Diagnosis of transportation modes on mobile phone using logistic regression classification

The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose and global positioning system (GPS), accelerometer, and gyroscope sensor data were collected while the subjects were walking, running, biking,...

Full description

Saved in:
Bibliographic Details
Published inIET software Vol. 12; no. 2; pp. 142 - 151
Main Authors Ballı, Serkan, Sağbaş, Ensar Arif
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose and global positioning system (GPS), accelerometer, and gyroscope sensor data were collected while the subjects were walking, running, biking, and travelling by bus or by car. The application was running for over 8 h. Sensor data were tagged with 12 s intervals and 2500 patterns were obtained. Eleven features were selected from the data set and machine learning methods were applied to detect transportation modes using different sensor combinations. Performances of the methods were discussed in terms of accuracy ratios. Best results were obtained from GPS, accelerometer, and gyroscope sensor combination data using logistic regression method with 99.6% accuracy rate.
AbstractList The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose and global positioning system (GPS), accelerometer, and gyroscope sensor data were collected while the subjects were walking, running, biking, and travelling by bus or by car. The application was running for over 8 h. Sensor data were tagged with 12 s intervals and 2500 patterns were obtained. Eleven features were selected from the data set and machine learning methods were applied to detect transportation modes using different sensor combinations. Performances of the methods were discussed in terms of accuracy ratios. Best results were obtained from GPS, accelerometer, and gyroscope sensor combination data using logistic regression method with 99.6% accuracy rate.
Author Sağbaş, Ensar Arif
Ballı, Serkan
Author_xml – sequence: 1
  givenname: Serkan
  orcidid: 0000-0002-4825-139X
  surname: Ballı
  fullname: Ballı, Serkan
  email: serkan@mu.edu.tr
  organization: Department of Information Systems Engineering, Faculty of Technology, Muğla Sıtkı Koçman University, 48000 Mugla, Turkey
– sequence: 2
  givenname: Ensar Arif
  surname: Sağbaş
  fullname: Sağbaş, Ensar Arif
  organization: Department of Information Systems Engineering, Faculty of Technology, Muğla Sıtkı Koçman University, 48000 Mugla, Turkey
BookMark eNqFkE1LAzEURYNUsFZ_gLvZupiaTCbz4U5rq4Wii1YENyGTjzFlmpRkivTfm3FERKSucgn3vMc7p2BgrJEAXCA4RjAtr7RsYy_NOIEoH0OIyREYopyguChQOvjOMDsBp96vISSE4HIIXu80q4312kdWRa1jxm-ta1mrrYk2Vsjw34VKNzLavoWl0c5rU0eNrbVvNY-crJ30vuvzhoWgNP_Ez8CxYo2X51_vCDzPpqvJQ7x4up9PbhYxx1lRxgUWqlIQM1QVMue5RBkTCKccskSIhGeoYIoghmEmK0wEIUVVZEnKRYVzqAQegbyfy5313klFue4PCOfohiJIO0U0KKJBEe0U0U5RINEvcuv0hrn9Qea6Z96Dkf3_AF3OXpLbGYQoLQMc93BXW9udM0HMwWWXf_Tn0xVdTh9_7NgKhT8AOpCfPA
CitedBy_id crossref_primary_10_1177_0020294018813692
crossref_primary_10_1007_s12647_024_00747_0
crossref_primary_10_21923_jesd_790845
crossref_primary_10_3390_s24227369
crossref_primary_10_1007_s12205_022_1281_0
crossref_primary_10_1016_j_ifacol_2021_06_043
crossref_primary_10_1109_JSEN_2021_3065848
crossref_primary_10_1155_2019_7482138
crossref_primary_10_1016_j_eswa_2022_116592
crossref_primary_10_1109_TITS_2022_3207198
crossref_primary_10_1002_cpe_8089
crossref_primary_10_1007_s13369_021_06187_1
crossref_primary_10_1080_15472450_2022_2141118
crossref_primary_10_1371_journal_pone_0248622
crossref_primary_10_3390_s22124397
crossref_primary_10_21541_apjess_1105362
crossref_primary_10_3390_ma15051701
Cites_doi 10.1109/MCOM.2010.5560598
10.1016/j.compenvurbsys.2012.06.001
10.1007/978-3-540-77046-6_2
10.1109/ISWC.2008.4911579
10.1049/iet-its.2015.0157
10.1109/SCC.2016.68
10.1016/S0003-2670(97)00064-0
10.1109/PERCOMW.2016.7457048
10.3390/s16050716
10.1109/SIU.2012.6204506
10.1109/TITB.2007.899496
10.1016/j.compenvurbsys.2014.07.011
10.1109/TST.2014.6838194
10.1016/j.cmpb.2016.01.001
10.3390/s141120843
10.1145/2517351.2517367
10.1016/j.asr.2007.07.020
10.1145/2093973.2093982
10.1109/APWCS.2010.18
10.1109/ITSC.2016.7795921
10.1016/j.trc.2013.09.015
10.1002/wcm.2702
10.3390/s16081324
10.3389/fpubh.2014.00036
10.1007/978-3-7091-6199-9
10.1145/1367497.1367532
10.1007/s11036-008-0112-y
10.1016/j.trc.2013.09.014
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2018 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2018 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-sen.2017.0035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1751-8814
EndPage 151
ExternalDocumentID 10_1049_iet_sen_2017_0035
SFW2BF00149
Genre article
GroupedDBID 0R
24P
29I
3V.
4.4
4IJ
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACDCL
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
2QL
96U
AAHHS
AAHJG
AAYOK
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
ID FETCH-LOGICAL-c3689-83dfbf03a1b8e7c7e16ad134c0a2dd2c618af51a306eb35d558b8624cdb370fd3
IEDL.DBID 24P
ISSN 1751-8806
1751-8814
IngestDate Thu Apr 24 23:12:18 EDT 2025
Tue Jul 01 02:13:45 EDT 2025
Wed Jan 22 16:32:31 EST 2025
Thu May 09 18:05:10 EDT 2019
Tue Jan 05 21:45:50 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords transportation modes
smartphone sensors
mobile phone
logistic regression classification
accelerometer
smart phones
traffic engineering computing
GPS
gyroscope sensor
Global Positioning System
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3689-83dfbf03a1b8e7c7e16ad134c0a2dd2c618af51a306eb35d558b8624cdb370fd3
ORCID 0000-0002-4825-139X
PageCount 10
ParticipantIDs crossref_citationtrail_10_1049_iet_sen_2017_0035
wiley_primary_10_1049_iet_sen_2017_0035_SFW2BF00149
crossref_primary_10_1049_iet_sen_2017_0035
iet_journals_10_1049_iet_sen_2017_0035
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180400
April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 4
  year: 2018
  text: 20180400
PublicationDecade 2010
PublicationTitle IET software
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Bedogni, L.; Di Felice, M.; Bononi, L. (C2) 2016; 16
Feng, T.; Timmermans, H.J.P. (C15) 2013; 37
Ellis, K.; Godbole, S.; Marshall, S. (C16) 2014; 2
Xia, H.; Qiao, Y.; Jian, J. (C18) 2014; 14
Bolbol, A.; Cheng, T.; Tsapakis, I. (C13) 2012; 36
Shafique, M.A.; Hato, E. (C21) 2016; 16
Alsberg, B.K.; Goodacre, R.; Rowland, J.J. (C35) 1997; 348
Ermes, M.; Pärkkä, J.; Mäntyjärvi, J. (C24) 2008; 12
Kamkar, S.; Safabakhsh, R. (C25) 2016; 10
Lane, N.D.; Miluzzo, E.; Lu, H. (C1) 2010; 48
Győrbíró, N.; Fábián, Á.; Hományi, G. (C7) 2009; 14
Zhao, Y.; Zhang, Y. (C38) 2008; 41
Peker, M. (C41) 2016; 129
Sun, Z.; Ban, X.J. (C4) 2013; 37
Fang, S.H.; Liao, H.H.; Fei, Y.X. (C26) 2016; 16
Ballı, S.; Sağbaş, E.A. (C5) 2017; 21
Shin, D.; Aliaga, D.; Tunçer, B. (C17) 2015; 53
Su, X.; Tong, H.; Ji, P. (C29) 2014; 19
Reddy, S.; Mun, M.; Burke, J. (C19) 2010; 6
2012
2011
2010
2016; 129
2015; 53
2017; 21
2016; 10
2008
2008; 12
2007
1995
2002
2012; 36
2016; 16
2009; 14
2013; 37
1997; 348
2010; 48
2014; 2
2001
2014; 14
2017
2016
2014; 19
2015
2014
2008; 41
2013
2010; 6
e_1_2_8_24_1
Hofmann-Wellenhof B. (e_1_2_8_29_1) 2001
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Korb K.B. (e_1_2_8_35_1) 2011
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
Russell S. (e_1_2_8_32_1) 1995
Balli S. (e_1_2_8_37_1) 2017
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
El-Rabbany A. (e_1_2_8_28_1) 2002
Alsberg B.K. (e_1_2_8_36_1) 1997; 348
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
Reddy S. (e_1_2_8_20_1) 2010; 6
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_13_1
Sun Z. (e_1_2_8_5_1) 2013; 37
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
Ballı S. (e_1_2_8_6_1) 2017; 21
Ellis K. (e_1_2_8_17_1) 2014; 2
Peker M. (e_1_2_8_42_1) 2016; 129
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Sensr Inc. (e_1_2_8_31_1) 2011
Xia H. (e_1_2_8_19_1) 2014; 14
e_1_2_8_30_1
References_xml – volume: 10
  start-page: 406
  issue: 6
  year: 2016
  end-page: 413
  ident: C25
  article-title: Vehicle detection, counting and classification in various conditions
  publication-title: IET Intell. Transp. Syst.
– volume: 21
  start-page: 980
  issue: 3
  year: 2017
  end-page: 990
  ident: C5
  article-title: Classification of human motions with smartwatch sensors
  publication-title: SDU J. Nat. Appl. Sci.
– volume: 129
  start-page: 203
  year: 2016
  end-page: 216
  ident: C41
  article-title: A new approach for automatic sleep scoring: combining Taguchi based complex-valued neural network and complex wavelet transform
  publication-title: Comput. Methods Programs Biomed.
– volume: 16
  start-page: 2523
  issue: 16
  year: 2016
  end-page: 2541
  ident: C2
  article-title: Context-aware Android applications through transportation mode detection techniques
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 48
  start-page: 140
  issue: 9
  year: 2010
  end-page: 150
  ident: C1
  article-title: A survey of mobile phone sensing
  publication-title: Commun. Mag.
– volume: 12
  start-page: 20
  issue: 1
  year: 2008
  end-page: 26
  ident: C24
  article-title: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 14
  start-page: 82
  issue: 1
  year: 2009
  end-page: 91
  ident: C7
  article-title: An activity recognition system for mobile phones
  publication-title: Mobile Netw. Appl.
– volume: 348
  start-page: 389
  issue: 1
  year: 1997
  end-page: 407
  ident: C35
  article-title: Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods
  publication-title: Anal. Chim. Acta
– volume: 14
  start-page: 20843
  issue: 11
  year: 2014
  end-page: 20865
  ident: C18
  article-title: Using smart phone sensors to detect transportation modes
  publication-title: Sensors
– volume: 16
  start-page: 716
  issue: 5
  year: 2016
  ident: C21
  article-title: Travel mode detection with varying smartphone data collection frequencies
  publication-title: Sensors
– volume: 37
  start-page: 102
  year: 2013
  end-page: 117
  ident: C4
  article-title: Vehicle classification using GPS data
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 16
  start-page: 1324
  issue: 8
  year: 2016
  ident: C26
  article-title: Transportation modes classification using sensors on smartphones
  publication-title: Sensors
– volume: 41
  start-page: 1955
  issue: 12
  year: 2008
  end-page: 1959
  ident: C38
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Adv. Space Res.
– volume: 2
  start-page: 1
  year: 2014
  end-page: 8
  ident: C16
  article-title: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms
  publication-title: Front. Public Health
– volume: 53
  start-page: 76
  year: 2015
  end-page: 86
  ident: C17
  article-title: Urban sensing: using smartphones for transportation mode classification
  publication-title: Comput. Environ. Urban Syst.
– volume: 6
  start-page: 13
  issue: 2
  year: 2010
  ident: C19
  article-title: Using mobile phones to determine transportation modes
  publication-title: ACM Trans. Sensor Netw. (TOSN)
– volume: 37
  start-page: 118
  year: 2013
  end-page: 130
  ident: C15
  article-title: Transportation mode recognition using GPS and accelerometer data
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 36
  start-page: 526
  year: 2012
  end-page: 537
  ident: C13
  article-title: Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification
  publication-title: Comput. Environ. Urban Syst.
– volume: 19
  start-page: 235
  issue: 3
  year: 2014
  end-page: 249
  ident: C29
  article-title: Activity recognition with smartphone sensors
  publication-title: Tsinghua Sci. Technol.
– year: 2011
– start-page: 57
  year: 1995
  end-page: 64
  article-title: Weka: the Waikato environment for knowledge analysis
– start-page: 13
  year: 2013
  end-page: 26
  article-title: Accelerometer-based transportation mode detection on smartphones
– volume: 37
  start-page: 118
  year: 2013
  end-page: 130
  article-title: Transportation mode recognition using GPS and accelerometer data
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 19
  start-page: 235
  issue: 3
  year: 2014
  end-page: 249
  article-title: Activity recognition with smartphone sensors
  publication-title: Tsinghua Sci. Technol.
– start-page: 1
  year: 2010
  end-page: 11
  article-title: Comparative evaluation of algorithms for GPS data imputation
– volume: 41
  start-page: 1955
  issue: 12
  year: 2008
  end-page: 1959
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Adv. Space Res.
– volume: 16
  start-page: 2523
  issue: 16
  year: 2016
  end-page: 2541
  article-title: Context-aware Android applications through transportation mode detection techniques
  publication-title: Wirel. Commun. Mob. Comput.
– start-page: 21
  year: 2008
  end-page: 25
  article-title: Learning transportation mode from raw gps data for geographic applications on the web
– start-page: 259
  year: 2017
  end-page: 277
– year: 2001
– start-page: 44
  year: 2010
  end-page: 46
  article-title: Accelerometer based transportation mode recognition on mobile phone
– volume: 16
  start-page: 1324
  issue: 8
  year: 2016
  article-title: Transportation modes classification using sensors on smartphones
  publication-title: Sensors
– start-page: 2261
  year: 2016
  end-page: 2266
  article-title: Detecting the transportation mode for context-aware systems using smartphones
– volume: 53
  start-page: 76
  year: 2015
  end-page: 86
  article-title: Urban sensing: using smartphones for transportation mode classification
  publication-title: Comput. Environ. Urban Syst.
– volume: 36
  start-page: 526
  year: 2012
  end-page: 537
  article-title: Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification
  publication-title: Comput. Environ. Urban Syst.
– volume: 348
  start-page: 389
  issue: 1
  year: 1997
  end-page: 407
  article-title: Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods
  publication-title: Anal. Chim. Acta
– volume: 37
  start-page: 102
  year: 2013
  end-page: 117
  article-title: Vehicle classification using GPS data
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 16
  start-page: 716
  issue: 5
  year: 2016
  article-title: Travel mode detection with varying smartphone data collection frequencies
  publication-title: Sensors
– volume: 2
  start-page: 1
  year: 2014
  end-page: 8
  article-title: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms
  publication-title: Front. Public Health
– volume: 10
  start-page: 406
  issue: 6
  year: 2016
  end-page: 413
  article-title: Vehicle detection, counting and classification in various conditions
  publication-title: IET Intell. Transp. Syst.
– volume: 14
  start-page: 82
  issue: 1
  year: 2009
  end-page: 91
  article-title: An activity recognition system for mobile phones
  publication-title: Mobile Netw. Appl.
– year: 2014
– start-page: 1
  year: 2012
  end-page: 4
  article-title: Classification of physical activities using accelerometer signals
– start-page: 1
  year: 2016
  end-page: 4
  article-title: Transportation mode detection using kinetic energy harvesting wearables
– volume: 129
  start-page: 203
  year: 2016
  end-page: 216
  article-title: A new approach for automatic sleep scoring: combining Taguchi based complex-valued neural network and complex wavelet transform
  publication-title: Comput. Methods Programs Biomed.
– start-page: 11
  year: 2007
  end-page: 16
  article-title: Robust approach for estimating probabilities in Naive-Bayes classifier
– start-page: 25
  year: 2008
  end-page: 28
  article-title: Determining transportation mode on mobile phones
– start-page: 475
  year: 2016
  end-page: 482
  article-title: Learning transportation annotated mobility profiles from GPS data for context-aware mobile services
– year: 2002
– volume: 21
  start-page: 980
  issue: 3
  year: 2017
  end-page: 990
  article-title: Classification of human motions with smartwatch sensors
  publication-title: SDU J. Nat. Appl. Sci.
– start-page: 573
  year: 2012
  end-page: 576
  article-title: Transport mode detection with realistic smartphone sensor data
– volume: 6
  start-page: 13
  issue: 2
  year: 2010
  article-title: Using mobile phones to determine transportation modes
  publication-title: ACM Trans. Sensor Netw. (TOSN)
– year: 1995
– start-page: 11
  year: 2012
  end-page: 15
  article-title: Online human activity recognition on smart phones
– start-page: 54
  year: 2011
  end-page: 63
  article-title: Transportation mode detection using mobile phones and GIS information
– volume: 12
  start-page: 20
  issue: 1
  year: 2008
  end-page: 26
  article-title: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– year: 2015
– volume: 48
  start-page: 140
  issue: 9
  year: 2010
  end-page: 150
  article-title: A survey of mobile phone sensing
  publication-title: Commun. Mag.
– volume: 14
  start-page: 20843
  issue: 11
  year: 2014
  end-page: 20865
  article-title: Using smart phone sensors to detect transportation modes
  publication-title: Sensors
– ident: e_1_2_8_2_1
  doi: 10.1109/MCOM.2010.5560598
– ident: e_1_2_8_14_1
  doi: 10.1016/j.compenvurbsys.2012.06.001
– volume-title: Bayesian artificial intelligence
  year: 2011
  ident: e_1_2_8_35_1
– ident: e_1_2_8_34_1
  doi: 10.1007/978-3-540-77046-6_2
– ident: e_1_2_8_4_1
  doi: 10.1109/ISWC.2008.4911579
– ident: e_1_2_8_26_1
  doi: 10.1049/iet-its.2015.0157
– ident: e_1_2_8_23_1
  doi: 10.1109/SCC.2016.68
– volume: 348
  start-page: 389
  issue: 1
  year: 1997
  ident: e_1_2_8_36_1
  article-title: Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(97)00064-0
– ident: e_1_2_8_24_1
  doi: 10.1109/PERCOMW.2016.7457048
– ident: e_1_2_8_22_1
  doi: 10.3390/s16050716
– ident: e_1_2_8_33_1
– ident: e_1_2_8_11_1
  doi: 10.1109/SIU.2012.6204506
– volume-title: Introduction to GPS: the global positioning system
  year: 2002
  ident: e_1_2_8_28_1
– ident: e_1_2_8_25_1
  doi: 10.1109/TITB.2007.899496
– ident: e_1_2_8_40_1
– ident: e_1_2_8_18_1
  doi: 10.1016/j.compenvurbsys.2014.07.011
– ident: e_1_2_8_13_1
– volume: 6
  start-page: 13
  issue: 2
  year: 2010
  ident: e_1_2_8_20_1
  article-title: Using mobile phones to determine transportation modes
  publication-title: ACM Trans. Sensor Netw. (TOSN)
– start-page: 259
  volume-title: Advances in statistical methodologies and their application to real problems
  year: 2017
  ident: e_1_2_8_37_1
– volume: 21
  start-page: 980
  issue: 3
  year: 2017
  ident: e_1_2_8_6_1
  article-title: Classification of human motions with smartwatch sensors
  publication-title: SDU J. Nat. Appl. Sci.
– ident: e_1_2_8_30_1
  doi: 10.1109/TST.2014.6838194
– volume: 129
  start-page: 203
  year: 2016
  ident: e_1_2_8_42_1
  article-title: A new approach for automatic sleep scoring: combining Taguchi based complex-valued neural network and complex wavelet transform
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.01.001
– volume: 14
  start-page: 20843
  issue: 11
  year: 2014
  ident: e_1_2_8_19_1
  article-title: Using smart phone sensors to detect transportation modes
  publication-title: Sensors
  doi: 10.3390/s141120843
– ident: e_1_2_8_15_1
  doi: 10.1145/2517351.2517367
– volume-title: Artificial intelligence: a modern approach
  year: 1995
  ident: e_1_2_8_32_1
– ident: e_1_2_8_39_1
  doi: 10.1016/j.asr.2007.07.020
– ident: e_1_2_8_10_1
  doi: 10.1145/2093973.2093982
– ident: e_1_2_8_9_1
  doi: 10.1109/APWCS.2010.18
– ident: e_1_2_8_21_1
  doi: 10.1109/ITSC.2016.7795921
– ident: e_1_2_8_41_1
– volume: 37
  start-page: 102
  year: 2013
  ident: e_1_2_8_5_1
  article-title: Vehicle classification using GPS data
  publication-title: Transp. Res. C, Emerg. Technol.
  doi: 10.1016/j.trc.2013.09.015
– ident: e_1_2_8_38_1
– ident: e_1_2_8_3_1
  doi: 10.1002/wcm.2702
– ident: e_1_2_8_27_1
  doi: 10.3390/s16081324
– volume: 2
  start-page: 1
  year: 2014
  ident: e_1_2_8_17_1
  article-title: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2014.00036
– volume-title: Global positioning system theory and practice
  year: 2001
  ident: e_1_2_8_29_1
  doi: 10.1007/978-3-7091-6199-9
– ident: e_1_2_8_7_1
  doi: 10.1145/1367497.1367532
– ident: e_1_2_8_12_1
– volume-title: Practical guide to accelerometers
  year: 2011
  ident: e_1_2_8_31_1
– ident: e_1_2_8_8_1
  doi: 10.1007/s11036-008-0112-y
– ident: e_1_2_8_16_1
  doi: 10.1016/j.trc.2013.09.014
SSID ssj0055539
Score 2.22336
Snippet The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms accelerometer
Global Positioning System
GPS
gyroscope sensor
logistic regression classification
mobile phone
Research Article
smart phones
smartphone sensors
traffic engineering computing
transportation modes
SummonAdditionalLinks – databaseName: IET Digital Library (Open Access)
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aXrz4FuuLIOJBCG42m2z26KPFinqxxeJlySbZUpAqWv-_M5tdpSDVW8hONmEmj5lkZj5CTgoNsvQyYc6KkiVZJJmJfcJiW3hdKuWMxeDk-wd1M0xuR3L0Ex7tJmPEymDNjRvelvsQeYCu27APn9c8DoAkoN-eAwH78JjLlGM6QiGXSTtOUy5bpN2_vkMTK-zMUsoKWQxOTM5g3qrvV85ffjJ3Ti3D53nttTp-eutktdYb6UUQ9AZZ8tNNstZgMtB6iW6R5-vgOzf5oK8lnTWpyyv-U4S9gXosFNAJRb90T9H1fUxDKNDE0nc_Dr6xU2pRtUZfoqr5Nhn2uoOrG1bjJzArlM6YFq4sykgYXmif2tRzZRwXiY1M7FxsFdemlNyA1QAmtXRS6gLjRawrRBqVTuyQ1hTGsUuoMzzT1qUKA-Ok9wYofOYRpUMZnfkOiRpu5bZOLo4YFy959cidZDlwMAcG58hgTEgqO-Tsu8lbyKyxiPgU6xrZLyI8niPsdwf5Y_fhhyB_c2WHiEqUf_ebP_ae4steZUju_XcM-2QFyjr49xyQ1uz90x-C6jIrjuoZ-QUAdOvR
  priority: 102
  providerName: Institution of Engineering and Technology
Title Diagnosis of transportation modes on mobile phone using logistic regression classification
URI http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2017.0035
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2017.0035
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90vvjitzi_CCI-CMGmabr0cc4NFb9Ap-JLyVfHQKa4-f-bS9vJEBR8akkvTbnrNZfmd_cDONTS29KJhFrDC5pkkaAqdgmNjXaySFOrDCYnX9-k5_3k8lk8z0GnzoUp60NMf7ihZ4TvNTq40iULiQ9qvRGHbkLHDkuYMqxCyMU8LGCKLeL64uSu_hwLIQKdmJ8mGZWSJdOtzezkxy1mJqd5f3k2ZA1zTm8FlqpgkbRL667CnButwXJNxEAqv1yHl7MSMDcck7eCTOp65UHpBLlufDueaD8IQTC6I4h3H5Ay_2doyIcblIDYETEYTyOAKHTfgH6v-9A5pxVpAjU8lRmV3Ba6iLhiWrqWaTmWKst4YiIVWxublElVCKb8UsGvo4UVQmpMEjFW81ZUWL4JjZF_ji0gVrFMGttKMRtOOKe8hMscUnOkSmauCVGtrdxUFcWR2OI1DzvbSZZ7DeZewTkqGKuQiiYcT7u8l-U0fhM-wrbKqca_CR7MCF50H_L77s23QP5uiybwYMq_x83ve0_xaS-sHrf_1WsHFn27LBE-u9CYfHy6PR-8TPR-eDn3YaH92H_p--PF2dVt-wuil-02
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6qHvTiW6zPIOJBCG42m2326KOl1dpLWxUvIZtkpSBVbP3_ZvZRKYKCtyU72SwzmWQmmfkG4DSVXpZORNQantEoCQTVoYtoaFInszi22mBy8n0vbg-j2yfxVIObKhemwIeYHbihZuTrNSo4HkgXDmeEIJkjN6UThximDGEIuViAJbRu_NxeunwYPg-rFVkIkVcU8zslo1KyaHa7mVz8-Mjc_rTgX89brfm201qH1dJeJJeFgDeg5sabsFbVYiClam7B800RMzeakLeMTCvI8pzvBMvd-HZ8SP0gBOPRHcGQ9xdSpACNDPlwL0VM7JgYNKkxhijvvg3DVnNw3aZl3QRqeCwTKrnN0izgmqXSNUzDsVhbxiMT6NDa0MRM6kww7b0F70oLK4RMMU_E2JQ3gszyHVgc-__YBWI1S6SxjRgT4oRz2lO4xGF1jljLxNUhqLilTAkqjrUtXlV-uR0lynNQeQYrZDACkYo6nM-6vBeIGr8Rn2FbqVeT3whP5gg7zYHqN3vfBOrdZnXguSj_Hlf1W4_hVSt3IPf-1esYltuD-67qdnp3-7DiaWQR8HMAi9OPT3fobZlpelRO1S8k5-8n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90gvjitzg_g4gPQrBpmi59nLri5xB0Kr6ENEllIFO2-f-b68dkCAq-lfTSlEsud5fc_Q7gMJN-Lp2IqDU8p1ESCKpDF9HQZE7mcWy1weTk22580YuunsXzDJzVuTAlPsTkwA0lo9ivUcA_bF76mxFiZPbdmI4cQpgyRCHkYhbmhNdOQQPm2o-9l169IQshioJiXlEyKiWLJpebycmPj0ypp1n_etpoLbROugyLlblI2uX8rsCMG6zCUl2KgVSSuQYv52XIXH9E3nMyrhHLC7YTrHbj2_Eh84MQDEd3BCPeX0mZAdQ3ZOhey5DYATFoUWMIUdF9HXpp5-HsglZlE6jhsUyo5DbP8oBrlknXMi3HYm0Zj0ygQ2tDEzOpc8G0dxa8Jy2sEDLDNBFjM94Kcss3oDHw_7EJxGqWSGNbMebDCee0p3CJw-IcsZaJa0JQc0uZClMcS1u8qeJuO0qU56DyDFbIYMQhFU04nnT5KAE1fiM-wrZKrEa_ER5MEV52HtR9p_tNoPziaQIvpvLvcdV9-hSepoX_uPWvXvswf3eeqpvL7vU2LHgSWYb77EBjPPx0u96SGWd71Ur9Ap4o7kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+transportation+modes+on+mobile+phone+using+logistic+regression+classification&rft.jtitle=IET+software&rft.au=Ball%C4%B1%2C+Serkan&rft.au=Sa%C4%9Fba%C5%9F%2C+Ensar+Arif&rft.date=2018-04-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8814&rft.eissn=1751-8814&rft.volume=12&rft.issue=2&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1049%2Fiet-sen.2017.0035&rft.externalDBID=10.1049%252Fiet-sen.2017.0035&rft.externalDocID=SFW2BF00149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon