Fabrication of PHFPO Surface‐Modified Conductive AgNWs/PNAGA Hydrogels with Enhanced Water Retention Capacity toward Highly Sensitive Strain Sensors
Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydroge...
Saved in:
Published in | Macromolecular rapid communications. Vol. 45; no. 21; pp. e2400429 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m−1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future.
The study presents a straightforward strategy for integrating silver nanowires into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, resulting in high electrical conductivity, significantly enhanced mechanical properties, and elevated sensitivity to deformation. Surface modification with polyhexafluoropropylene oxide markly improves the water retention capacity and comfort of this hydrogel material. These hydrogels are utilized to fabricate highly sensitive strain sensors for applications in human–machine interfaces and flow sensing. |
---|---|
AbstractList | Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m−1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future.
The study presents a straightforward strategy for integrating silver nanowires into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, resulting in high electrical conductivity, significantly enhanced mechanical properties, and elevated sensitivity to deformation. Surface modification with polyhexafluoropropylene oxide markly improves the water retention capacity and comfort of this hydrogel material. These hydrogels are utilized to fabricate highly sensitive strain sensors for applications in human–machine interfaces and flow sensing. Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N-acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m-1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high-performance strain sensors in the future.Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N-acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m-1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high-performance strain sensors in the future. Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly( N ‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m −1 ), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future. Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m−1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future. Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N-acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m ), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high-performance strain sensors in the future. |
Author | He, Yuan‐Yuan Song, Xue Wang, Cong Hu, Huan Zhu, Yuan‐Yuan Yuan, Chentai Zhang, Lansheng Chang, Long Liu, Chun‐Hua |
Author_xml | – sequence: 1 givenname: Yuan‐Yuan orcidid: 0009-0000-4106-6127 surname: He fullname: He, Yuan‐Yuan organization: Hefei University of Technology – sequence: 2 givenname: Cong surname: Wang fullname: Wang, Cong organization: Zhejiang University – sequence: 3 givenname: Xue surname: Song fullname: Song, Xue organization: Hefei University of Technology – sequence: 4 givenname: Lansheng surname: Zhang fullname: Zhang, Lansheng organization: Zhejiang University – sequence: 5 givenname: Long surname: Chang fullname: Chang, Long organization: Zhejiang University – sequence: 6 givenname: Chentai surname: Yuan fullname: Yuan, Chentai organization: Zhejiang University – sequence: 7 givenname: Huan orcidid: 0000-0002-1317-5470 surname: Hu fullname: Hu, Huan email: huanhu@intl.zju.edu.cn organization: Zhejiang University – sequence: 8 givenname: Chun‐Hua orcidid: 0009-0009-6761-2312 surname: Liu fullname: Liu, Chun‐Hua email: lchh88@hfut.edu.cn organization: Hefei University of Technology – sequence: 9 givenname: Yuan‐Yuan orcidid: 0000-0002-3142-0396 surname: Zhu fullname: Zhu, Yuan‐Yuan email: yyzhu@hfut.edu.cn organization: Hefei University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39108060$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtu2zAUhokiRXNp144FgS5Z5BySulCjIMRxgVyMuEVGgaaObAYy6ZJSDW19hE59wD5JFTtNgS6deEB8_4-D852SI-ssEvKewYQB8IuN8nrCgccAMc9fkROWcBaJnGdH4wycR0yI9JichvAIADIG_oYci5yBhBROyM-pWnqjVWecpa6h89l0fkcXvW-Uxl_ff9y42jQGa1o6W_e6M9-QFqvbh3Axvy2uCjobau9W2Aa6M92aXtq1snrEH1SHnt5jh3ZfXaqt0qYbaOd2ytd0ZlbrdqALtMHsSxedV8buP5wPb8nrRrUB3z2_Z-TL9PJzOYuu764-lcV1pEUq8whTwKRu8mWWYBaruAElkjiVtRCcJTpmAhVkcimZVkInuk4amXImMUOpNAhxRs4PvVvvvvYYumpjgsa2VRZdHyoBMpdZLnkyoh__QR9d7-24XSUYT_IMUpmO1Idnql9usK623oyKhurPxUdgcgC0dyF4bF4QBtWT0upJafWidAzkh8DOtDj8h65uivvyb_Y3e3Clmg |
Cites_doi | 10.1002/chem.201801302 10.1002/aelm.202000267 10.1002/adma.201601568 10.1038/s41467-018-05222-4 10.1021/jp204036a 10.1002/adma.201800124 10.1039/D0TA08177A 10.1126/science.aaf3627 10.1016/j.mattod.2020.10.004 10.1039/c3cs60031a 10.1038/nature11409 10.1021/acsmaterialslett.0c00309 10.1002/marc.201900450 10.1039/D0QM00868K 10.1021/acs.accounts.2c00046 10.1002/marc.202000441 10.1016/j.nanoen.2019.104080 10.1039/D0SC07106D 10.1039/c0nr00258e 10.1039/D2CS00173J 10.1002/anie.201803366 10.1016/j.polymer.2008.01.027 10.1021/acsami.0c05406 10.1016/j.coco.2022.101280 10.1039/D3TB02748A 10.1021/acsnano.1c04206 10.1039/D0TA07468C 10.1021/cr000108x 10.1021/acs.chemmater.3c02075 10.1002/adfm.202104536 10.1039/C9PY01197H 10.1002/adma.200800534 10.1002/adma.200304907 10.1002/adma.202401151 10.1002/adfm.202102433 10.1016/j.msec.2015.07.053 10.1002/advs.201903145 10.1021/acs.iecr.3c02652 10.1016/j.coco.2022.101332 10.1002/adfm.202204366 10.1016/j.cej.2024.150182 10.1063/1.4898189 10.1002/inf2.12113 10.1016/j.coco.2022.101454 10.1016/j.polymer.2021.123863 10.1016/j.matlet.2018.11.078 10.1039/D3TA08065J 10.1039/b924290b 10.1021/acsnano.8b00108 10.1016/j.progpolymsci.2012.09.001 10.1039/C9TB02570G 10.1021/ja0344516 10.1021/acsami.9b21399 10.1002/adfm.202007291 10.1002/adhm.201200152 10.1039/C4TA00484A 10.1039/C8MH01160E 10.1002/smll.202101518 10.1016/j.polymer.2019.122027 10.1039/C8TC02505C 10.1002/adma.202100047 10.1038/ncomms12028 10.1002/advs.201600190 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202400429 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 39108060 10_1002_marc_202400429 MARC202400429 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22371063 – fundername: National Natural Science Foundation of China grantid: 22371063 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c3689-e60e5df9b75e74a4f0a35468d33215c413ea078b81ca3c5cd5f86218e7e8ac033 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 10:24:22 EDT 2025 Fri Jul 25 12:10:33 EDT 2025 Mon Jul 21 05:39:36 EDT 2025 Tue Jul 01 03:31:52 EDT 2025 Wed Jan 22 17:15:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | human–machine interfaces hydrogels conductivity strain sensors |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3689-e60e5df9b75e74a4f0a35468d33215c413ea078b81ca3c5cd5f86218e7e8ac033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0009-6761-2312 0009-0000-4106-6127 0000-0002-3142-0396 0000-0002-1317-5470 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/marc.202400429 |
PMID | 39108060 |
PQID | 3125970686 |
PQPubID | 1016394 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3089879825 proquest_journals_3125970686 pubmed_primary_39108060 crossref_primary_10_1002_marc_202400429 wiley_primary_10_1002_marc_202400429_MARC202400429 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2019 2020 2020 2024; 105 10 186 8 36 2003 2012 2017; 15 489 356 2001; 101 2023; 52 2021; 5 2023; 35 2015 2010; 57 6 2009; 21 2022 2023; 18 37 2020; 41 2014 2024; 2 486 2013; 42 2021 2022; 33 55 2020 2020 2020 2020; 41 2 2 8 2020; 12 2021 2021; 228 12 2016 2016 2018 2020 2020 2021; 7 28 12 7 12 31 2018; 24 2020; 8 2018; 6 2023; 62 2021; 15 2021; 31 2018 2024; 9 12 2012 2022 2024; 37 35 12 2008; 49 2019; 237 2018 2019 2020; 57 6 30 2013 2022; 2 32 2003 2022; 125 35 2017 2019 2020 2020; 4 66 6 41 2010; 2 2011 2018; 115 30 e_1_2_8_26_3 e_1_2_8_28_1 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_22_4 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_30_1 e_1_2_8_25_4 e_1_2_8_27_2 e_1_2_8_25_5 e_1_2_8_27_3 e_1_2_8_29_1 e_1_2_8_27_4 e_1_2_8_29_2 e_1_2_8_27_5 e_1_2_8_29_3 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_25_3 e_1_2_8_27_1 e_1_2_8_27_6 e_1_2_8_29_4 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 9 12 start-page: 2740 3092 year: 2018 2024 publication-title: Nat. Commun. J. Mater. Chem. B – volume: 2 486 start-page: 6086 year: 2014 2024 publication-title: J. Mater. Chem. A Chem. Eng. J. – volume: 24 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 49 start-page: 1993 year: 2008 publication-title: Polymer – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 62 year: 2023 publication-title: Ind. Eng. Chem. Res. – volume: 18 37 year: 2022 2023 publication-title: Small Compos. Commun. – volume: 35 start-page: 9287 year: 2023 publication-title: Chem. Mater. – volume: 57 6 start-page: 414 2583 year: 2015 2010 publication-title: Mater. Sci. Eng. C Soft Matter – volume: 4 66 6 41 year: 2017 2019 2020 2020 publication-title: Adv. Sci. Nano Energy Adv. Electron. Mater. Macromol. Rapid Commun. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 115 30 year: 2011 2018 publication-title: J. Phys. Chem. C Adv. Mater. – volume: 41 2 2 8 start-page: 1287 843 year: 2020 2020 2020 2020 publication-title: Macromol. Rapid Commun. ACS Mater. Lett. Infomat J. Mater. Chem. A – volume: 33 55 start-page: 1533 year: 2021 2022 publication-title: Adv. Mater. Acc. Chem. Res. – volume: 101 start-page: 1869 year: 2001 publication-title: Chem. Rev. – volume: 21 start-page: 743 year: 2009 publication-title: Adv. Mater. – volume: 8 start-page: 3437 year: 2020 publication-title: J. Mater. Chem. B – volume: 228 12 start-page: 6472 year: 2021 2021 publication-title: Polymer Chem. Sci. – volume: 2 32 start-page: 218 year: 2013 2022 publication-title: Adv. Healthcare Mater. Adv. Funct. Mater. – volume: 5 start-page: 2092 year: 2021 publication-title: Mater. Chem, Front. – volume: 2 start-page: 1626 year: 2010 publication-title: Nanoscale – volume: 41 start-page: 219 year: 2020 publication-title: Mater. Today – volume: 125 35 start-page: 9761 year: 2003 2022 publication-title: J. Am. Chem. Soc. Compos. Commun. – volume: 15 489 356 start-page: 1155 133 year: 2003 2012 2017 publication-title: Adv. Mater. Nature Science – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 105 10 186 8 36 start-page: 5751 year: 2014 2019 2020 2020 2024 publication-title: Appl. Phys. Lett. Polym. Chem. Polymer J. Mater. Chem. A Adv. Mater. – volume: 6 start-page: 9200 year: 2018 publication-title: J. Mater. Chem. C – volume: 7 28 12 7 12 31 start-page: 7383 2818 6761 year: 2016 2016 2018 2020 2020 2021 publication-title: Nat. Commun. Adv. Mater. ACS Nano Adv. Sci. ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 57 6 30 start-page: 6568 595 year: 2018 2019 2020 publication-title: Angew. Chem., Int. Ed. Mater. Horiz. Adv. Funct. Mater. – volume: 237 start-page: 53 year: 2019 publication-title: Mater. Lett. – volume: 42 start-page: 7391 year: 2013 publication-title: Chem. Soc. Rev. – volume: 37 35 12 start-page: 1678 5124 year: 2012 2022 2024 publication-title: Prog. Polym. Sci. Compos. Commun. J. Mater. Chem. A – volume: 52 start-page: 473 year: 2023 publication-title: Chem. Soc. Rev. – ident: e_1_2_8_3_1 doi: 10.1002/chem.201801302 – ident: e_1_2_8_22_3 doi: 10.1002/aelm.202000267 – ident: e_1_2_8_27_2 doi: 10.1002/adma.201601568 – ident: e_1_2_8_16_1 doi: 10.1038/s41467-018-05222-4 – ident: e_1_2_8_17_1 doi: 10.1021/jp204036a – ident: e_1_2_8_17_2 doi: 10.1002/adma.201800124 – ident: e_1_2_8_25_4 doi: 10.1039/D0TA08177A – ident: e_1_2_8_1_3 doi: 10.1126/science.aaf3627 – ident: e_1_2_8_23_1 doi: 10.1016/j.mattod.2020.10.004 – ident: e_1_2_8_10_1 doi: 10.1039/c3cs60031a – ident: e_1_2_8_1_2 doi: 10.1038/nature11409 – ident: e_1_2_8_29_2 doi: 10.1021/acsmaterialslett.0c00309 – ident: e_1_2_8_29_1 doi: 10.1002/marc.201900450 – ident: e_1_2_8_19_1 doi: 10.1039/D0QM00868K – ident: e_1_2_8_33_2 doi: 10.1021/acs.accounts.2c00046 – ident: e_1_2_8_22_4 doi: 10.1002/marc.202000441 – ident: e_1_2_8_22_2 doi: 10.1016/j.nanoen.2019.104080 – ident: e_1_2_8_9_2 doi: 10.1039/D0SC07106D – ident: e_1_2_8_20_1 doi: 10.1039/c0nr00258e – ident: e_1_2_8_12_1 doi: 10.1039/D2CS00173J – ident: e_1_2_8_26_1 doi: 10.1002/anie.201803366 – ident: e_1_2_8_8_1 doi: 10.1016/j.polymer.2008.01.027 – ident: e_1_2_8_24_1 doi: 10.1021/acsami.0c05406 – ident: e_1_2_8_18_2 doi: 10.1016/j.coco.2022.101280 – ident: e_1_2_8_16_2 doi: 10.1039/D3TB02748A – ident: e_1_2_8_7_1 doi: 10.1021/acsnano.1c04206 – ident: e_1_2_8_29_4 doi: 10.1039/D0TA07468C – ident: e_1_2_8_6_1 doi: 10.1021/cr000108x – ident: e_1_2_8_31_1 doi: 10.1021/acs.chemmater.3c02075 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202104536 – ident: e_1_2_8_25_2 doi: 10.1039/C9PY01197H – ident: e_1_2_8_5_1 doi: 10.1002/adma.200800534 – ident: e_1_2_8_1_1 doi: 10.1002/adma.200304907 – ident: e_1_2_8_25_5 doi: 10.1002/adma.202401151 – ident: e_1_2_8_27_6 doi: 10.1002/adfm.202102433 – ident: e_1_2_8_2_1 doi: 10.1016/j.msec.2015.07.053 – ident: e_1_2_8_27_4 doi: 10.1002/advs.201903145 – ident: e_1_2_8_32_1 doi: 10.1021/acs.iecr.3c02652 – ident: e_1_2_8_4_2 doi: 10.1016/j.coco.2022.101332 – ident: e_1_2_8_14_2 doi: 10.1002/adfm.202204366 – ident: e_1_2_8_15_2 doi: 10.1016/j.cej.2024.150182 – ident: e_1_2_8_25_1 doi: 10.1063/1.4898189 – ident: e_1_2_8_29_3 doi: 10.1002/inf2.12113 – ident: e_1_2_8_13_2 doi: 10.1016/j.coco.2022.101454 – ident: e_1_2_8_9_1 doi: 10.1016/j.polymer.2021.123863 – ident: e_1_2_8_30_1 doi: 10.1016/j.matlet.2018.11.078 – ident: e_1_2_8_4_3 doi: 10.1039/D3TA08065J – ident: e_1_2_8_2_2 doi: 10.1039/b924290b – ident: e_1_2_8_27_3 doi: 10.1021/acsnano.8b00108 – ident: e_1_2_8_4_1 doi: 10.1016/j.progpolymsci.2012.09.001 – ident: e_1_2_8_11_1 doi: 10.1039/C9TB02570G – ident: e_1_2_8_18_1 doi: 10.1021/ja0344516 – ident: e_1_2_8_27_5 doi: 10.1021/acsami.9b21399 – ident: e_1_2_8_26_3 doi: 10.1002/adfm.202007291 – ident: e_1_2_8_14_1 doi: 10.1002/adhm.201200152 – ident: e_1_2_8_15_1 doi: 10.1039/C4TA00484A – ident: e_1_2_8_26_2 doi: 10.1039/C8MH01160E – ident: e_1_2_8_13_1 doi: 10.1002/smll.202101518 – ident: e_1_2_8_25_3 doi: 10.1016/j.polymer.2019.122027 – ident: e_1_2_8_28_1 doi: 10.1039/C8TC02505C – ident: e_1_2_8_33_1 doi: 10.1002/adma.202100047 – ident: e_1_2_8_27_1 doi: 10.1038/ncomms12028 – ident: e_1_2_8_22_1 doi: 10.1002/advs.201600190 |
SSID | ssj0008402 |
Score | 2.444327 |
Snippet | Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2400429 |
SubjectTerms | Biocompatibility conductivity Deformation effects Deformation wear Electric Conductivity Electrical conductivity Electrical resistivity End effectors Environmental effects Fabrication Finger Fingers Fluorocarbon Polymers - chemistry Human motion Humans human–machine interfaces Hydrogels Hydrogels - chemical synthesis Hydrogels - chemistry Mechanical properties Nanotechnology Nanowires Nanowires - chemistry Polymers - chemistry Retention Retention capacity Robot control Sensors Silver Silver - chemistry Strain strain sensors Surface Properties Water - chemistry Wearable Electronic Devices |
Title | Fabrication of PHFPO Surface‐Modified Conductive AgNWs/PNAGA Hydrogels with Enhanced Water Retention Capacity toward Highly Sensitive Strain Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400429 https://www.ncbi.nlm.nih.gov/pubmed/39108060 https://www.proquest.com/docview/3125970686 https://www.proquest.com/docview/3089879825 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemXbYLDMYgY0OehMQpa1p_xccoWqmQ2lXtpu0WOY69IVCC0vYwTvwJnPgD95fs2WkyCgekcYnyZcfxx3u_Z7_3M0LvuegbSwwNKWivkBLNwlxYGjKhlZFw1NzFO48nfHRJP12z69-i-Bt-iG7CzY0ML6_dAFf5ovdIGuqoHsC-cz6QIFNBCDuHLYeKZo_8UWC9NMudYHGBMcZb1sZo0NtMvqmV_oKam8jVq57hc6TaQjceJ19OV8v8VH__g8_xf_5qDz1b41KcNB3pBdoy5Uu0k7bbwe2jX0OV1-sJPlxZPB0Np-d4vqqt0ub-x89xVXy2gGdxWpWOQxakKE5uJleL3nSSfEzw6K6oqxvQxNhN_eKz8tb7HuArALs1njns7rNOQXtrMA3w0jv0YueI8vUOz52jvc907ne18DeqevEKXQ7PLtJRuN7UIdSExzI0PDKssDIXzAiqqI0UYZTHBSGAPjToVKMAtuRxXyvoObpgFoyufmyEiZWOCDlA22VVmjcIEwlSXptBzAqQQ9pKTgFvWW2poNrmLEAf2kbNvjXcHVnD0jzIXD1nXT0H6Kht82w9hhcZAewnhQuhCdBJ9xhq3S2pqNJUK3gnimUsJJjZAXrd9JXuU0Q6_00eBWjgW_wfZcjGySztrg6fkugt2nXnTajkEdpe1itzDJhpmb_z4-IBLD0PFQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V5VAuvB-BAosE4uTGsdevAwfLbXBpE6KkVXtz7fVuQSAbOYlQOPETOPE_-Cv8BH4JM-tHFTggIfXAxZKfu9qdnflmPPMtwDPXG0hlS25wtF4Gt4VjZJ7ihuOJVAZ4FC7VO4_GbnzMX586pxvwva2FqfkhuoAbrQytr2mBU0C6f8EaSlwP6OBREiQq1Sav8kCuPqHXNn-5v4tT_NyyhntHUWw0GwsYwnb9wJCuKZ1cBZnnSI-nXJmp7XDXz20bLaBAvS5TNJ2ZPxAp9l7kjkLgP_ClJ_1UmBQDRa1_hbYRJ7r-3ekFYxX6S_UPVvTx0P1zW55I0-qv93fdDv4BbtexsjZ2w-vwox2mOsfl_c5yke2Iz78xSP5X43gDrjXQm4X1WrkJG7K4BVtRu-Pdbfg2TLOqiWGyUrFJPJy8YbNlpVIhf375OirzdwohO4vKgmhy0VCw8Hx8Mu9PxuGrkMWrvCrPEWwwim6zveKtTq9gJ4jnKzYl90R_OkKAItD7YQuds8wo1-bDis2olkB_dKY37tAXymp-B44vZVjuwmZRFvI-MDtAQyak5Ts5qlqhApcjpFRCcY8LlTk9eNFKUfKxpidJaiJqK6F5Tbp57cF2K2RJo6bmiY3wNvCoSqgHT7vbOOr01ygtZLnEZ0w_8L3At7Cxe7Vwdk3ZAaWoumYPLC1if-lDMgqnUXf24F9eegJb8dHoMDncHx88hKt0va4M3YbNRbWUjxAiLrLHelEyOLts6f0F7EBsag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB6tFgm48P9TWMBIIE7ZponjxAcOUbqhy9JStax2byFx7AWBklXaCpUTj8CJ5-BVeAWehLHzsyockJD2wCVSnB9b9njmG3vmM8AT5g-kciW1KFovi7rCszJfUcvzRSo5XgXT-c7jCRsd0pfH3vEWfG9zYWp-iG7BTc8Mo6_1BD_NVf-MNFRTPaB_p2MgUac2YZUHcv0JnbbF8_0hjvBTx4n33kQjqzlXwBIuC7glmS29XPHM96RPU6rs1PUoC3LXRQMoUK3LFC1nFgxEio0XuacQ9w8C6csgFbZeAkWlf4Eym-vDIoazM8IqdJfq_VV08dD7Yy1NpO30N9u7aQb_wLabUNnYuvgq_Gh7qQ5x-bC7Wma74vNvBJL_UzdegysN8CZhPVOuw5YsbsClqD3v7iZ8i9OsalYwSanIdBRPX5P5qlKpkD-_fB2X-XuFgJ1EZaFJctFMkPBkcrToTyfhi5CM1nlVniDUIHptm-wV70xwBTlCNF-RmXZOzK8jhCcCfR-yNBHLREfafFyTuc4kMD-dm2M7TEFZLW7B4bl0y23YLspC3gXicjRjQjqBl6OiFYozioBSCUV9KlTm9eBZK0TJaU1OktQ01E6ixzXpxrUHO62MJY2SWiQuglvu6xyhHjzuHmOv6z2jtJDlCt-xAx74PHCwsju1bHZVuVwHqDK7B46RsL-0IRmHs6i7u_cvHz2Ci9NhnLzanxzch8u6uE4L3YHtZbWSDxAfLrOHZkoSeHvewvsLHhBrGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+PHFPO+Surface%E2%80%90Modified+Conductive+AgNWs%2FPNAGA+Hydrogels+with+Enhanced+Water+Retention+Capacity+toward+Highly+Sensitive+Strain+Sensors&rft.jtitle=Macromolecular+rapid+communications.&rft.au=He%2C+Yuan%E2%80%90Yuan&rft.au=Wang%2C+Cong&rft.au=Song%2C+Xue&rft.au=Zhang%2C+Lansheng&rft.date=2024-11-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=45&rft.issue=21&rft_id=info:doi/10.1002%2Fmarc.202400429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202400429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |