Analysis of taVNS effects on autonomic and central nervous systems in healthy young adults based on HRV, EEG parameters
Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the ef...
Saved in:
Published in | Journal of neural engineering Vol. 21; no. 4; pp. 46012 - 46022 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders. Approach. Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted. Main results. Based on pNN50, responders to taVNS were identified; among them, pNN50 ( p = 0.0041) and ppNNx ( p = 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference ( p < 0.05) was observed in most channels after taVNS compared to before stimulation. Significance. This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS. |
---|---|
AbstractList | Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders.
Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted.
Based on pNN50, responders to taVNS were identified; among them, pNN50 (
= 0.0041) and ppNNx (
= 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference (
< 0.05) was observed in most channels after taVNS compared to before stimulation.
This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS. Objective.Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders.Approach.Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted.Main results.Based on pNN50, responders to taVNS were identified; among them, pNN50 (p= 0.0041) and ppNNx (p= 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference (p< 0.05) was observed in most channels after taVNS compared to before stimulation.Significance.This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS.Objective.Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders.Approach.Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted.Main results.Based on pNN50, responders to taVNS were identified; among them, pNN50 (p= 0.0041) and ppNNx (p= 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference (p< 0.05) was observed in most channels after taVNS compared to before stimulation.Significance.This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS. Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders. Approach. Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted. Main results. Based on pNN50, responders to taVNS were identified; among them, pNN50 ( p = 0.0041) and ppNNx ( p = 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference ( p < 0.05) was observed in most channels after taVNS compared to before stimulation. Significance. This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS. |
Author | Park, Eunkyoung Lee, Jongshill Kim, In Young Kang, Donghun Choi, Youngseok |
Author_xml | – sequence: 1 givenname: Donghun orcidid: 0009-0002-6009-3045 surname: Kang fullname: Kang, Donghun organization: Hanyang University Department of Biomedical Engineering, Seoul, Republic of Korea – sequence: 2 givenname: Youngseok orcidid: 0009-0008-6638-9043 surname: Choi fullname: Choi, Youngseok organization: Hanyang University Department of Electronic Engineering, Seoul, Republic of Korea – sequence: 3 givenname: Jongshill orcidid: 0000-0002-9884-9672 surname: Lee fullname: Lee, Jongshill organization: Hanyang University Department of Biomedical Engineering, Seoul, Republic of Korea – sequence: 4 givenname: Eunkyoung orcidid: 0000-0001-7700-0250 surname: Park fullname: Park, Eunkyoung organization: Soonchunhyang University Department of Biomedical Engineering, Asan, Republic of Korea – sequence: 5 givenname: In Young surname: Kim fullname: Kim, In Young organization: Hanyang University Department of Biomedical Engineering, Seoul, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38941990$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1URB-wZ4W8g0UvHcd5eVlVl7ZSBRKPbq1JMqa-SuxgO0X59yS6bRcVsJrR6DtHmnOO2YHzjhh7K-CjgLo-E1UuNllRZGfYFZ0oX7Cjp9PB017CITuOcQcgRaXgFTuUtcqFUnDEfp877OdoI_eGJ7z9_I2TMdSm5eA4Tsk7P9iWo-t4Sy4F7LmjcO-nyOMcEw2RW8fvCPt0N_PZT-4nx27qF4MGI3WrzdXX21O-3V7yEQMOlCjE1-ylwT7Sm4d5wn582n6_uNrcfLm8vji_2bSyrNNGiFxVnVEEmQElmyxTpipQdEqIRqESDUnTKiFRQgZQYdk0QK2hMpcLC_KEfdj7jsH_migmPdjYUt-jo-UHLaGSZSFB1Qv67gGdmoE6PQY7YJj1Y1gLUO6BNvgYAxnd2oTJ-jUW22sBem1Fr7HrtQK9b2URwjPho_d_JO_3EutHvfNTWGqKeudIZ0LnGvISRKbHzizk6V_Ifxr_AWPDqbc |
CODEN | JNEOBH |
CitedBy_id | crossref_primary_10_1007_s11571_025_10220_6 crossref_primary_10_3390_buildings15020271 |
Cites_doi | 10.1523/JNEUROSCI.1361-20.2020 10.18632/aging.102074 10.3389/fnins.2021.632697 10.3389/fnins.2020.00284 10.21037/atm-21-2097 10.1016/j.neubiorev.2011.10.002 10.1093/ageing/25.6.432 10.1016/j.brs.2016.02.001 10.1016/j.autneu.2022.102956 10.1038/s41598-021-87032-1 10.1016/j.brainresbull.2019.11.011 10.1088/0967-3334/32/3/001 10.1016/j.jad.2022.07.068 10.1016/j.yebeh.2015.07.009 10.1002/ana.25574 10.3389/fphys.2013.00337 10.1111/ner.13528 10.1016/j.brs.2014.04.007 10.1097/j.pain.0000000000000437 10.1097/MD.0000000000013845 10.3389/fphys.2013.00306 10.1136/heart.88.4.378 10.1089/tmj.2014.0104 10.3389/fnins.2022.897303 10.1155/2019/7051079 10.1111/ejn.14947 10.1186/s12911-019-0742-y 10.1111/joa.13122 10.3389/fpsyg.2020.570196 10.1088/1741-2552/ac620c 10.1111/psyp.13571 10.1016/j.neurom.2022.08.459 10.3389/fnins.2020.00205 10.3390/brainsci10100668 10.1016/j.brs.2018.04.004 10.1016/j.brs.2021.01.001 10.1111/j.1528-1157.1998.tb01151.x 10.1016/j.brs.2014.07.031 10.3389/fphys.2016.00356 10.1371/journal.pone.0263833 10.1016/j.tins.2007.02.001 10.4306/pi.2009.6.4.294 10.3389/fphys.2020.599896 10.1016/j.biopsycho.2015.01.003 10.1038/s41598-022-05842-3 10.1161/01.CIR.93.5.1043 10.1111/ner.13521 10.1016/S0735-1097(01)01652-7 10.1007/s003810050021 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. 2024 IOP Publishing Ltd. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. – notice: 2024 IOP Publishing Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2552/ad5d16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 38941990 10_1088_1741_2552_ad5d16 jnead5d16 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Soonchunhyang University grantid: No. 20220442 funderid: http://dx.doi.org/10.13039/501100002560 – fundername: Institute of Information & communications Technology Planning & Evaluation grantid: RS-2023-00221742 funderid: http://dx.doi.org/10.13039/501100010418 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c368t-11497df9e02f093b229f75a1d911b9a91be3fc913a302007a6bb0ecfe64322903 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Fri Jul 11 15:14:47 EDT 2025 Tue Jul 01 05:30:44 EDT 2025 Wed Aug 20 07:42:20 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jun 17 22:16:45 EDT 2025 Tue Aug 20 22:17:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | electroencephalography responder healthy young adults heart rate variability transcutaneous auricular vague nerve stimulation |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2024 IOP Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-11497df9e02f093b229f75a1d911b9a91be3fc913a302007a6bb0ecfe64322903 |
Notes | JNE-106984.R3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0002-6009-3045 0000-0002-9884-9672 0009-0008-6638-9043 0000-0001-7700-0250 |
PMID | 38941990 |
PQID | 3073653098 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1088_1741_2552_ad5d16 iop_journals_10_1088_1741_2552_ad5d16 proquest_miscellaneous_3073653098 pubmed_primary_38941990 crossref_citationtrail_10_1088_1741_2552_ad5d16 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Meerwijk (jnead5d16bib45) 2015; 105 Austelle (jnead5d16bib5) 2022; 25 Deligiannidis (jnead5d16bib24) 2022; 316 Zhao (jnead5d16bib30) 2020; 14 Mietus (jnead5d16bib35) 2002; 88 Ricci (jnead5d16bib22) 2020; 10 Chen (jnead5d16bib3) 2016; 157 Wu (jnead5d16bib6) 2018; 97 Schachter (jnead5d16bib2) 1998; 39 Shen (jnead5d16bib15) 2022; 25 Keute (jnead5d16bib47) 2021; 14 Gąsior (jnead5d16bib40) 2016; 7 Magosso (jnead5d16bib44) 2019; 2019 Butt (jnead5d16bib13) 2020; 236 Mithani (jnead5d16bib41) 2019; 86 Grant (jnead5d16bib37) 2013; 4 Keatch (jnead5d16bib19) 2022; 19 Sacha (jnead5d16bib38) 2013; 4 Clancy (jnead5d16bib17) 2014; 7 Sharon (jnead5d16bib20) 2021; 41 Machetanz (jnead5d16bib48) 2021; 15 Bitsios (jnead5d16bib27) 1996; 25 Kim (jnead5d16bib36) 2009; 6 Min (jnead5d16bib42) 2014; 7 Trevizol (jnead5d16bib7) 2016; 9 Bolz (jnead5d16bib25) 2022; 239 Sacca (jnead5d16bib11) 2023; 26 Gauthey (jnead5d16bib29) 2020; 11 Burger (jnead5d16bib39) 2020; 57 Compton (jnead5d16bib21) 2021; 53 Ylikoski (jnead5d16bib10) 2020; 11 Geng (jnead5d16bib14) 2022; 17 Yap (jnead5d16bib49) 2020; 14 Trevizol (jnead5d16bib1) 2015; 51 von Wrede (jnead5d16bib9) 2021; 11 Shetler (jnead5d16bib31) 2001; 38 Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (jnead5d16bib33) 1996; 93 Ventureyra (jnead5d16bib4) 2000; 16 Lei (jnead5d16bib12) 2021; 9 Dolphin (jnead5d16bib23) 2022; 16 Trimmel (jnead5d16bib34) 2011; 32 Castaldo (jnead5d16bib26) 2019; 19 Badran (jnead5d16bib32) 2018; 11 Mertens (jnead5d16bib8) 2022; 12 Baek (jnead5d16bib28) 2015; 21 Palva (jnead5d16bib43) 2007; 30 Broncel (jnead5d16bib18) 2020; 155 Knyazev (jnead5d16bib46) 2012; 36 Bretherton (jnead5d16bib16) 2019; 11 |
References_xml | – volume: 41 start-page: 320 year: 2021 ident: jnead5d16bib20 article-title: Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1361-20.2020 – volume: 11 start-page: 4836 year: 2019 ident: jnead5d16bib16 article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation publication-title: Aging doi: 10.18632/aging.102074 – volume: 15 year: 2021 ident: jnead5d16bib48 article-title: Brain–heart interaction during transcutaneous auricular vagus nerve stimulation publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.632697 – volume: 14 start-page: 284 year: 2020 ident: jnead5d16bib49 article-title: Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00284 – volume: 9 start-page: 928 year: 2021 ident: jnead5d16bib12 article-title: Brain function state in different phases and its relationship with clinical symptoms of migraine: an fMRI study based on regional homogeneity (ReHo) publication-title: Ann. Transl. Med. doi: 10.21037/atm-21-2097 – volume: 36 start-page: 677 year: 2012 ident: jnead5d16bib46 article-title: EEG delta oscillations as a correlate of basic homeostatic and motivational processes publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2011.10.002 – volume: 25 start-page: 432 year: 1996 ident: jnead5d16bib27 article-title: Changes in autonomic function with age: a study of pupillary kinetics in healthy young and old people publication-title: Age Ageing doi: 10.1093/ageing/25.6.432 – volume: 9 start-page: 453 year: 2016 ident: jnead5d16bib7 article-title: Transcutaneous vagus nerve stimulation (taVNS) for major depressive disorder: an open label proof-of-concept trial publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.02.001 – volume: 239 year: 2022 ident: jnead5d16bib25 article-title: Technical aspects and future approaches in transcutaneous vagus nerve stimulation (tVNS) publication-title: Auton. Neurosci. doi: 10.1016/j.autneu.2022.102956 – volume: 11 start-page: 7906 year: 2021 ident: jnead5d16bib9 article-title: Transcutaneous auricular vagus nerve stimulation induces stabilizing modifications in large-scale functional brain networks: towards understanding the effects of taVNS in subjects with epilepsy publication-title: Sci. Rep. doi: 10.1038/s41598-021-87032-1 – volume: 155 start-page: 37 year: 2020 ident: jnead5d16bib18 article-title: Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2019.11.011 – volume: 32 start-page: 275 year: 2011 ident: jnead5d16bib34 article-title: Sensitivity of HRV parameters including pNNxx proven by short-term exposure to 2700 m altitude publication-title: Physiol. Meas. doi: 10.1088/0967-3334/32/3/001 – volume: 316 start-page: 34 year: 2022 ident: jnead5d16bib24 article-title: Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder with peripartum onset: a multicenter, open-label, controlled proof-of-concept clinical trial (DELOS-1) publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2022.07.068 – volume: 51 start-page: 18 year: 2015 ident: jnead5d16bib1 article-title: Vagus nerve stimulation in neuropsychiatry: targeting anatomy-based stimulation sites publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2015.07.009 – volume: 86 start-page: 743 year: 2019 ident: jnead5d16bib41 article-title: Connectomic profiling identifies responders to vagus nerve stimulation publication-title: Ann. Neurol. doi: 10.1002/ana.25574 – volume: 4 year: 2013 ident: jnead5d16bib37 article-title: A comparison between heart rate and heart rate variability as indicators of cardiac health and fitness publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00337 – volume: 25 start-page: 309 year: 2022 ident: jnead5d16bib5 article-title: A comprehensive review of vagus nerve stimulation for depression publication-title: Neuromodulation doi: 10.1111/ner.13528 – volume: 7 start-page: 603 year: 2014 ident: jnead5d16bib42 article-title: Subthalamic nucleus deep brain stimulation induces motor network BOLD activation: use of a high precision MRI guided stereotactic system for nonhuman primates publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.04.007 – volume: 157 start-page: 797 year: 2016 ident: jnead5d16bib3 article-title: Vagus nerve stimulation inhibits cortical spreading depression publication-title: Pain doi: 10.1097/j.pain.0000000000000437 – volume: 97 year: 2018 ident: jnead5d16bib6 article-title: Transcutaneous auricular vagus nerve stimulation in treating major depressive disorder: a systematic review and meta-analysis publication-title: Medicine doi: 10.1097/MD.0000000000013845 – volume: 4 year: 2013 ident: jnead5d16bib38 article-title: Why should one normalize heart rate variability with respect to average heart rate publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00306 – volume: 88 start-page: 378 year: 2002 ident: jnead5d16bib35 article-title: The pNNx files: re-examining a widely used heart rate variability measure publication-title: Heart doi: 10.1136/heart.88.4.378 – volume: 21 start-page: 404 year: 2015 ident: jnead5d16bib28 article-title: Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability publication-title: Telemed E-Health doi: 10.1089/tmj.2014.0104 – volume: 16 start-page: 935 year: 2022 ident: jnead5d16bib23 article-title: ‘The wandering nerve linking heart and mind’–the complementary role of transcutaneous vagus nerve stimulation in modulating neuro-cardiovascular and cognitive performance publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.897303 – volume: 2019 start-page: 1 year: 2019 ident: jnead5d16bib44 article-title: EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/7051079 – volume: 53 start-page: 543 year: 2021 ident: jnead5d16bib21 article-title: Simultaneous EEG and pupillary evidence for post‐error arousal during a speeded performance task publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.14947 – volume: 19 start-page: 1 year: 2019 ident: jnead5d16bib26 article-title: Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life publication-title: BMC Med. Inf. Decis. Making doi: 10.1186/s12911-019-0742-y – volume: 236 start-page: 588 year: 2020 ident: jnead5d16bib13 article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation publication-title: J. Anat. doi: 10.1111/joa.13122 – volume: 11 year: 2020 ident: jnead5d16bib10 article-title: Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates tinnitus-triggered stress reaction publication-title: Front. Psychol. doi: 10.3389/fpsyg.2020.570196 – volume: 19 year: 2022 ident: jnead5d16bib19 article-title: Measuring brain response to transcutaneous vagus nerve stimulation (tVNS) using simultaneous magnetoencephalography (MEG) publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac620c – volume: 57 year: 2020 ident: jnead5d16bib39 article-title: Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation publication-title: Psychophysiology doi: 10.1111/psyp.13571 – volume: 26 start-page: 620 year: 2023 ident: jnead5d16bib11 article-title: Evaluation of the modulation effects evoked by different transcutaneous auricular vagus nerve stimulation frequencies along the central vagus nerve pathway in migraine: a functional magnetic resonance imaging study publication-title: Neuromodulation doi: 10.1016/j.neurom.2022.08.459 – volume: 14 start-page: 205 year: 2020 ident: jnead5d16bib30 article-title: The instant spontaneous neuronal activity modulation of transcutaneous auricular vagus nerve stimulation on patients with primary insomnia publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00205 – volume: 10 start-page: 668 year: 2020 ident: jnead5d16bib22 article-title: Transcutaneous vagus nerve stimulation modulates EEG microstates and delta activity in healthy subjects publication-title: Brain Sci. doi: 10.3390/brainsci10100668 – volume: 11 start-page: 699 year: 2018 ident: jnead5d16bib32 article-title: Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.04.004 – volume: 14 start-page: 209 year: 2021 ident: jnead5d16bib47 article-title: Neuro-cardiac coupling predicts transcutaneous auricular vagus nerve stimulation effects publication-title: Brain Stimul. doi: 10.1016/j.brs.2021.01.001 – volume: 39 start-page: 677 year: 1998 ident: jnead5d16bib2 article-title: Vagus nerve stimulation publication-title: Epilepsia doi: 10.1111/j.1528-1157.1998.tb01151.x – volume: 7 start-page: 871 year: 2014 ident: jnead5d16bib17 article-title: Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.07.031 – volume: 7 year: 2016 ident: jnead5d16bib40 article-title: Heart rate and respiratory rate influence on heart rate variability repeatability: effects of the correction for the prevailing heart rate publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00356 – volume: 17 year: 2022 ident: jnead5d16bib14 article-title: The effect of transcutaneous auricular vagus nerve stimulation on HRV in healthy young people publication-title: PLoS One doi: 10.1371/journal.pone.0263833 – volume: 30 start-page: 150 year: 2007 ident: jnead5d16bib43 article-title: New vistas for α-frequency band oscillations publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.02.001 – volume: 6 start-page: 294 year: 2009 ident: jnead5d16bib36 article-title: The pNNx heart rate variability statistics: an application to neuroautonomic dysfunction of clozapine-treated subjects publication-title: Psychiatry Invest. doi: 10.4306/pi.2009.6.4.294 – volume: 11 year: 2020 ident: jnead5d16bib29 article-title: Sympathetic effect of auricular transcutaneous vagus nerve stimulation on healthy subjects: a crossover controlled clinical trial comparing vagally mediated and active control stimulation using microneurography publication-title: Front. Physiol. doi: 10.3389/fphys.2020.599896 – volume: 105 start-page: 106 year: 2015 ident: jnead5d16bib45 article-title: Resting-state EEG delta power is associated with psychological pain in adults with a history of depression publication-title: Biological Psychol. doi: 10.1016/j.biopsycho.2015.01.003 – volume: 12 start-page: 1984 year: 2022 ident: jnead5d16bib8 article-title: The potential of invasive and non-invasive vagus nerve stimulation to improve verbal memory performance in epilepsy patients publication-title: Sci. Rep. doi: 10.1038/s41598-022-05842-3 – volume: 93 start-page: 1043 year: 1996 ident: jnead5d16bib33 article-title: Heart rate variability: standards of measurement, physiological interpretation, and clinical use publication-title: Circulation doi: 10.1161/01.CIR.93.5.1043 – volume: 25 start-page: 433 year: 2022 ident: jnead5d16bib15 article-title: Reassessment of the effect of transcutaneous auricular vagus nerve stimulation using a novel burst paradigm on cardiac autonomic function in healthy young adults publication-title: Neuromodulation doi: 10.1111/ner.13521 – volume: 38 start-page: 1980 year: 2001 ident: jnead5d16bib31 article-title: Heart rate recovery: validation and methodologic issues publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(01)01652-7 – volume: 16 start-page: 101 year: 2000 ident: jnead5d16bib4 article-title: Transcutaneous vagus nerve stimulation for partial onset seizure therapy: a new concept publication-title: Child’s Nervous Syst. doi: 10.1007/s003810050021 |
SSID | ssj0031790 |
Score | 2.4160366 |
Snippet | Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic... Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous... Objective.Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 46012 |
SubjectTerms | Adult Autonomic Nervous System - physiology Central Nervous System - physiology electroencephalography Electroencephalography - methods healthy young adults Heart Rate - physiology heart rate variability Humans Male responder transcutaneous auricular vague nerve stimulation Transcutaneous Electric Nerve Stimulation - methods Vagus Nerve Stimulation - methods Young Adult |
Title | Analysis of taVNS effects on autonomic and central nervous systems in healthy young adults based on HRV, EEG parameters |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ad5d16 https://www.ncbi.nlm.nih.gov/pubmed/38941990 https://www.proquest.com/docview/3073653098 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA9354svfp16e34wggqC3U2aNm3x6ZA9V8FT1DvuQQhJk4B6ly62i6x_vZOmXTjRQ3zrwzRNM8nkN5mZXwh57Iq8poqZxObcJJkrs0QX2ibUlSq1dVo5ExzFt0dicZy9Oc1Pt8iLTS1MsxxM_xQfI1FwHMIhIa6cIYZmCSLhdKZMbpjYJld4KUS4vuD1u_ejGeaBeipWQwZpQYcY5Z9auLAnbeN3_w43-23n8Dr5PHY4Zpt8m646Pa1__sbl-J9_dINcG-AoHETRm2TL-ltk98CjK36-hqfQJ4j2J--75MdIYAKNg06dHH2EIRsEGg9q1cUSZ1DewJDzCR5NUbNqIRJGt_DFQ6y8XMM62Bno-T9aCJupCc0sPpw8h_n8FQRO8vOQq9PeJseH808vF8lwb0NSc1F2CbpYVWFcZWnqaMV1ihovcpwQaFh1pSqmLXd1xbjiNByVKqE1tbWziI4C_Ty_Q3Z84-0eAe6KLKsE0zXVmcqdCi4TVw7dQMWywk7IbNScrAdS83C3xpnsg-tlKcPYyjC2Mo7thDzbvLGMhB6XyD5BlclhVbeXyMEFua_eypTJTIaoM0vl0rgJeTTOKIkLOERllLeoABmMrMg5rcoJuRun2qZjiCYzhnhh_x87co9cTRF0xQTF-2Sn-76yDxA0dfphvzh-AcKoDYI |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRCXUijQ5TlIgIREdu04z2MFu2x5LBXQqjdjJ7bEo86KZIW2v55x7FQqggqJWw6O48zY4288M58JeWzytKKS1ZFOeR0lpkgilSsdUVPIWFdxaWrnKL5bZPPD5PVxehzuOe1rYZplMP1jfPREwV6EISGumCCGZhEi4Xgi67Rm2WRZmw1yOeUZd-T5--8PBlPMHf2Ur4h0b2Q0xCn_1Mu5fWkDv_13yNlvPbNr5PMwaJ9x8m286tS4Ov2Nz_E__mqbbAVYCnu--XVySdsbZGfPokt-soan0CeK9ifwO-TnQGQCjYFOHi0-QsgKgcaCXHW-1BmkrSHkfoJFk9SsWvDE0S18seArMNewdvYGeh6QFtymWrtu5h-OnsN0-gocN_mJy9lpb5LD2fTTi3kU7m-IKp4VXYSuVpnXptQ0NrTkKkbN5ylODDSwqpQlU5qbqmRccuqOTGWmFNWV0YiSHA09v0U2bWP1LgFu8iQpM6YqqhKZGulcJy4NuoOSJbkekcmgPVEFcnN3x8Z30QfZi0I4-QonX-HlOyLPzt5YemKPC9o-QbWJsLrbC9rBuXZfrRYxE4lw0WcWC1TpiDwaZpXAheyiM9JqVIBwxjZLOS2LEbntp9vZwBBVJgxxw51_HMhDcuXg5Uy83V-8uUuuxojDfM7iPbLZ_Vjp-4ijOvWgXyu_AEhpEuY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+taVNS+effects+on+autonomic+and+central+nervous+systems+in+healthy+young+adults+based+on+HRV%2C+EEG+parameters&rft.jtitle=Journal+of+neural+engineering&rft.au=Kang%2C+Donghun&rft.au=Choi%2C+Youngseok&rft.au=Lee%2C+Jongshill&rft.au=Park%2C+Eunkyoung&rft.date=2024-08-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fad5d16&rft.externalDocID=jnead5d16 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |