Fabrication of PHFPO Surface‐Modified Conductive AgNWs/PNAGA Hydrogels with Enhanced Water Retention Capacity toward Highly Sensitive Strain Sensors

Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydroge...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 45; no. 21; pp. e2400429 - n/a
Main Authors He, Yuan‐Yuan, Wang, Cong, Song, Xue, Zhang, Lansheng, Chang, Long, Yuan, Chentai, Hu, Huan, Liu, Chun‐Hua, Zhu, Yuan‐Yuan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m−1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future. The study presents a straightforward strategy for integrating silver nanowires into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, resulting in high electrical conductivity, significantly enhanced mechanical properties, and elevated sensitivity to deformation. Surface modification with polyhexafluoropropylene oxide markly improves the water retention capacity and comfort of this hydrogel material. These hydrogels are utilized to fabricate highly sensitive strain sensors for applications in human–machine interfaces and flow sensing.
AbstractList Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m−1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future. The study presents a straightforward strategy for integrating silver nanowires into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, resulting in high electrical conductivity, significantly enhanced mechanical properties, and elevated sensitivity to deformation. Surface modification with polyhexafluoropropylene oxide markly improves the water retention capacity and comfort of this hydrogel material. These hydrogels are utilized to fabricate highly sensitive strain sensors for applications in human–machine interfaces and flow sensing.
Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N-acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m-1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high-performance strain sensors in the future.Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N-acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m-1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high-performance strain sensors in the future.
Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly( N ‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m −1 ), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future.
Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N‐acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m−1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high‐performance strain sensors in the future.
Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N-acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m ), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high-performance strain sensors in the future.
Author He, Yuan‐Yuan
Song, Xue
Wang, Cong
Hu, Huan
Zhu, Yuan‐Yuan
Yuan, Chentai
Zhang, Lansheng
Chang, Long
Liu, Chun‐Hua
Author_xml – sequence: 1
  givenname: Yuan‐Yuan
  orcidid: 0009-0000-4106-6127
  surname: He
  fullname: He, Yuan‐Yuan
  organization: Hefei University of Technology
– sequence: 2
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: Zhejiang University
– sequence: 3
  givenname: Xue
  surname: Song
  fullname: Song, Xue
  organization: Hefei University of Technology
– sequence: 4
  givenname: Lansheng
  surname: Zhang
  fullname: Zhang, Lansheng
  organization: Zhejiang University
– sequence: 5
  givenname: Long
  surname: Chang
  fullname: Chang, Long
  organization: Zhejiang University
– sequence: 6
  givenname: Chentai
  surname: Yuan
  fullname: Yuan, Chentai
  organization: Zhejiang University
– sequence: 7
  givenname: Huan
  orcidid: 0000-0002-1317-5470
  surname: Hu
  fullname: Hu, Huan
  email: huanhu@intl.zju.edu.cn
  organization: Zhejiang University
– sequence: 8
  givenname: Chun‐Hua
  orcidid: 0009-0009-6761-2312
  surname: Liu
  fullname: Liu, Chun‐Hua
  email: lchh88@hfut.edu.cn
  organization: Hefei University of Technology
– sequence: 9
  givenname: Yuan‐Yuan
  orcidid: 0000-0002-3142-0396
  surname: Zhu
  fullname: Zhu, Yuan‐Yuan
  email: yyzhu@hfut.edu.cn
  organization: Hefei University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39108060$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtu2zAUhokiRXNp144FgS5Z5BySulCjIMRxgVyMuEVGgaaObAYy6ZJSDW19hE59wD5JFTtNgS6deEB8_4-D852SI-ssEvKewYQB8IuN8nrCgccAMc9fkROWcBaJnGdH4wycR0yI9JichvAIADIG_oYci5yBhBROyM-pWnqjVWecpa6h89l0fkcXvW-Uxl_ff9y42jQGa1o6W_e6M9-QFqvbh3Axvy2uCjobau9W2Aa6M92aXtq1snrEH1SHnt5jh3ZfXaqt0qYbaOd2ytd0ZlbrdqALtMHsSxedV8buP5wPb8nrRrUB3z2_Z-TL9PJzOYuu764-lcV1pEUq8whTwKRu8mWWYBaruAElkjiVtRCcJTpmAhVkcimZVkInuk4amXImMUOpNAhxRs4PvVvvvvYYumpjgsa2VRZdHyoBMpdZLnkyoh__QR9d7-24XSUYT_IMUpmO1Idnql9usK623oyKhurPxUdgcgC0dyF4bF4QBtWT0upJafWidAzkh8DOtDj8h65uivvyb_Y3e3Clmg
Cites_doi 10.1002/chem.201801302
10.1002/aelm.202000267
10.1002/adma.201601568
10.1038/s41467-018-05222-4
10.1021/jp204036a
10.1002/adma.201800124
10.1039/D0TA08177A
10.1126/science.aaf3627
10.1016/j.mattod.2020.10.004
10.1039/c3cs60031a
10.1038/nature11409
10.1021/acsmaterialslett.0c00309
10.1002/marc.201900450
10.1039/D0QM00868K
10.1021/acs.accounts.2c00046
10.1002/marc.202000441
10.1016/j.nanoen.2019.104080
10.1039/D0SC07106D
10.1039/c0nr00258e
10.1039/D2CS00173J
10.1002/anie.201803366
10.1016/j.polymer.2008.01.027
10.1021/acsami.0c05406
10.1016/j.coco.2022.101280
10.1039/D3TB02748A
10.1021/acsnano.1c04206
10.1039/D0TA07468C
10.1021/cr000108x
10.1021/acs.chemmater.3c02075
10.1002/adfm.202104536
10.1039/C9PY01197H
10.1002/adma.200800534
10.1002/adma.200304907
10.1002/adma.202401151
10.1002/adfm.202102433
10.1016/j.msec.2015.07.053
10.1002/advs.201903145
10.1021/acs.iecr.3c02652
10.1016/j.coco.2022.101332
10.1002/adfm.202204366
10.1016/j.cej.2024.150182
10.1063/1.4898189
10.1002/inf2.12113
10.1016/j.coco.2022.101454
10.1016/j.polymer.2021.123863
10.1016/j.matlet.2018.11.078
10.1039/D3TA08065J
10.1039/b924290b
10.1021/acsnano.8b00108
10.1016/j.progpolymsci.2012.09.001
10.1039/C9TB02570G
10.1021/ja0344516
10.1021/acsami.9b21399
10.1002/adfm.202007291
10.1002/adhm.201200152
10.1039/C4TA00484A
10.1039/C8MH01160E
10.1002/smll.202101518
10.1016/j.polymer.2019.122027
10.1039/C8TC02505C
10.1002/adma.202100047
10.1038/ncomms12028
10.1002/advs.201600190
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202400429
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 39108060
10_1002_marc_202400429
MARC202400429
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22371063
– fundername: National Natural Science Foundation of China
  grantid: 22371063
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c3689-e60e5df9b75e74a4f0a35468d33215c413ea078b81ca3c5cd5f86218e7e8ac033
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 10:24:22 EDT 2025
Fri Jul 25 12:10:33 EDT 2025
Mon Jul 21 05:39:36 EDT 2025
Tue Jul 01 03:31:52 EDT 2025
Wed Jan 22 17:15:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords human–machine interfaces
hydrogels
conductivity
strain sensors
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3689-e60e5df9b75e74a4f0a35468d33215c413ea078b81ca3c5cd5f86218e7e8ac033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0009-6761-2312
0009-0000-4106-6127
0000-0002-3142-0396
0000-0002-1317-5470
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/marc.202400429
PMID 39108060
PQID 3125970686
PQPubID 1016394
PageCount 9
ParticipantIDs proquest_miscellaneous_3089879825
proquest_journals_3125970686
pubmed_primary_39108060
crossref_primary_10_1002_marc_202400429
wiley_primary_10_1002_marc_202400429_MARC202400429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2019 2020 2020 2024; 105 10 186 8 36
2003 2012 2017; 15 489 356
2001; 101
2023; 52
2021; 5
2023; 35
2015 2010; 57 6
2009; 21
2022 2023; 18 37
2020; 41
2014 2024; 2 486
2013; 42
2021 2022; 33 55
2020 2020 2020 2020; 41 2 2 8
2020; 12
2021 2021; 228 12
2016 2016 2018 2020 2020 2021; 7 28 12 7 12 31
2018; 24
2020; 8
2018; 6
2023; 62
2021; 15
2021; 31
2018 2024; 9 12
2012 2022 2024; 37 35 12
2008; 49
2019; 237
2018 2019 2020; 57 6 30
2013 2022; 2 32
2003 2022; 125 35
2017 2019 2020 2020; 4 66 6 41
2010; 2
2011 2018; 115 30
e_1_2_8_26_3
e_1_2_8_28_1
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_22_4
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_30_1
e_1_2_8_25_4
e_1_2_8_27_2
e_1_2_8_25_5
e_1_2_8_27_3
e_1_2_8_29_1
e_1_2_8_27_4
e_1_2_8_29_2
e_1_2_8_27_5
e_1_2_8_29_3
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_25_3
e_1_2_8_27_1
e_1_2_8_27_6
e_1_2_8_29_4
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 9 12
  start-page: 2740 3092
  year: 2018 2024
  publication-title: Nat. Commun. J. Mater. Chem. B
– volume: 2 486
  start-page: 6086
  year: 2014 2024
  publication-title: J. Mater. Chem. A Chem. Eng. J.
– volume: 24
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 49
  start-page: 1993
  year: 2008
  publication-title: Polymer
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62
  year: 2023
  publication-title: Ind. Eng. Chem. Res.
– volume: 18 37
  year: 2022 2023
  publication-title: Small Compos. Commun.
– volume: 35
  start-page: 9287
  year: 2023
  publication-title: Chem. Mater.
– volume: 57 6
  start-page: 414 2583
  year: 2015 2010
  publication-title: Mater. Sci. Eng. C Soft Matter
– volume: 4 66 6 41
  year: 2017 2019 2020 2020
  publication-title: Adv. Sci. Nano Energy Adv. Electron. Mater. Macromol. Rapid Commun.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 115 30
  year: 2011 2018
  publication-title: J. Phys. Chem. C Adv. Mater.
– volume: 41 2 2 8
  start-page: 1287 843
  year: 2020 2020 2020 2020
  publication-title: Macromol. Rapid Commun. ACS Mater. Lett. Infomat J. Mater. Chem. A
– volume: 33 55
  start-page: 1533
  year: 2021 2022
  publication-title: Adv. Mater. Acc. Chem. Res.
– volume: 101
  start-page: 1869
  year: 2001
  publication-title: Chem. Rev.
– volume: 21
  start-page: 743
  year: 2009
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3437
  year: 2020
  publication-title: J. Mater. Chem. B
– volume: 228 12
  start-page: 6472
  year: 2021 2021
  publication-title: Polymer Chem. Sci.
– volume: 2 32
  start-page: 218
  year: 2013 2022
  publication-title: Adv. Healthcare Mater. Adv. Funct. Mater.
– volume: 5
  start-page: 2092
  year: 2021
  publication-title: Mater. Chem, Front.
– volume: 2
  start-page: 1626
  year: 2010
  publication-title: Nanoscale
– volume: 41
  start-page: 219
  year: 2020
  publication-title: Mater. Today
– volume: 125 35
  start-page: 9761
  year: 2003 2022
  publication-title: J. Am. Chem. Soc. Compos. Commun.
– volume: 15 489 356
  start-page: 1155 133
  year: 2003 2012 2017
  publication-title: Adv. Mater. Nature Science
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 105 10 186 8 36
  start-page: 5751
  year: 2014 2019 2020 2020 2024
  publication-title: Appl. Phys. Lett. Polym. Chem. Polymer J. Mater. Chem. A Adv. Mater.
– volume: 6
  start-page: 9200
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 7 28 12 7 12 31
  start-page: 7383 2818 6761
  year: 2016 2016 2018 2020 2020 2021
  publication-title: Nat. Commun. Adv. Mater. ACS Nano Adv. Sci. ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 57 6 30
  start-page: 6568 595
  year: 2018 2019 2020
  publication-title: Angew. Chem., Int. Ed. Mater. Horiz. Adv. Funct. Mater.
– volume: 237
  start-page: 53
  year: 2019
  publication-title: Mater. Lett.
– volume: 42
  start-page: 7391
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 37 35 12
  start-page: 1678 5124
  year: 2012 2022 2024
  publication-title: Prog. Polym. Sci. Compos. Commun. J. Mater. Chem. A
– volume: 52
  start-page: 473
  year: 2023
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_8_3_1
  doi: 10.1002/chem.201801302
– ident: e_1_2_8_22_3
  doi: 10.1002/aelm.202000267
– ident: e_1_2_8_27_2
  doi: 10.1002/adma.201601568
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-018-05222-4
– ident: e_1_2_8_17_1
  doi: 10.1021/jp204036a
– ident: e_1_2_8_17_2
  doi: 10.1002/adma.201800124
– ident: e_1_2_8_25_4
  doi: 10.1039/D0TA08177A
– ident: e_1_2_8_1_3
  doi: 10.1126/science.aaf3627
– ident: e_1_2_8_23_1
  doi: 10.1016/j.mattod.2020.10.004
– ident: e_1_2_8_10_1
  doi: 10.1039/c3cs60031a
– ident: e_1_2_8_1_2
  doi: 10.1038/nature11409
– ident: e_1_2_8_29_2
  doi: 10.1021/acsmaterialslett.0c00309
– ident: e_1_2_8_29_1
  doi: 10.1002/marc.201900450
– ident: e_1_2_8_19_1
  doi: 10.1039/D0QM00868K
– ident: e_1_2_8_33_2
  doi: 10.1021/acs.accounts.2c00046
– ident: e_1_2_8_22_4
  doi: 10.1002/marc.202000441
– ident: e_1_2_8_22_2
  doi: 10.1016/j.nanoen.2019.104080
– ident: e_1_2_8_9_2
  doi: 10.1039/D0SC07106D
– ident: e_1_2_8_20_1
  doi: 10.1039/c0nr00258e
– ident: e_1_2_8_12_1
  doi: 10.1039/D2CS00173J
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.201803366
– ident: e_1_2_8_8_1
  doi: 10.1016/j.polymer.2008.01.027
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.0c05406
– ident: e_1_2_8_18_2
  doi: 10.1016/j.coco.2022.101280
– ident: e_1_2_8_16_2
  doi: 10.1039/D3TB02748A
– ident: e_1_2_8_7_1
  doi: 10.1021/acsnano.1c04206
– ident: e_1_2_8_29_4
  doi: 10.1039/D0TA07468C
– ident: e_1_2_8_6_1
  doi: 10.1021/cr000108x
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.chemmater.3c02075
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202104536
– ident: e_1_2_8_25_2
  doi: 10.1039/C9PY01197H
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.200800534
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.200304907
– ident: e_1_2_8_25_5
  doi: 10.1002/adma.202401151
– ident: e_1_2_8_27_6
  doi: 10.1002/adfm.202102433
– ident: e_1_2_8_2_1
  doi: 10.1016/j.msec.2015.07.053
– ident: e_1_2_8_27_4
  doi: 10.1002/advs.201903145
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.iecr.3c02652
– ident: e_1_2_8_4_2
  doi: 10.1016/j.coco.2022.101332
– ident: e_1_2_8_14_2
  doi: 10.1002/adfm.202204366
– ident: e_1_2_8_15_2
  doi: 10.1016/j.cej.2024.150182
– ident: e_1_2_8_25_1
  doi: 10.1063/1.4898189
– ident: e_1_2_8_29_3
  doi: 10.1002/inf2.12113
– ident: e_1_2_8_13_2
  doi: 10.1016/j.coco.2022.101454
– ident: e_1_2_8_9_1
  doi: 10.1016/j.polymer.2021.123863
– ident: e_1_2_8_30_1
  doi: 10.1016/j.matlet.2018.11.078
– ident: e_1_2_8_4_3
  doi: 10.1039/D3TA08065J
– ident: e_1_2_8_2_2
  doi: 10.1039/b924290b
– ident: e_1_2_8_27_3
  doi: 10.1021/acsnano.8b00108
– ident: e_1_2_8_4_1
  doi: 10.1016/j.progpolymsci.2012.09.001
– ident: e_1_2_8_11_1
  doi: 10.1039/C9TB02570G
– ident: e_1_2_8_18_1
  doi: 10.1021/ja0344516
– ident: e_1_2_8_27_5
  doi: 10.1021/acsami.9b21399
– ident: e_1_2_8_26_3
  doi: 10.1002/adfm.202007291
– ident: e_1_2_8_14_1
  doi: 10.1002/adhm.201200152
– ident: e_1_2_8_15_1
  doi: 10.1039/C4TA00484A
– ident: e_1_2_8_26_2
  doi: 10.1039/C8MH01160E
– ident: e_1_2_8_13_1
  doi: 10.1002/smll.202101518
– ident: e_1_2_8_25_3
  doi: 10.1016/j.polymer.2019.122027
– ident: e_1_2_8_28_1
  doi: 10.1039/C8TC02505C
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.202100047
– ident: e_1_2_8_27_1
  doi: 10.1038/ncomms12028
– ident: e_1_2_8_22_1
  doi: 10.1002/advs.201600190
SSID ssj0008402
Score 2.444327
Snippet Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2400429
SubjectTerms Biocompatibility
conductivity
Deformation effects
Deformation wear
Electric Conductivity
Electrical conductivity
Electrical resistivity
End effectors
Environmental effects
Fabrication
Finger
Fingers
Fluorocarbon Polymers - chemistry
Human motion
Humans
human–machine interfaces
Hydrogels
Hydrogels - chemical synthesis
Hydrogels - chemistry
Mechanical properties
Nanotechnology
Nanowires
Nanowires - chemistry
Polymers - chemistry
Retention
Retention capacity
Robot control
Sensors
Silver
Silver - chemistry
Strain
strain sensors
Surface Properties
Water - chemistry
Wearable Electronic Devices
Title Fabrication of PHFPO Surface‐Modified Conductive AgNWs/PNAGA Hydrogels with Enhanced Water Retention Capacity toward Highly Sensitive Strain Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400429
https://www.ncbi.nlm.nih.gov/pubmed/39108060
https://www.proquest.com/docview/3125970686
https://www.proquest.com/docview/3089879825
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemXbYLDMYgY0OehMQpa1p_xccoWqmQ2lXtpu0WOY69IVCC0vYwTvwJnPgD95fs2WkyCgekcYnyZcfxx3u_Z7_3M0LvuegbSwwNKWivkBLNwlxYGjKhlZFw1NzFO48nfHRJP12z69-i-Bt-iG7CzY0ML6_dAFf5ovdIGuqoHsC-cz6QIFNBCDuHLYeKZo_8UWC9NMudYHGBMcZb1sZo0NtMvqmV_oKam8jVq57hc6TaQjceJ19OV8v8VH__g8_xf_5qDz1b41KcNB3pBdoy5Uu0k7bbwe2jX0OV1-sJPlxZPB0Np-d4vqqt0ub-x89xVXy2gGdxWpWOQxakKE5uJleL3nSSfEzw6K6oqxvQxNhN_eKz8tb7HuArALs1njns7rNOQXtrMA3w0jv0YueI8vUOz52jvc907ne18DeqevEKXQ7PLtJRuN7UIdSExzI0PDKssDIXzAiqqI0UYZTHBSGAPjToVKMAtuRxXyvoObpgFoyufmyEiZWOCDlA22VVmjcIEwlSXptBzAqQQ9pKTgFvWW2poNrmLEAf2kbNvjXcHVnD0jzIXD1nXT0H6Kht82w9hhcZAewnhQuhCdBJ9xhq3S2pqNJUK3gnimUsJJjZAXrd9JXuU0Q6_00eBWjgW_wfZcjGySztrg6fkugt2nXnTajkEdpe1itzDJhpmb_z4-IBLD0PFQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V5VAuvB-BAosE4uTGsdevAwfLbXBpE6KkVXtz7fVuQSAbOYlQOPETOPE_-Cv8BH4JM-tHFTggIfXAxZKfu9qdnflmPPMtwDPXG0hlS25wtF4Gt4VjZJ7ihuOJVAZ4FC7VO4_GbnzMX586pxvwva2FqfkhuoAbrQytr2mBU0C6f8EaSlwP6OBREiQq1Sav8kCuPqHXNn-5v4tT_NyyhntHUWw0GwsYwnb9wJCuKZ1cBZnnSI-nXJmp7XDXz20bLaBAvS5TNJ2ZPxAp9l7kjkLgP_ClJ_1UmBQDRa1_hbYRJ7r-3ekFYxX6S_UPVvTx0P1zW55I0-qv93fdDv4BbtexsjZ2w-vwox2mOsfl_c5yke2Iz78xSP5X43gDrjXQm4X1WrkJG7K4BVtRu-Pdbfg2TLOqiWGyUrFJPJy8YbNlpVIhf375OirzdwohO4vKgmhy0VCw8Hx8Mu9PxuGrkMWrvCrPEWwwim6zveKtTq9gJ4jnKzYl90R_OkKAItD7YQuds8wo1-bDis2olkB_dKY37tAXymp-B44vZVjuwmZRFvI-MDtAQyak5Ts5qlqhApcjpFRCcY8LlTk9eNFKUfKxpidJaiJqK6F5Tbp57cF2K2RJo6bmiY3wNvCoSqgHT7vbOOr01ygtZLnEZ0w_8L3At7Cxe7Vwdk3ZAaWoumYPLC1if-lDMgqnUXf24F9eegJb8dHoMDncHx88hKt0va4M3YbNRbWUjxAiLrLHelEyOLts6f0F7EBsag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB6tFgm48P9TWMBIIE7ZponjxAcOUbqhy9JStax2byFx7AWBklXaCpUTj8CJ5-BVeAWehLHzsyockJD2wCVSnB9b9njmG3vmM8AT5g-kciW1KFovi7rCszJfUcvzRSo5XgXT-c7jCRsd0pfH3vEWfG9zYWp-iG7BTc8Mo6_1BD_NVf-MNFRTPaB_p2MgUac2YZUHcv0JnbbF8_0hjvBTx4n33kQjqzlXwBIuC7glmS29XPHM96RPU6rs1PUoC3LXRQMoUK3LFC1nFgxEio0XuacQ9w8C6csgFbZeAkWlf4Eym-vDIoazM8IqdJfq_VV08dD7Yy1NpO30N9u7aQb_wLabUNnYuvgq_Gh7qQ5x-bC7Wma74vNvBJL_UzdegysN8CZhPVOuw5YsbsClqD3v7iZ8i9OsalYwSanIdBRPX5P5qlKpkD-_fB2X-XuFgJ1EZaFJctFMkPBkcrToTyfhi5CM1nlVniDUIHptm-wV70xwBTlCNF-RmXZOzK8jhCcCfR-yNBHLREfafFyTuc4kMD-dm2M7TEFZLW7B4bl0y23YLspC3gXicjRjQjqBl6OiFYozioBSCUV9KlTm9eBZK0TJaU1OktQ01E6ixzXpxrUHO62MJY2SWiQuglvu6xyhHjzuHmOv6z2jtJDlCt-xAx74PHCwsju1bHZVuVwHqDK7B46RsL-0IRmHs6i7u_cvHz2Ci9NhnLzanxzch8u6uE4L3YHtZbWSDxAfLrOHZkoSeHvewvsLHhBrGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+PHFPO+Surface%E2%80%90Modified+Conductive+AgNWs%2FPNAGA+Hydrogels+with+Enhanced+Water+Retention+Capacity+toward+Highly+Sensitive+Strain+Sensors&rft.jtitle=Macromolecular+rapid+communications.&rft.au=He%2C+Yuan%E2%80%90Yuan&rft.au=Wang%2C+Cong&rft.au=Song%2C+Xue&rft.au=Zhang%2C+Lansheng&rft.date=2024-11-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=45&rft.issue=21&rft_id=info:doi/10.1002%2Fmarc.202400429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202400429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon