)90045-7
10.1016/0012-365X(86)90097-X
10.1137/S0895480100367676
10.4007/annals.2006.164.51
10.1007/BF01788689
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Apr 30, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 30, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2018.12.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 239
ExternalDocumentID 10_1016_j_dam_2018_12_015
S0166218X18306589
GrantInformation_xml – fundername: European Research Council
  grantid: FP7/2007-2013
– fundername: ERC
  grantid: 339109
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-139f58b497226e84730836a21cad5df18e9ba1a4d1e1fdf8371803919fd914ff3
IEDL.DBID AIKHN
ISSN 0166-218X
IngestDate Mon Jun 30 06:20:46 EDT 2025
Tue Jul 01 01:43:09 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Sat Apr 29 22:38:48 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Forbidden induced subgraph
Clique
Stable set
Sum-perfect graph
Perfect graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-139f58b497226e84730836a21cad5df18e9ba1a4d1e1fdf8371803919fd914ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4287-6479
0000-0002-3138-1737
OpenAccessLink https://doi.org/10.1016/j.dam.2018.12.015
PQID 2225232328
PQPubID 2045487
PageCount 8
ParticipantIDs proquest_journals_2225232328
crossref_citationtrail_10_1016_j_dam_2018_12_015
crossref_primary_10_1016_j_dam_2018_12_015
elsevier_sciencedirect_doi_10_1016_j_dam_2018_12_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-30
PublicationDateYYYYMMDD 2019-04-30
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-30
  day: 30
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Discrete Applied Mathematics
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Poljak (b10) 1974; 15
Zverovich (b12) 2006; 351
Hayward (b6) 1985; 39
Lovász (b9) 1972; 13
Preissmann, de Werra, Mahadev (b11) 1986; 61
Chudnovsky, Robertson, Seymour, Thomas (b3) 2006
Hayward, Hoang, Maffray (b7) 1989; 5
Brandstädt, Le (b2) 2004; 17
Chvátal, Hammer (b4) 1973
Diestel (b5) 2010; vol. 173
R. Hayward, J. Spinrad, R. Sritharan, Weakly chordal graph algorithms via handles, in: Proc. of the 11th symposium on Discrete Algorithms, vol. 12, 2000, pp. 42–49.
Berge, Duchet (b1) 1984; 21
Berge (10.1016/j.dam.2018.12.015_b1) 1984; 21
Chvátal (10.1016/j.dam.2018.12.015_b4) 1973
Diestel (10.1016/j.dam.2018.12.015_b5) 2010; vol. 173
Zverovich (10.1016/j.dam.2018.12.015_b12) 2006; 351
Brandstädt (10.1016/j.dam.2018.12.015_b2) 2004; 17
Hayward (10.1016/j.dam.2018.12.015_b7) 1989; 5
Chudnovsky (10.1016/j.dam.2018.12.015_b3) 2006
10.1016/j.dam.2018.12.015_b8
Poljak (10.1016/j.dam.2018.12.015_b10) 1974; 15
Preissmann (10.1016/j.dam.2018.12.015_b11) 1986; 61
Hayward (10.1016/j.dam.2018.12.015_b6) 1985; 39
Lovász (10.1016/j.dam.2018.12.015_b9) 1972; 13
References_xml – reference: R. Hayward, J. Spinrad, R. Sritharan, Weakly chordal graph algorithms via handles, in: Proc. of the 11th symposium on Discrete Algorithms, vol. 12, 2000, pp. 42–49.
– volume: 13
  start-page: 95
  year: 1972
  end-page: 98
  ident: b9
  article-title: A characterization of perfect graphs
  publication-title: J. Combin. Theory Ser. B
– volume: 15
  start-page: 307
  year: 1974
  end-page: 309
  ident: b10
  article-title: A note on stable sets and coloring of graphs
  publication-title: Comment. Math. Univ. Carolin.
– volume: 61
  start-page: 259
  year: 1986
  end-page: 267
  ident: b11
  article-title: A note on superbrittle graphs
  publication-title: Discrete Math.
– year: 1973
  ident: b4
  article-title: Set-packing and threshold graphs
  publication-title: Univ. Waterloo Res. Report CORR
– volume: 351
  start-page: 47
  year: 2006
  end-page: 56
  ident: b12
  article-title: Satgraphs and independent domination. Part 1
  publication-title: Theoret. Comput. Sci.
– volume: 21
  start-page: 57
  year: 1984
  end-page: 61
  ident: b1
  article-title: Strongly perfect graphs, topics on perfect graphs
  publication-title: Ann. Disc. Math.
– start-page: 51
  year: 2006
  end-page: 229
  ident: b3
  article-title: The strong perfect graph theorem
  publication-title: Ann. Math.
– volume: vol. 173
  year: 2010
  ident: b5
  publication-title: Graph Theory
– volume: 39
  start-page: 200
  year: 1985
  end-page: 208
  ident: b6
  article-title: Weakly triangulated graphs
  publication-title: J. Combin. Theory Ser. B
– volume: 5
  start-page: 339
  year: 1989
  end-page: 349
  ident: b7
  article-title: Optimizing weakly triangulated graphs
  publication-title: Graphs Combin.
– volume: 17
  start-page: 341
  year: 2004
  end-page: 360
  ident: b2
  article-title: Split-perfect graphs: characterizations and algorithmic use
  publication-title: SIAM J. Discr. Math.
– ident: 10.1016/j.dam.2018.12.015_b8
– volume: 39
  start-page: 200
  year: 1985
  ident: 10.1016/j.dam.2018.12.015_b6
  article-title: Weakly triangulated graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(85)90050-4
– volume: vol. 173
  year: 2010
  ident: 10.1016/j.dam.2018.12.015_b5
– volume: 351
  start-page: 47
  year: 2006
  ident: 10.1016/j.dam.2018.12.015_b12
  article-title: Satgraphs and independent domination. Part 1
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2005.08.038
– volume: 13
  start-page: 95
  year: 1972
  ident: 10.1016/j.dam.2018.12.015_b9
  article-title: A characterization of perfect graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(72)90045-7
– volume: 61
  start-page: 259
  year: 1986
  ident: 10.1016/j.dam.2018.12.015_b11
  article-title: A note on superbrittle graphs
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(86)90097-X
– volume: 17
  start-page: 341
  year: 2004
  ident: 10.1016/j.dam.2018.12.015_b2
  article-title: Split-perfect graphs: characterizations and algorithmic use
  publication-title: SIAM J. Discr. Math.
  doi: 10.1137/S0895480100367676
– start-page: 51
  year: 2006
  ident: 10.1016/j.dam.2018.12.015_b3
  article-title: The strong perfect graph theorem
  publication-title: Ann. Math.
  doi: 10.4007/annals.2006.164.51
– volume: 21
  start-page: 57
  year: 1984
  ident: 10.1016/j.dam.2018.12.015_b1
  article-title: Strongly perfect graphs, topics on perfect graphs
  publication-title: Ann. Disc. Math.
– volume: 5
  start-page: 339
  year: 1989
  ident: 10.1016/j.dam.2018.12.015_b7
  article-title: Optimizing weakly triangulated graphs
  publication-title: Graphs Combin.
  doi: 10.1007/BF01788689
– volume: 15
  start-page: 307
  year: 1974
  ident: 10.1016/j.dam.2018.12.015_b10
  article-title: A note on stable sets and coloring of graphs
  publication-title: Comment. Math. Univ. Carolin.
– year: 1973
  ident: 10.1016/j.dam.2018.12.015_b4
  article-title: Set-packing and threshold graphs
  publication-title: Univ. Waterloo Res. Report CORR
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.2237709
Snippet Inspired by a famous characterization of perfect graphs due to Lovász, we define a graph G to be sum-perfect if for every induced subgraph H of G,...
Inspired by a famous characterization of perfect graphs due to Lovász, we define a graph G to be sum-perfect if for every induced subgraph H of G, α (H) + w...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 232
SubjectTerms Clique
Forbidden induced subgraph
Graph theory
Graphs
Perfect graph
Stable set
Sum-perfect graph
Title Sum-perfect graphs
URI https://dx.doi.org/10.1016/j.dam.2018.12.015
https://www.proquest.com/docview/2225232328
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ7wuODBiI_4QMLBk8nKdre7tEckElAhRiTh1nS3bYJRJAJXf7vTpYuPGA4e22yb3ensfNPO9BuAC9-XqBVSeYnWzKNhK_FYRAMv1GESGKnSyLcXhQfDuDemt5NoUoBOfhfGplU627-26Zm1dj1NJ83mfDptjtBZiRGgJqiUFkd5EcpByOOoBOV2_643_MYiZSnSKvm5y1eYAeGWOvLv2LNT5WHPLAFMSXtTnbDsuNCWzf0buH6Z8AyXunuw6xzKRnv9zlUo6Nk-7Aw2bKyLA6iOVq_eXL_bzI1GxlC9OIRx9-ap0_NcLQQvDWNmK8ZzE7GE8hb6SxohJbS00jIgqVSRMoRpnkgiqSKaGGVw20mYJX_nRnFCjQmPoDR7m-ljaPAWV0ErRedAEaqwJVnsa6OYQrzG_c0J-PmHitQRhdt6FS8izwh7FigbYWUjSCBQNidwuRkyX7NkbHuY5tITP5ZaoBXfNqyWS1q4_2wh7G4VfcIwYKf_m_UMKthy8aEalJbvK32ObsYyqUPx6oPUUZk6j_cPdadU2NufXH8CNOrM1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9BPIgHI35EFJWDJ5OGdeu27qhEAgpcgIRb061tglEkfPz_vo4OP2I4eNxHm-2te79f2_d-D-DO8ySOCqlIqjUnLIhTwkPmk0AHqW-kykLPJgr3B1FnzJ4n4aQErSIXxoZVOt-_8em5t3Znms6azfl02hwiWYkQoCY4KC2OJnuwj2wgsgL63cnjNw0pK5BWKVZdvjYZEGyZk_6OiO2o2PTMw7-UtHnqlOeLhbZo7t-w9cuB56jUPoYjRycbD5snrkJJz07gsL_VYl2eQnW4fidzvbBxG41cn3p5BuP206jVIa4SAsmCiNt68YkJecqSGNmSRkAJrKi09GkmVagM5TpJJZVMUU2NMjjppNxKvydGJZQZE5xDefYx0xfQSOJE-XGG1EBRpvBI8sjTRnGFaI2zmxp4xYuKzMmE22oVb6KIB3sVaBthbSOoL9A2NbjfNplvNDJ23cwK64kfH1qgD9_VrF5YWri_bCnsXBUZYeDzy__1egsHnVG_J3rdwcsVVPCK2ymqQ3m1WOtrJByr9CYfUJ_GQ8sU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum-perfect+graphs&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Litjens%2C+Bart&rft.au=Polak%2C+Sven&rft.au=Sivaraman%2C+Vaidy&rft.date=2019-04-30&rft.pub=Elsevier+BV&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=259&rft.spage=232&rft_id=info:doi/10.1016%2Fj.dam.2018.12.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon