Diagnosis of transportation modes on mobile phone using logistic regression classification
The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose and global positioning system (GPS), accelerometer, and gyroscope sensor data were collected while the subjects were walking, running, biking,...
Saved in:
Published in | IET software Vol. 12; no. 2; pp. 142 - 151 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose and global positioning system (GPS), accelerometer, and gyroscope sensor data were collected while the subjects were walking, running, biking, and travelling by bus or by car. The application was running for over 8 h. Sensor data were tagged with 12 s intervals and 2500 patterns were obtained. Eleven features were selected from the data set and machine learning methods were applied to detect transportation modes using different sensor combinations. Performances of the methods were discussed in terms of accuracy ratios. Best results were obtained from GPS, accelerometer, and gyroscope sensor combination data using logistic regression method with 99.6% accuracy rate. |
---|---|
AbstractList | The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose and global positioning system (GPS), accelerometer, and gyroscope sensor data were collected while the subjects were walking, running, biking, and travelling by bus or by car. The application was running for over 8 h. Sensor data were tagged with 12 s intervals and 2500 patterns were obtained. Eleven features were selected from the data set and machine learning methods were applied to detect transportation modes using different sensor combinations. Performances of the methods were discussed in terms of accuracy ratios. Best results were obtained from GPS, accelerometer, and gyroscope sensor combination data using logistic regression method with 99.6% accuracy rate. |
Author | Sağbaş, Ensar Arif Ballı, Serkan |
Author_xml | – sequence: 1 givenname: Serkan orcidid: 0000-0002-4825-139X surname: Ballı fullname: Ballı, Serkan email: serkan@mu.edu.tr organization: Department of Information Systems Engineering, Faculty of Technology, Muğla Sıtkı Koçman University, 48000 Mugla, Turkey – sequence: 2 givenname: Ensar Arif surname: Sağbaş fullname: Sağbaş, Ensar Arif organization: Department of Information Systems Engineering, Faculty of Technology, Muğla Sıtkı Koçman University, 48000 Mugla, Turkey |
BookMark | eNqFkE1LAzEURYNUsFZ_gLvZupiaTCbz4U5rq4Wii1YENyGTjzFlmpRkivTfm3FERKSucgn3vMc7p2BgrJEAXCA4RjAtr7RsYy_NOIEoH0OIyREYopyguChQOvjOMDsBp96vISSE4HIIXu80q4312kdWRa1jxm-ta1mrrYk2Vsjw34VKNzLavoWl0c5rU0eNrbVvNY-crJ30vuvzhoWgNP_Ez8CxYo2X51_vCDzPpqvJQ7x4up9PbhYxx1lRxgUWqlIQM1QVMue5RBkTCKccskSIhGeoYIoghmEmK0wEIUVVZEnKRYVzqAQegbyfy5313klFue4PCOfohiJIO0U0KKJBEe0U0U5RINEvcuv0hrn9Qea6Z96Dkf3_AF3OXpLbGYQoLQMc93BXW9udM0HMwWWXf_Tn0xVdTh9_7NgKhT8AOpCfPA |
CitedBy_id | crossref_primary_10_1177_0020294018813692 crossref_primary_10_1007_s12647_024_00747_0 crossref_primary_10_21923_jesd_790845 crossref_primary_10_3390_s24227369 crossref_primary_10_1007_s12205_022_1281_0 crossref_primary_10_1016_j_ifacol_2021_06_043 crossref_primary_10_1109_JSEN_2021_3065848 crossref_primary_10_1155_2019_7482138 crossref_primary_10_1016_j_eswa_2022_116592 crossref_primary_10_1109_TITS_2022_3207198 crossref_primary_10_1002_cpe_8089 crossref_primary_10_1007_s13369_021_06187_1 crossref_primary_10_1080_15472450_2022_2141118 crossref_primary_10_1371_journal_pone_0248622 crossref_primary_10_3390_s22124397 crossref_primary_10_21541_apjess_1105362 crossref_primary_10_3390_ma15051701 |
Cites_doi | 10.1109/MCOM.2010.5560598 10.1016/j.compenvurbsys.2012.06.001 10.1007/978-3-540-77046-6_2 10.1109/ISWC.2008.4911579 10.1049/iet-its.2015.0157 10.1109/SCC.2016.68 10.1016/S0003-2670(97)00064-0 10.1109/PERCOMW.2016.7457048 10.3390/s16050716 10.1109/SIU.2012.6204506 10.1109/TITB.2007.899496 10.1016/j.compenvurbsys.2014.07.011 10.1109/TST.2014.6838194 10.1016/j.cmpb.2016.01.001 10.3390/s141120843 10.1145/2517351.2517367 10.1016/j.asr.2007.07.020 10.1145/2093973.2093982 10.1109/APWCS.2010.18 10.1109/ITSC.2016.7795921 10.1016/j.trc.2013.09.015 10.1002/wcm.2702 10.3390/s16081324 10.3389/fpubh.2014.00036 10.1007/978-3-7091-6199-9 10.1145/1367497.1367532 10.1007/s11036-008-0112-y 10.1016/j.trc.2013.09.014 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2018 The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2018 The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-sen.2017.0035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1751-8814 |
EndPage | 151 |
ExternalDocumentID | 10_1049_iet_sen_2017_0035 SFW2BF00149 |
Genre | article |
GroupedDBID | 0R 24P 29I 3V. 4.4 4IJ 5GY 6IK 8AL 8FE 8FG 8VB AAJGR ABJCF ABPTK ABUWG ACDCL ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD ESX GNUQQ GOZPB GRPMH HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LOTEE LXI M0N M43 M7S MS NADUK NXXTH O9- OCL P62 PQEST PQQKQ PQUKI PROAC PTHSS QWB RIE RNS RUI U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 2QL 96U AAHHS AAHJG AAYOK ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AIWBW AJBDE ALUQN AVUZU CCPQU F8P GROUPED_DOAJ HZ~ IAO ITC K1G MCNEO MS~ OK1 AAYXX CITATION IDLOA PHGZM PHGZT |
ID | FETCH-LOGICAL-c3689-83dfbf03a1b8e7c7e16ad134c0a2dd2c618af51a306eb35d558b8624cdb370fd3 |
IEDL.DBID | 24P |
ISSN | 1751-8806 1751-8814 |
IngestDate | Thu Apr 24 23:12:18 EDT 2025 Tue Jul 01 02:13:45 EDT 2025 Wed Jan 22 16:32:31 EST 2025 Thu May 09 18:05:10 EDT 2019 Tue Jan 05 21:45:50 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | transportation modes smartphone sensors mobile phone logistic regression classification accelerometer smart phones traffic engineering computing GPS gyroscope sensor Global Positioning System |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3689-83dfbf03a1b8e7c7e16ad134c0a2dd2c618af51a306eb35d558b8624cdb370fd3 |
ORCID | 0000-0002-4825-139X |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1049_iet_sen_2017_0035 wiley_primary_10_1049_iet_sen_2017_0035_SFW2BF00149 crossref_primary_10_1049_iet_sen_2017_0035 iet_journals_10_1049_iet_sen_2017_0035 |
ProviderPackageCode | RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180400 April 2018 2018-04-00 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 4 year: 2018 text: 20180400 |
PublicationDecade | 2010 |
PublicationTitle | IET software |
PublicationYear | 2018 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Bedogni, L.; Di Felice, M.; Bononi, L. (C2) 2016; 16 Feng, T.; Timmermans, H.J.P. (C15) 2013; 37 Ellis, K.; Godbole, S.; Marshall, S. (C16) 2014; 2 Xia, H.; Qiao, Y.; Jian, J. (C18) 2014; 14 Bolbol, A.; Cheng, T.; Tsapakis, I. (C13) 2012; 36 Shafique, M.A.; Hato, E. (C21) 2016; 16 Alsberg, B.K.; Goodacre, R.; Rowland, J.J. (C35) 1997; 348 Ermes, M.; Pärkkä, J.; Mäntyjärvi, J. (C24) 2008; 12 Kamkar, S.; Safabakhsh, R. (C25) 2016; 10 Lane, N.D.; Miluzzo, E.; Lu, H. (C1) 2010; 48 Győrbíró, N.; Fábián, Á.; Hományi, G. (C7) 2009; 14 Zhao, Y.; Zhang, Y. (C38) 2008; 41 Peker, M. (C41) 2016; 129 Sun, Z.; Ban, X.J. (C4) 2013; 37 Fang, S.H.; Liao, H.H.; Fei, Y.X. (C26) 2016; 16 Ballı, S.; Sağbaş, E.A. (C5) 2017; 21 Shin, D.; Aliaga, D.; Tunçer, B. (C17) 2015; 53 Su, X.; Tong, H.; Ji, P. (C29) 2014; 19 Reddy, S.; Mun, M.; Burke, J. (C19) 2010; 6 2012 2011 2010 2016; 129 2015; 53 2017; 21 2016; 10 2008 2008; 12 2007 1995 2002 2012; 36 2016; 16 2009; 14 2013; 37 1997; 348 2010; 48 2014; 2 2001 2014; 14 2017 2016 2014; 19 2015 2014 2008; 41 2013 2010; 6 e_1_2_8_24_1 Hofmann-Wellenhof B. (e_1_2_8_29_1) 2001 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Korb K.B. (e_1_2_8_35_1) 2011 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 Russell S. (e_1_2_8_32_1) 1995 Balli S. (e_1_2_8_37_1) 2017 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 El-Rabbany A. (e_1_2_8_28_1) 2002 Alsberg B.K. (e_1_2_8_36_1) 1997; 348 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 Reddy S. (e_1_2_8_20_1) 2010; 6 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_13_1 Sun Z. (e_1_2_8_5_1) 2013; 37 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 Ballı S. (e_1_2_8_6_1) 2017; 21 Ellis K. (e_1_2_8_17_1) 2014; 2 Peker M. (e_1_2_8_42_1) 2016; 129 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Sensr Inc. (e_1_2_8_31_1) 2011 Xia H. (e_1_2_8_19_1) 2014; 14 e_1_2_8_30_1 |
References_xml | – volume: 10 start-page: 406 issue: 6 year: 2016 end-page: 413 ident: C25 article-title: Vehicle detection, counting and classification in various conditions publication-title: IET Intell. Transp. Syst. – volume: 21 start-page: 980 issue: 3 year: 2017 end-page: 990 ident: C5 article-title: Classification of human motions with smartwatch sensors publication-title: SDU J. Nat. Appl. Sci. – volume: 129 start-page: 203 year: 2016 end-page: 216 ident: C41 article-title: A new approach for automatic sleep scoring: combining Taguchi based complex-valued neural network and complex wavelet transform publication-title: Comput. Methods Programs Biomed. – volume: 16 start-page: 2523 issue: 16 year: 2016 end-page: 2541 ident: C2 article-title: Context-aware Android applications through transportation mode detection techniques publication-title: Wirel. Commun. Mob. Comput. – volume: 48 start-page: 140 issue: 9 year: 2010 end-page: 150 ident: C1 article-title: A survey of mobile phone sensing publication-title: Commun. Mag. – volume: 12 start-page: 20 issue: 1 year: 2008 end-page: 26 ident: C24 article-title: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 14 start-page: 82 issue: 1 year: 2009 end-page: 91 ident: C7 article-title: An activity recognition system for mobile phones publication-title: Mobile Netw. Appl. – volume: 348 start-page: 389 issue: 1 year: 1997 end-page: 407 ident: C35 article-title: Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods publication-title: Anal. Chim. Acta – volume: 14 start-page: 20843 issue: 11 year: 2014 end-page: 20865 ident: C18 article-title: Using smart phone sensors to detect transportation modes publication-title: Sensors – volume: 16 start-page: 716 issue: 5 year: 2016 ident: C21 article-title: Travel mode detection with varying smartphone data collection frequencies publication-title: Sensors – volume: 37 start-page: 102 year: 2013 end-page: 117 ident: C4 article-title: Vehicle classification using GPS data publication-title: Transp. Res. C, Emerg. Technol. – volume: 16 start-page: 1324 issue: 8 year: 2016 ident: C26 article-title: Transportation modes classification using sensors on smartphones publication-title: Sensors – volume: 41 start-page: 1955 issue: 12 year: 2008 end-page: 1959 ident: C38 article-title: Comparison of decision tree methods for finding active objects publication-title: Adv. Space Res. – volume: 2 start-page: 1 year: 2014 end-page: 8 ident: C16 article-title: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms publication-title: Front. Public Health – volume: 53 start-page: 76 year: 2015 end-page: 86 ident: C17 article-title: Urban sensing: using smartphones for transportation mode classification publication-title: Comput. Environ. Urban Syst. – volume: 6 start-page: 13 issue: 2 year: 2010 ident: C19 article-title: Using mobile phones to determine transportation modes publication-title: ACM Trans. Sensor Netw. (TOSN) – volume: 37 start-page: 118 year: 2013 end-page: 130 ident: C15 article-title: Transportation mode recognition using GPS and accelerometer data publication-title: Transp. Res. C, Emerg. Technol. – volume: 36 start-page: 526 year: 2012 end-page: 537 ident: C13 article-title: Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification publication-title: Comput. Environ. Urban Syst. – volume: 19 start-page: 235 issue: 3 year: 2014 end-page: 249 ident: C29 article-title: Activity recognition with smartphone sensors publication-title: Tsinghua Sci. Technol. – year: 2011 – start-page: 57 year: 1995 end-page: 64 article-title: Weka: the Waikato environment for knowledge analysis – start-page: 13 year: 2013 end-page: 26 article-title: Accelerometer-based transportation mode detection on smartphones – volume: 37 start-page: 118 year: 2013 end-page: 130 article-title: Transportation mode recognition using GPS and accelerometer data publication-title: Transp. Res. C, Emerg. Technol. – volume: 19 start-page: 235 issue: 3 year: 2014 end-page: 249 article-title: Activity recognition with smartphone sensors publication-title: Tsinghua Sci. Technol. – start-page: 1 year: 2010 end-page: 11 article-title: Comparative evaluation of algorithms for GPS data imputation – volume: 41 start-page: 1955 issue: 12 year: 2008 end-page: 1959 article-title: Comparison of decision tree methods for finding active objects publication-title: Adv. Space Res. – volume: 16 start-page: 2523 issue: 16 year: 2016 end-page: 2541 article-title: Context-aware Android applications through transportation mode detection techniques publication-title: Wirel. Commun. Mob. Comput. – start-page: 21 year: 2008 end-page: 25 article-title: Learning transportation mode from raw gps data for geographic applications on the web – start-page: 259 year: 2017 end-page: 277 – year: 2001 – start-page: 44 year: 2010 end-page: 46 article-title: Accelerometer based transportation mode recognition on mobile phone – volume: 16 start-page: 1324 issue: 8 year: 2016 article-title: Transportation modes classification using sensors on smartphones publication-title: Sensors – start-page: 2261 year: 2016 end-page: 2266 article-title: Detecting the transportation mode for context-aware systems using smartphones – volume: 53 start-page: 76 year: 2015 end-page: 86 article-title: Urban sensing: using smartphones for transportation mode classification publication-title: Comput. Environ. Urban Syst. – volume: 36 start-page: 526 year: 2012 end-page: 537 article-title: Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification publication-title: Comput. Environ. Urban Syst. – volume: 348 start-page: 389 issue: 1 year: 1997 end-page: 407 article-title: Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods publication-title: Anal. Chim. Acta – volume: 37 start-page: 102 year: 2013 end-page: 117 article-title: Vehicle classification using GPS data publication-title: Transp. Res. C, Emerg. Technol. – volume: 16 start-page: 716 issue: 5 year: 2016 article-title: Travel mode detection with varying smartphone data collection frequencies publication-title: Sensors – volume: 2 start-page: 1 year: 2014 end-page: 8 article-title: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms publication-title: Front. Public Health – volume: 10 start-page: 406 issue: 6 year: 2016 end-page: 413 article-title: Vehicle detection, counting and classification in various conditions publication-title: IET Intell. Transp. Syst. – volume: 14 start-page: 82 issue: 1 year: 2009 end-page: 91 article-title: An activity recognition system for mobile phones publication-title: Mobile Netw. Appl. – year: 2014 – start-page: 1 year: 2012 end-page: 4 article-title: Classification of physical activities using accelerometer signals – start-page: 1 year: 2016 end-page: 4 article-title: Transportation mode detection using kinetic energy harvesting wearables – volume: 129 start-page: 203 year: 2016 end-page: 216 article-title: A new approach for automatic sleep scoring: combining Taguchi based complex-valued neural network and complex wavelet transform publication-title: Comput. Methods Programs Biomed. – start-page: 11 year: 2007 end-page: 16 article-title: Robust approach for estimating probabilities in Naive-Bayes classifier – start-page: 25 year: 2008 end-page: 28 article-title: Determining transportation mode on mobile phones – start-page: 475 year: 2016 end-page: 482 article-title: Learning transportation annotated mobility profiles from GPS data for context-aware mobile services – year: 2002 – volume: 21 start-page: 980 issue: 3 year: 2017 end-page: 990 article-title: Classification of human motions with smartwatch sensors publication-title: SDU J. Nat. Appl. Sci. – start-page: 573 year: 2012 end-page: 576 article-title: Transport mode detection with realistic smartphone sensor data – volume: 6 start-page: 13 issue: 2 year: 2010 article-title: Using mobile phones to determine transportation modes publication-title: ACM Trans. Sensor Netw. (TOSN) – year: 1995 – start-page: 11 year: 2012 end-page: 15 article-title: Online human activity recognition on smart phones – start-page: 54 year: 2011 end-page: 63 article-title: Transportation mode detection using mobile phones and GIS information – volume: 12 start-page: 20 issue: 1 year: 2008 end-page: 26 article-title: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions publication-title: IEEE Trans. Inf. Technol. Biomed. – year: 2015 – volume: 48 start-page: 140 issue: 9 year: 2010 end-page: 150 article-title: A survey of mobile phone sensing publication-title: Commun. Mag. – volume: 14 start-page: 20843 issue: 11 year: 2014 end-page: 20865 article-title: Using smart phone sensors to detect transportation modes publication-title: Sensors – ident: e_1_2_8_2_1 doi: 10.1109/MCOM.2010.5560598 – ident: e_1_2_8_14_1 doi: 10.1016/j.compenvurbsys.2012.06.001 – volume-title: Bayesian artificial intelligence year: 2011 ident: e_1_2_8_35_1 – ident: e_1_2_8_34_1 doi: 10.1007/978-3-540-77046-6_2 – ident: e_1_2_8_4_1 doi: 10.1109/ISWC.2008.4911579 – ident: e_1_2_8_26_1 doi: 10.1049/iet-its.2015.0157 – ident: e_1_2_8_23_1 doi: 10.1109/SCC.2016.68 – volume: 348 start-page: 389 issue: 1 year: 1997 ident: e_1_2_8_36_1 article-title: Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(97)00064-0 – ident: e_1_2_8_24_1 doi: 10.1109/PERCOMW.2016.7457048 – ident: e_1_2_8_22_1 doi: 10.3390/s16050716 – ident: e_1_2_8_33_1 – ident: e_1_2_8_11_1 doi: 10.1109/SIU.2012.6204506 – volume-title: Introduction to GPS: the global positioning system year: 2002 ident: e_1_2_8_28_1 – ident: e_1_2_8_25_1 doi: 10.1109/TITB.2007.899496 – ident: e_1_2_8_40_1 – ident: e_1_2_8_18_1 doi: 10.1016/j.compenvurbsys.2014.07.011 – ident: e_1_2_8_13_1 – volume: 6 start-page: 13 issue: 2 year: 2010 ident: e_1_2_8_20_1 article-title: Using mobile phones to determine transportation modes publication-title: ACM Trans. Sensor Netw. (TOSN) – start-page: 259 volume-title: Advances in statistical methodologies and their application to real problems year: 2017 ident: e_1_2_8_37_1 – volume: 21 start-page: 980 issue: 3 year: 2017 ident: e_1_2_8_6_1 article-title: Classification of human motions with smartwatch sensors publication-title: SDU J. Nat. Appl. Sci. – ident: e_1_2_8_30_1 doi: 10.1109/TST.2014.6838194 – volume: 129 start-page: 203 year: 2016 ident: e_1_2_8_42_1 article-title: A new approach for automatic sleep scoring: combining Taguchi based complex-valued neural network and complex wavelet transform publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.01.001 – volume: 14 start-page: 20843 issue: 11 year: 2014 ident: e_1_2_8_19_1 article-title: Using smart phone sensors to detect transportation modes publication-title: Sensors doi: 10.3390/s141120843 – ident: e_1_2_8_15_1 doi: 10.1145/2517351.2517367 – volume-title: Artificial intelligence: a modern approach year: 1995 ident: e_1_2_8_32_1 – ident: e_1_2_8_39_1 doi: 10.1016/j.asr.2007.07.020 – ident: e_1_2_8_10_1 doi: 10.1145/2093973.2093982 – ident: e_1_2_8_9_1 doi: 10.1109/APWCS.2010.18 – ident: e_1_2_8_21_1 doi: 10.1109/ITSC.2016.7795921 – ident: e_1_2_8_41_1 – volume: 37 start-page: 102 year: 2013 ident: e_1_2_8_5_1 article-title: Vehicle classification using GPS data publication-title: Transp. Res. C, Emerg. Technol. doi: 10.1016/j.trc.2013.09.015 – ident: e_1_2_8_38_1 – ident: e_1_2_8_3_1 doi: 10.1002/wcm.2702 – ident: e_1_2_8_27_1 doi: 10.3390/s16081324 – volume: 2 start-page: 1 year: 2014 ident: e_1_2_8_17_1 article-title: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms publication-title: Front. Public Health doi: 10.3389/fpubh.2014.00036 – volume-title: Global positioning system theory and practice year: 2001 ident: e_1_2_8_29_1 doi: 10.1007/978-3-7091-6199-9 – ident: e_1_2_8_7_1 doi: 10.1145/1367497.1367532 – ident: e_1_2_8_12_1 – volume-title: Practical guide to accelerometers year: 2011 ident: e_1_2_8_31_1 – ident: e_1_2_8_8_1 doi: 10.1007/s11036-008-0112-y – ident: e_1_2_8_16_1 doi: 10.1016/j.trc.2013.09.014 |
SSID | ssj0055539 |
Score | 2.22336 |
Snippet | The aim of this study is to detect transportation modes of people by using smartphone sensors. Therefore, a mobile application was developed for this purpose... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | accelerometer Global Positioning System GPS gyroscope sensor logistic regression classification mobile phone Research Article smart phones smartphone sensors traffic engineering computing transportation modes |
SummonAdditionalLinks | – databaseName: IET Digital Library (Open Access) dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aXrz4FuuLIOJBCG42m2z26KPFinqxxeJlySbZUpAqWv-_M5tdpSDVW8hONmEmj5lkZj5CTgoNsvQyYc6KkiVZJJmJfcJiW3hdKuWMxeDk-wd1M0xuR3L0Ex7tJmPEymDNjRvelvsQeYCu27APn9c8DoAkoN-eAwH78JjLlGM6QiGXSTtOUy5bpN2_vkMTK-zMUsoKWQxOTM5g3qrvV85ffjJ3Ti3D53nttTp-eutktdYb6UUQ9AZZ8tNNstZgMtB6iW6R5-vgOzf5oK8lnTWpyyv-U4S9gXosFNAJRb90T9H1fUxDKNDE0nc_Dr6xU2pRtUZfoqr5Nhn2uoOrG1bjJzArlM6YFq4sykgYXmif2tRzZRwXiY1M7FxsFdemlNyA1QAmtXRS6gLjRawrRBqVTuyQ1hTGsUuoMzzT1qUKA-Ok9wYofOYRpUMZnfkOiRpu5bZOLo4YFy959cidZDlwMAcG58hgTEgqO-Tsu8lbyKyxiPgU6xrZLyI8niPsdwf5Y_fhhyB_c2WHiEqUf_ebP_ae4steZUju_XcM-2QFyjr49xyQ1uz90x-C6jIrjuoZ-QUAdOvR priority: 102 providerName: Institution of Engineering and Technology |
Title | Diagnosis of transportation modes on mobile phone using logistic regression classification |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2017.0035 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2017.0035 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90vvjitzi_CCI-CMGmabr0cc4NFb9Ap-JLyVfHQKa4-f-bS9vJEBR8akkvTbnrNZfmd_cDONTS29KJhFrDC5pkkaAqdgmNjXaySFOrDCYnX9-k5_3k8lk8z0GnzoUp60NMf7ihZ4TvNTq40iULiQ9qvRGHbkLHDkuYMqxCyMU8LGCKLeL64uSu_hwLIQKdmJ8mGZWSJdOtzezkxy1mJqd5f3k2ZA1zTm8FlqpgkbRL667CnButwXJNxEAqv1yHl7MSMDcck7eCTOp65UHpBLlufDueaD8IQTC6I4h3H5Ay_2doyIcblIDYETEYTyOAKHTfgH6v-9A5pxVpAjU8lRmV3Ba6iLhiWrqWaTmWKst4YiIVWxublElVCKb8UsGvo4UVQmpMEjFW81ZUWL4JjZF_ji0gVrFMGttKMRtOOKe8hMscUnOkSmauCVGtrdxUFcWR2OI1DzvbSZZ7DeZewTkqGKuQiiYcT7u8l-U0fhM-wrbKqca_CR7MCF50H_L77s23QP5uiybwYMq_x83ve0_xaS-sHrf_1WsHFn27LBE-u9CYfHy6PR-8TPR-eDn3YaH92H_p--PF2dVt-wuil-02 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6qHvTiW6zPIOJBCG42m2326KOl1dpLWxUvIZtkpSBVbP3_ZvZRKYKCtyU72SwzmWQmmfkG4DSVXpZORNQantEoCQTVoYtoaFInszi22mBy8n0vbg-j2yfxVIObKhemwIeYHbihZuTrNSo4HkgXDmeEIJkjN6UThximDGEIuViAJbRu_NxeunwYPg-rFVkIkVcU8zslo1KyaHa7mVz8-Mjc_rTgX89brfm201qH1dJeJJeFgDeg5sabsFbVYiClam7B800RMzeakLeMTCvI8pzvBMvd-HZ8SP0gBOPRHcGQ9xdSpACNDPlwL0VM7JgYNKkxhijvvg3DVnNw3aZl3QRqeCwTKrnN0izgmqXSNUzDsVhbxiMT6NDa0MRM6kww7b0F70oLK4RMMU_E2JQ3gszyHVgc-__YBWI1S6SxjRgT4oRz2lO4xGF1jljLxNUhqLilTAkqjrUtXlV-uR0lynNQeQYrZDACkYo6nM-6vBeIGr8Rn2FbqVeT3whP5gg7zYHqN3vfBOrdZnXguSj_Hlf1W4_hVSt3IPf-1esYltuD-67qdnp3-7DiaWQR8HMAi9OPT3fobZlpelRO1S8k5-8n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90gvjitzg_g4gPQrBpmi59nLri5xB0Kr6ENEllIFO2-f-b68dkCAq-lfTSlEsud5fc_Q7gMJN-Lp2IqDU8p1ESCKpDF9HQZE7mcWy1weTk22580YuunsXzDJzVuTAlPsTkwA0lo9ivUcA_bF76mxFiZPbdmI4cQpgyRCHkYhbmhNdOQQPm2o-9l169IQshioJiXlEyKiWLJpebycmPj0ypp1n_etpoLbROugyLlblI2uX8rsCMG6zCUl2KgVSSuQYv52XIXH9E3nMyrhHLC7YTrHbj2_Eh84MQDEd3BCPeX0mZAdQ3ZOhey5DYATFoUWMIUdF9HXpp5-HsglZlE6jhsUyo5DbP8oBrlknXMi3HYm0Zj0ygQ2tDEzOpc8G0dxa8Jy2sEDLDNBFjM94Kcss3oDHw_7EJxGqWSGNbMebDCee0p3CJw-IcsZaJa0JQc0uZClMcS1u8qeJuO0qU56DyDFbIYMQhFU04nnT5KAE1fiM-wrZKrEa_ER5MEV52HtR9p_tNoPziaQIvpvLvcdV9-hSepoX_uPWvXvswf3eeqpvL7vU2LHgSWYb77EBjPPx0u96SGWd71Ur9Ap4o7kc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+transportation+modes+on+mobile+phone+using+logistic+regression+classification&rft.jtitle=IET+software&rft.au=Ball%C4%B1%2C+Serkan&rft.au=Sa%C4%9Fba%C5%9F%2C+Ensar+Arif&rft.date=2018-04-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8814&rft.eissn=1751-8814&rft.volume=12&rft.issue=2&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1049%2Fiet-sen.2017.0035&rft.externalDBID=10.1049%252Fiet-sen.2017.0035&rft.externalDocID=SFW2BF00149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon |