Analysis of taVNS effects on autonomic and central nervous systems in healthy young adults based on HRV, EEG parameters

Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the ef...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 21; no. 4; pp. 46012 - 46022
Main Authors Kang, Donghun, Choi, Youngseok, Lee, Jongshill, Park, Eunkyoung, Kim, In Young
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders. Approach. Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted. Main results. Based on pNN50, responders to taVNS were identified; among them, pNN50 ( p = 0.0041) and ppNNx ( p = 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference ( p < 0.05) was observed in most channels after taVNS compared to before stimulation. Significance. This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS.
AbstractList Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders. Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted. Based on pNN50, responders to taVNS were identified; among them, pNN50 ( = 0.0041) and ppNNx ( = 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference ( < 0.05) was observed in most channels after taVNS compared to before stimulation. This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS.
Objective.Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders.Approach.Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted.Main results.Based on pNN50, responders to taVNS were identified; among them, pNN50 (p= 0.0041) and ppNNx (p= 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference (p< 0.05) was observed in most channels after taVNS compared to before stimulation.Significance.This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS.Objective.Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders.Approach.Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted.Main results.Based on pNN50, responders to taVNS were identified; among them, pNN50 (p= 0.0041) and ppNNx (p= 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference (p< 0.05) was observed in most channels after taVNS compared to before stimulation.Significance.This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS.
Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders. Approach. Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted. Main results. Based on pNN50, responders to taVNS were identified; among them, pNN50 ( p = 0.0041) and ppNNx ( p = 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference ( p < 0.05) was observed in most channels after taVNS compared to before stimulation. Significance. This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS.
Author Park, Eunkyoung
Lee, Jongshill
Kim, In Young
Kang, Donghun
Choi, Youngseok
Author_xml – sequence: 1
  givenname: Donghun
  orcidid: 0009-0002-6009-3045
  surname: Kang
  fullname: Kang, Donghun
  organization: Hanyang University Department of Biomedical Engineering, Seoul, Republic of Korea
– sequence: 2
  givenname: Youngseok
  orcidid: 0009-0008-6638-9043
  surname: Choi
  fullname: Choi, Youngseok
  organization: Hanyang University Department of Electronic Engineering, Seoul, Republic of Korea
– sequence: 3
  givenname: Jongshill
  orcidid: 0000-0002-9884-9672
  surname: Lee
  fullname: Lee, Jongshill
  organization: Hanyang University Department of Biomedical Engineering, Seoul, Republic of Korea
– sequence: 4
  givenname: Eunkyoung
  orcidid: 0000-0001-7700-0250
  surname: Park
  fullname: Park, Eunkyoung
  organization: Soonchunhyang University Department of Biomedical Engineering, Asan, Republic of Korea
– sequence: 5
  givenname: In Young
  surname: Kim
  fullname: Kim, In Young
  organization: Hanyang University Department of Biomedical Engineering, Seoul, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38941990$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB-wZ4W8g0UvHcd5eVlVl7ZSBRKPbq1JMqa-SuxgO0X59yS6bRcVsJrR6DtHmnOO2YHzjhh7K-CjgLo-E1UuNllRZGfYFZ0oX7Cjp9PB017CITuOcQcgRaXgFTuUtcqFUnDEfp877OdoI_eGJ7z9_I2TMdSm5eA4Tsk7P9iWo-t4Sy4F7LmjcO-nyOMcEw2RW8fvCPt0N_PZT-4nx27qF4MGI3WrzdXX21O-3V7yEQMOlCjE1-ylwT7Sm4d5wn582n6_uNrcfLm8vji_2bSyrNNGiFxVnVEEmQElmyxTpipQdEqIRqESDUnTKiFRQgZQYdk0QK2hMpcLC_KEfdj7jsH_migmPdjYUt-jo-UHLaGSZSFB1Qv67gGdmoE6PQY7YJj1Y1gLUO6BNvgYAxnd2oTJ-jUW22sBem1Fr7HrtQK9b2URwjPho_d_JO_3EutHvfNTWGqKeudIZ0LnGvISRKbHzizk6V_Ifxr_AWPDqbc
CODEN JNEOBH
CitedBy_id crossref_primary_10_1007_s11571_025_10220_6
crossref_primary_10_3390_buildings15020271
Cites_doi 10.1523/JNEUROSCI.1361-20.2020
10.18632/aging.102074
10.3389/fnins.2021.632697
10.3389/fnins.2020.00284
10.21037/atm-21-2097
10.1016/j.neubiorev.2011.10.002
10.1093/ageing/25.6.432
10.1016/j.brs.2016.02.001
10.1016/j.autneu.2022.102956
10.1038/s41598-021-87032-1
10.1016/j.brainresbull.2019.11.011
10.1088/0967-3334/32/3/001
10.1016/j.jad.2022.07.068
10.1016/j.yebeh.2015.07.009
10.1002/ana.25574
10.3389/fphys.2013.00337
10.1111/ner.13528
10.1016/j.brs.2014.04.007
10.1097/j.pain.0000000000000437
10.1097/MD.0000000000013845
10.3389/fphys.2013.00306
10.1136/heart.88.4.378
10.1089/tmj.2014.0104
10.3389/fnins.2022.897303
10.1155/2019/7051079
10.1111/ejn.14947
10.1186/s12911-019-0742-y
10.1111/joa.13122
10.3389/fpsyg.2020.570196
10.1088/1741-2552/ac620c
10.1111/psyp.13571
10.1016/j.neurom.2022.08.459
10.3389/fnins.2020.00205
10.3390/brainsci10100668
10.1016/j.brs.2018.04.004
10.1016/j.brs.2021.01.001
10.1111/j.1528-1157.1998.tb01151.x
10.1016/j.brs.2014.07.031
10.3389/fphys.2016.00356
10.1371/journal.pone.0263833
10.1016/j.tins.2007.02.001
10.4306/pi.2009.6.4.294
10.3389/fphys.2020.599896
10.1016/j.biopsycho.2015.01.003
10.1038/s41598-022-05842-3
10.1161/01.CIR.93.5.1043
10.1111/ner.13521
10.1016/S0735-1097(01)01652-7
10.1007/s003810050021
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2024 IOP Publishing Ltd.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2024 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/ad5d16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 38941990
10_1088_1741_2552_ad5d16
jnead5d16
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Soonchunhyang University
  grantid: No. 20220442
  funderid: http://dx.doi.org/10.13039/501100002560
– fundername: Institute of Information & communications Technology Planning & Evaluation
  grantid: RS-2023-00221742
  funderid: http://dx.doi.org/10.13039/501100010418
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c368t-11497df9e02f093b229f75a1d911b9a91be3fc913a302007a6bb0ecfe64322903
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Jul 11 15:14:47 EDT 2025
Tue Jul 01 05:30:44 EDT 2025
Wed Aug 20 07:42:20 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jun 17 22:16:45 EDT 2025
Tue Aug 20 22:17:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords electroencephalography
responder
healthy young adults
heart rate variability
transcutaneous auricular vague nerve stimulation
Language English
License This article is available under the terms of the IOP-Standard License.
2024 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-11497df9e02f093b229f75a1d911b9a91be3fc913a302007a6bb0ecfe64322903
Notes JNE-106984.R3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0002-6009-3045
0000-0002-9884-9672
0009-0008-6638-9043
0000-0001-7700-0250
PMID 38941990
PQID 3073653098
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1088_1741_2552_ad5d16
iop_journals_10_1088_1741_2552_ad5d16
proquest_miscellaneous_3073653098
pubmed_primary_38941990
crossref_citationtrail_10_1088_1741_2552_ad5d16
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Meerwijk (jnead5d16bib45) 2015; 105
Austelle (jnead5d16bib5) 2022; 25
Deligiannidis (jnead5d16bib24) 2022; 316
Zhao (jnead5d16bib30) 2020; 14
Mietus (jnead5d16bib35) 2002; 88
Ricci (jnead5d16bib22) 2020; 10
Chen (jnead5d16bib3) 2016; 157
Wu (jnead5d16bib6) 2018; 97
Schachter (jnead5d16bib2) 1998; 39
Shen (jnead5d16bib15) 2022; 25
Keute (jnead5d16bib47) 2021; 14
Gąsior (jnead5d16bib40) 2016; 7
Magosso (jnead5d16bib44) 2019; 2019
Butt (jnead5d16bib13) 2020; 236
Mithani (jnead5d16bib41) 2019; 86
Grant (jnead5d16bib37) 2013; 4
Keatch (jnead5d16bib19) 2022; 19
Sacha (jnead5d16bib38) 2013; 4
Clancy (jnead5d16bib17) 2014; 7
Sharon (jnead5d16bib20) 2021; 41
Machetanz (jnead5d16bib48) 2021; 15
Bitsios (jnead5d16bib27) 1996; 25
Kim (jnead5d16bib36) 2009; 6
Min (jnead5d16bib42) 2014; 7
Trevizol (jnead5d16bib7) 2016; 9
Bolz (jnead5d16bib25) 2022; 239
Sacca (jnead5d16bib11) 2023; 26
Gauthey (jnead5d16bib29) 2020; 11
Burger (jnead5d16bib39) 2020; 57
Compton (jnead5d16bib21) 2021; 53
Ylikoski (jnead5d16bib10) 2020; 11
Geng (jnead5d16bib14) 2022; 17
Yap (jnead5d16bib49) 2020; 14
Trevizol (jnead5d16bib1) 2015; 51
von Wrede (jnead5d16bib9) 2021; 11
Shetler (jnead5d16bib31) 2001; 38
Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (jnead5d16bib33) 1996; 93
Ventureyra (jnead5d16bib4) 2000; 16
Lei (jnead5d16bib12) 2021; 9
Dolphin (jnead5d16bib23) 2022; 16
Trimmel (jnead5d16bib34) 2011; 32
Castaldo (jnead5d16bib26) 2019; 19
Badran (jnead5d16bib32) 2018; 11
Mertens (jnead5d16bib8) 2022; 12
Baek (jnead5d16bib28) 2015; 21
Palva (jnead5d16bib43) 2007; 30
Broncel (jnead5d16bib18) 2020; 155
Knyazev (jnead5d16bib46) 2012; 36
Bretherton (jnead5d16bib16) 2019; 11
References_xml – volume: 41
  start-page: 320
  year: 2021
  ident: jnead5d16bib20
  article-title: Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1361-20.2020
– volume: 11
  start-page: 4836
  year: 2019
  ident: jnead5d16bib16
  article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation
  publication-title: Aging
  doi: 10.18632/aging.102074
– volume: 15
  year: 2021
  ident: jnead5d16bib48
  article-title: Brain–heart interaction during transcutaneous auricular vagus nerve stimulation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.632697
– volume: 14
  start-page: 284
  year: 2020
  ident: jnead5d16bib49
  article-title: Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00284
– volume: 9
  start-page: 928
  year: 2021
  ident: jnead5d16bib12
  article-title: Brain function state in different phases and its relationship with clinical symptoms of migraine: an fMRI study based on regional homogeneity (ReHo)
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-21-2097
– volume: 36
  start-page: 677
  year: 2012
  ident: jnead5d16bib46
  article-title: EEG delta oscillations as a correlate of basic homeostatic and motivational processes
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2011.10.002
– volume: 25
  start-page: 432
  year: 1996
  ident: jnead5d16bib27
  article-title: Changes in autonomic function with age: a study of pupillary kinetics in healthy young and old people
  publication-title: Age Ageing
  doi: 10.1093/ageing/25.6.432
– volume: 9
  start-page: 453
  year: 2016
  ident: jnead5d16bib7
  article-title: Transcutaneous vagus nerve stimulation (taVNS) for major depressive disorder: an open label proof-of-concept trial
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.02.001
– volume: 239
  year: 2022
  ident: jnead5d16bib25
  article-title: Technical aspects and future approaches in transcutaneous vagus nerve stimulation (tVNS)
  publication-title: Auton. Neurosci.
  doi: 10.1016/j.autneu.2022.102956
– volume: 11
  start-page: 7906
  year: 2021
  ident: jnead5d16bib9
  article-title: Transcutaneous auricular vagus nerve stimulation induces stabilizing modifications in large-scale functional brain networks: towards understanding the effects of taVNS in subjects with epilepsy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87032-1
– volume: 155
  start-page: 37
  year: 2020
  ident: jnead5d16bib18
  article-title: Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2019.11.011
– volume: 32
  start-page: 275
  year: 2011
  ident: jnead5d16bib34
  article-title: Sensitivity of HRV parameters including pNNxx proven by short-term exposure to 2700 m altitude
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/32/3/001
– volume: 316
  start-page: 34
  year: 2022
  ident: jnead5d16bib24
  article-title: Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder with peripartum onset: a multicenter, open-label, controlled proof-of-concept clinical trial (DELOS-1)
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2022.07.068
– volume: 51
  start-page: 18
  year: 2015
  ident: jnead5d16bib1
  article-title: Vagus nerve stimulation in neuropsychiatry: targeting anatomy-based stimulation sites
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2015.07.009
– volume: 86
  start-page: 743
  year: 2019
  ident: jnead5d16bib41
  article-title: Connectomic profiling identifies responders to vagus nerve stimulation
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25574
– volume: 4
  year: 2013
  ident: jnead5d16bib37
  article-title: A comparison between heart rate and heart rate variability as indicators of cardiac health and fitness
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00337
– volume: 25
  start-page: 309
  year: 2022
  ident: jnead5d16bib5
  article-title: A comprehensive review of vagus nerve stimulation for depression
  publication-title: Neuromodulation
  doi: 10.1111/ner.13528
– volume: 7
  start-page: 603
  year: 2014
  ident: jnead5d16bib42
  article-title: Subthalamic nucleus deep brain stimulation induces motor network BOLD activation: use of a high precision MRI guided stereotactic system for nonhuman primates
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.04.007
– volume: 157
  start-page: 797
  year: 2016
  ident: jnead5d16bib3
  article-title: Vagus nerve stimulation inhibits cortical spreading depression
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000000437
– volume: 97
  year: 2018
  ident: jnead5d16bib6
  article-title: Transcutaneous auricular vagus nerve stimulation in treating major depressive disorder: a systematic review and meta-analysis
  publication-title: Medicine
  doi: 10.1097/MD.0000000000013845
– volume: 4
  year: 2013
  ident: jnead5d16bib38
  article-title: Why should one normalize heart rate variability with respect to average heart rate
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00306
– volume: 88
  start-page: 378
  year: 2002
  ident: jnead5d16bib35
  article-title: The pNNx files: re-examining a widely used heart rate variability measure
  publication-title: Heart
  doi: 10.1136/heart.88.4.378
– volume: 21
  start-page: 404
  year: 2015
  ident: jnead5d16bib28
  article-title: Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability
  publication-title: Telemed E-Health
  doi: 10.1089/tmj.2014.0104
– volume: 16
  start-page: 935
  year: 2022
  ident: jnead5d16bib23
  article-title: ‘The wandering nerve linking heart and mind’–the complementary role of transcutaneous vagus nerve stimulation in modulating neuro-cardiovascular and cognitive performance
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.897303
– volume: 2019
  start-page: 1
  year: 2019
  ident: jnead5d16bib44
  article-title: EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/7051079
– volume: 53
  start-page: 543
  year: 2021
  ident: jnead5d16bib21
  article-title: Simultaneous EEG and pupillary evidence for post‐error arousal during a speeded performance task
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.14947
– volume: 19
  start-page: 1
  year: 2019
  ident: jnead5d16bib26
  article-title: Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life
  publication-title: BMC Med. Inf. Decis. Making
  doi: 10.1186/s12911-019-0742-y
– volume: 236
  start-page: 588
  year: 2020
  ident: jnead5d16bib13
  article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation
  publication-title: J. Anat.
  doi: 10.1111/joa.13122
– volume: 11
  year: 2020
  ident: jnead5d16bib10
  article-title: Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates tinnitus-triggered stress reaction
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.570196
– volume: 19
  year: 2022
  ident: jnead5d16bib19
  article-title: Measuring brain response to transcutaneous vagus nerve stimulation (tVNS) using simultaneous magnetoencephalography (MEG)
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac620c
– volume: 57
  year: 2020
  ident: jnead5d16bib39
  article-title: Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13571
– volume: 26
  start-page: 620
  year: 2023
  ident: jnead5d16bib11
  article-title: Evaluation of the modulation effects evoked by different transcutaneous auricular vagus nerve stimulation frequencies along the central vagus nerve pathway in migraine: a functional magnetic resonance imaging study
  publication-title: Neuromodulation
  doi: 10.1016/j.neurom.2022.08.459
– volume: 14
  start-page: 205
  year: 2020
  ident: jnead5d16bib30
  article-title: The instant spontaneous neuronal activity modulation of transcutaneous auricular vagus nerve stimulation on patients with primary insomnia
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00205
– volume: 10
  start-page: 668
  year: 2020
  ident: jnead5d16bib22
  article-title: Transcutaneous vagus nerve stimulation modulates EEG microstates and delta activity in healthy subjects
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10100668
– volume: 11
  start-page: 699
  year: 2018
  ident: jnead5d16bib32
  article-title: Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.04.004
– volume: 14
  start-page: 209
  year: 2021
  ident: jnead5d16bib47
  article-title: Neuro-cardiac coupling predicts transcutaneous auricular vagus nerve stimulation effects
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2021.01.001
– volume: 39
  start-page: 677
  year: 1998
  ident: jnead5d16bib2
  article-title: Vagus nerve stimulation
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1998.tb01151.x
– volume: 7
  start-page: 871
  year: 2014
  ident: jnead5d16bib17
  article-title: Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.07.031
– volume: 7
  year: 2016
  ident: jnead5d16bib40
  article-title: Heart rate and respiratory rate influence on heart rate variability repeatability: effects of the correction for the prevailing heart rate
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00356
– volume: 17
  year: 2022
  ident: jnead5d16bib14
  article-title: The effect of transcutaneous auricular vagus nerve stimulation on HRV in healthy young people
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0263833
– volume: 30
  start-page: 150
  year: 2007
  ident: jnead5d16bib43
  article-title: New vistas for α-frequency band oscillations
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.02.001
– volume: 6
  start-page: 294
  year: 2009
  ident: jnead5d16bib36
  article-title: The pNNx heart rate variability statistics: an application to neuroautonomic dysfunction of clozapine-treated subjects
  publication-title: Psychiatry Invest.
  doi: 10.4306/pi.2009.6.4.294
– volume: 11
  year: 2020
  ident: jnead5d16bib29
  article-title: Sympathetic effect of auricular transcutaneous vagus nerve stimulation on healthy subjects: a crossover controlled clinical trial comparing vagally mediated and active control stimulation using microneurography
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.599896
– volume: 105
  start-page: 106
  year: 2015
  ident: jnead5d16bib45
  article-title: Resting-state EEG delta power is associated with psychological pain in adults with a history of depression
  publication-title: Biological Psychol.
  doi: 10.1016/j.biopsycho.2015.01.003
– volume: 12
  start-page: 1984
  year: 2022
  ident: jnead5d16bib8
  article-title: The potential of invasive and non-invasive vagus nerve stimulation to improve verbal memory performance in epilepsy patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05842-3
– volume: 93
  start-page: 1043
  year: 1996
  ident: jnead5d16bib33
  article-title: Heart rate variability: standards of measurement, physiological interpretation, and clinical use
  publication-title: Circulation
  doi: 10.1161/01.CIR.93.5.1043
– volume: 25
  start-page: 433
  year: 2022
  ident: jnead5d16bib15
  article-title: Reassessment of the effect of transcutaneous auricular vagus nerve stimulation using a novel burst paradigm on cardiac autonomic function in healthy young adults
  publication-title: Neuromodulation
  doi: 10.1111/ner.13521
– volume: 38
  start-page: 1980
  year: 2001
  ident: jnead5d16bib31
  article-title: Heart rate recovery: validation and methodologic issues
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(01)01652-7
– volume: 16
  start-page: 101
  year: 2000
  ident: jnead5d16bib4
  article-title: Transcutaneous vagus nerve stimulation for partial onset seizure therapy: a new concept
  publication-title: Child’s Nervous Syst.
  doi: 10.1007/s003810050021
SSID ssj0031790
Score 2.4160366
Snippet Objective. Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic...
Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous...
Objective.Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46012
SubjectTerms Adult
Autonomic Nervous System - physiology
Central Nervous System - physiology
electroencephalography
Electroencephalography - methods
healthy young adults
Heart Rate - physiology
heart rate variability
Humans
Male
responder
transcutaneous auricular vague nerve stimulation
Transcutaneous Electric Nerve Stimulation - methods
Vagus Nerve Stimulation - methods
Young Adult
Title Analysis of taVNS effects on autonomic and central nervous systems in healthy young adults based on HRV, EEG parameters
URI https://iopscience.iop.org/article/10.1088/1741-2552/ad5d16
https://www.ncbi.nlm.nih.gov/pubmed/38941990
https://www.proquest.com/docview/3073653098
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA9354svfp16e34wggqC3U2aNm3x6ZA9V8FT1DvuQQhJk4B6ly62i6x_vZOmXTjRQ3zrwzRNM8nkN5mZXwh57Iq8poqZxObcJJkrs0QX2ibUlSq1dVo5ExzFt0dicZy9Oc1Pt8iLTS1MsxxM_xQfI1FwHMIhIa6cIYZmCSLhdKZMbpjYJld4KUS4vuD1u_ejGeaBeipWQwZpQYcY5Z9auLAnbeN3_w43-23n8Dr5PHY4Zpt8m646Pa1__sbl-J9_dINcG-AoHETRm2TL-ltk98CjK36-hqfQJ4j2J--75MdIYAKNg06dHH2EIRsEGg9q1cUSZ1DewJDzCR5NUbNqIRJGt_DFQ6y8XMM62Bno-T9aCJupCc0sPpw8h_n8FQRO8vOQq9PeJseH808vF8lwb0NSc1F2CbpYVWFcZWnqaMV1ihovcpwQaFh1pSqmLXd1xbjiNByVKqE1tbWziI4C_Ty_Q3Z84-0eAe6KLKsE0zXVmcqdCi4TVw7dQMWywk7IbNScrAdS83C3xpnsg-tlKcPYyjC2Mo7thDzbvLGMhB6XyD5BlclhVbeXyMEFua_eypTJTIaoM0vl0rgJeTTOKIkLOERllLeoABmMrMg5rcoJuRun2qZjiCYzhnhh_x87co9cTRF0xQTF-2Sn-76yDxA0dfphvzh-AcKoDYI
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRCXUijQ5TlIgIREdu04z2MFu2x5LBXQqjdjJ7bEo86KZIW2v55x7FQqggqJWw6O48zY4288M58JeWzytKKS1ZFOeR0lpkgilSsdUVPIWFdxaWrnKL5bZPPD5PVxehzuOe1rYZplMP1jfPREwV6EISGumCCGZhEi4Xgi67Rm2WRZmw1yOeUZd-T5--8PBlPMHf2Ur4h0b2Q0xCn_1Mu5fWkDv_13yNlvPbNr5PMwaJ9x8m286tS4Ov2Nz_E__mqbbAVYCnu--XVySdsbZGfPokt-soan0CeK9ifwO-TnQGQCjYFOHi0-QsgKgcaCXHW-1BmkrSHkfoJFk9SsWvDE0S18seArMNewdvYGeh6QFtymWrtu5h-OnsN0-gocN_mJy9lpb5LD2fTTi3kU7m-IKp4VXYSuVpnXptQ0NrTkKkbN5ylODDSwqpQlU5qbqmRccuqOTGWmFNWV0YiSHA09v0U2bWP1LgFu8iQpM6YqqhKZGulcJy4NuoOSJbkekcmgPVEFcnN3x8Z30QfZi0I4-QonX-HlOyLPzt5YemKPC9o-QbWJsLrbC9rBuXZfrRYxE4lw0WcWC1TpiDwaZpXAheyiM9JqVIBwxjZLOS2LEbntp9vZwBBVJgxxw51_HMhDcuXg5Uy83V-8uUuuxojDfM7iPbLZ_Vjp-4ijOvWgXyu_AEhpEuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+taVNS+effects+on+autonomic+and+central+nervous+systems+in+healthy+young+adults+based+on+HRV%2C+EEG+parameters&rft.jtitle=Journal+of+neural+engineering&rft.au=Kang%2C+Donghun&rft.au=Choi%2C+Youngseok&rft.au=Lee%2C+Jongshill&rft.au=Park%2C+Eunkyoung&rft.date=2024-08-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fad5d16&rft.externalDocID=jnead5d16
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon