Fabrication of micro-meltblown filtration media using parallel plate die design

ABSTRACT Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes substituting the center rectangular slot of the sheet die. While this prevalent technology has met with considerable success, an economic...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 133; no. 7; pp. np - n/a
Main Authors Hassan, Mohammad Abouelreesh, Khan, Saad A., Pourdeyhimi, Behnam
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 15.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes substituting the center rectangular slot of the sheet die. While this prevalent technology has met with considerable success, an economical, facile design would be desirable. In this study a new parallel plate die concept to fabricate micro‐meltblown fibers that offers simplicity, ease of use, and low cost was examined. The new die concept had parallel plates forming channels for polymer melt to flow through with a set of air holes surrounding them. This die design produced meltblown fibrous media with fibers in the range of 3–10 μm with pore size between 20 and 60 microns. The underlying mechanisms leading to such large fiber size formation and its implication in air filtration performance has been discussed. While conventional meltblown die generates fibers of smaller diameter and webs with higher filtration efficiency than the parallel plate geometry, design modifications could enhance the parallel plate meltblown die performance and make it a viable alternative. These die adaptations that include reducing air flow resistance, increasing the number of air nozzles around the polymer nozzles, recessing the polymer spinnerets above the die face, and having inclined air channels to increase the drag force on the fibers has been discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 42998.
AbstractList Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes substituting the center rectangular slot of the sheet die. While this prevalent technology has met with considerable success, an economical, facile design would be desirable. In this study a new parallel plate die concept to fabricate micro-meltblown fibers that offers simplicity, ease of use, and low cost was examined. The new die concept had parallel plates forming channels for polymer melt to flow through with a set of air holes surrounding them. This die design produced meltblown fibrous media with fibers in the range of 3-10 mu m with pore size between 20 and 60 microns. The underlying mechanisms leading to such large fiber size formation and its implication in air filtration performance has been discussed. While conventional meltblown die generates fibers of smaller diameter and webs with higher filtration efficiency than the parallel plate geometry, design modifications could enhance the parallel plate meltblown die performance and make it a viable alternative. These die adaptations that include reducing air flow resistance, increasing the number of air nozzles around the polymer nozzles, recessing the polymer spinnerets above the die face, and having inclined air channels to increase the drag force on the fibers has been discussed. J. Appl. Polym. Sci. 2016, 133, 42998.
Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes substituting the center rectangular slot of the sheet die. While this prevalent technology has met with considerable success, an economical, facile design would be desirable. In this study a new parallel plate die concept to fabricate micro-meltblown fibers that offers simplicity, ease of use, and low cost was examined. The new die concept had parallel plates forming channels for polymer melt to flow through with a set of air holes surrounding them. This die design produced meltblown fibrous media with fibers in the range of 3-10 µm with pore size between 20 and 60 microns. The underlying mechanisms leading to such large fiber size formation and its implication in air filtration performance has been discussed. While conventional meltblown die generates fibers of smaller diameter and webs with higher filtration efficiency than the parallel plate geometry, design modifications could enhance the parallel plate meltblown die performance and make it a viable alternative. These die adaptations that include reducing air flow resistance, increasing the number of air nozzles around the polymer nozzles, recessing the polymer spinnerets above the die face, and having inclined air channels to increase the drag force on the fibers has been discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 42998.
ABSTRACT Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes substituting the center rectangular slot of the sheet die. While this prevalent technology has met with considerable success, an economical, facile design would be desirable. In this study a new parallel plate die concept to fabricate micro‐meltblown fibers that offers simplicity, ease of use, and low cost was examined. The new die concept had parallel plates forming channels for polymer melt to flow through with a set of air holes surrounding them. This die design produced meltblown fibrous media with fibers in the range of 3–10 μm with pore size between 20 and 60 microns. The underlying mechanisms leading to such large fiber size formation and its implication in air filtration performance has been discussed. While conventional meltblown die generates fibers of smaller diameter and webs with higher filtration efficiency than the parallel plate geometry, design modifications could enhance the parallel plate meltblown die performance and make it a viable alternative. These die adaptations that include reducing air flow resistance, increasing the number of air nozzles around the polymer nozzles, recessing the polymer spinnerets above the die face, and having inclined air channels to increase the drag force on the fibers has been discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 42998.
ABSTRACT Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes substituting the center rectangular slot of the sheet die. While this prevalent technology has met with considerable success, an economical, facile design would be desirable. In this study a new parallel plate die concept to fabricate micro‐meltblown fibers that offers simplicity, ease of use, and low cost was examined. The new die concept had parallel plates forming channels for polymer melt to flow through with a set of air holes surrounding them. This die design produced meltblown fibrous media with fibers in the range of 3–10 μm with pore size between 20 and 60 microns. The underlying mechanisms leading to such large fiber size formation and its implication in air filtration performance has been discussed. While conventional meltblown die generates fibers of smaller diameter and webs with higher filtration efficiency than the parallel plate geometry, design modifications could enhance the parallel plate meltblown die performance and make it a viable alternative. These die adaptations that include reducing air flow resistance, increasing the number of air nozzles around the polymer nozzles, recessing the polymer spinnerets above the die face, and having inclined air channels to increase the drag force on the fibers has been discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 42998.
Author Hassan, Mohammad Abouelreesh
Khan, Saad A.
Pourdeyhimi, Behnam
Author_xml – sequence: 1
  givenname: Mohammad Abouelreesh
  surname: Hassan
  fullname: Hassan, Mohammad Abouelreesh
  organization: Department of Chemical & Biomolecular Engineering, North Carolina State University, North Carolina, 27606, Raleigh
– sequence: 2
  givenname: Saad A.
  surname: Khan
  fullname: Khan, Saad A.
  email: khan@eos.ncsu.edu
  organization: Department of Chemical & Biomolecular Engineering, North Carolina State University, North Carolina, 27606, Raleigh
– sequence: 3
  givenname: Behnam
  surname: Pourdeyhimi
  fullname: Pourdeyhimi, Behnam
  email: khan@eos.ncsu.edu
  organization: The Nonwovens Institute, North Carolina State University, North Carolina, 27606, Raleigh
BookMark eNp10Mtq3DAUBmBRUugk7aJvYMimXTjRxbp4GUJnEshloBMK3Yhj-zgokS-VPEzm7aPUTRaBLoQW5_uFzn9IDvqhR0K-MnrCKOWnMI4nBS9L84EsGC11XihuDsgizVhuylJ-IocxPlDKmKRqQW6XUAVXw-SGPhvarHN1GPIO_VT5YddnrfNTmKcdNg6ybXT9fTZCAO_RZ6OHCbPGpYPR3fefyccWfMQv_-4jcrf8sTm_yK9uV5fnZ1d5LZQxeYOMS0Ru6lZrpTlvQXNRNaIyIOsGpKKmYgWvWcVA0IqpFkpatKgUMJRMHJFv87tjGP5sMU62c7FG76HHYRst09pQrgyliR6_ow_DNvTpd0kJUUijCp7U91ml_WMM2NoxuA7C3jJqX6q1qVr7t9pkT2e7cx73_4f2bL1-TeRzwsUJn94SEB6t0kJL--tmZTdyWVz_Xq_sT_EMyr-LbQ
CODEN JAPNAB
CitedBy_id crossref_primary_10_1002_aesr_202100005
crossref_primary_10_1016_j_promfg_2021_06_017
crossref_primary_10_1007_s12221_021_9155_5
crossref_primary_10_1021_acsapm_0c00179
crossref_primary_10_1021_acs_iecr_9b01694
crossref_primary_10_1007_s12221_021_0809_0
crossref_primary_10_1021_acs_iecr_5b04020
crossref_primary_10_1016_j_seppur_2023_124668
Cites_doi 10.1021/ie00084a021
10.1021/ie200836a
10.1021/ie202501u
10.1021/ie0505864
10.1021/ie960074c
10.1080/02786820802249133
10.1021/ie030767a
10.1021/ie030457s
10.1021/ie030517u
10.1021/ie970145n
10.1016/j.memsci.2012.09.050
10.1021/ie00024a020
10.1016/j.polymer.2007.04.005
10.1016/j.jaerosci.2007.12.003
10.1021/ie020366f
10.1016/0032-3861(92)90764-N
10.1021/ie040043e
10.1016/j.ces.2006.07.022
10.1021/ie980219a
10.1002/aic.690360203
10.3390/s8010500
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.42998
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 3867961321
10_1002_app_42998
APP42998
ark_67375_WNG_T5F4MZPG_S
Genre article
GrantInformation_xml – fundername: Nowovens Institute (NWI) of North Carolina State University
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c3688-de125ee28cf776722fa723bd3b8a5cda5608b142c1b1a30b16fa904fe66a1e513
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Aug 16 01:36:22 EDT 2024
Fri Sep 13 01:30:59 EDT 2024
Fri Aug 23 04:06:58 EDT 2024
Sat Aug 24 01:15:25 EDT 2024
Wed Jan 17 04:59:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3688-de125ee28cf776722fa723bd3b8a5cda5608b142c1b1a30b16fa904fe66a1e513
Notes istex:AAC261B8985EE8A9B7EE0800F135BE2FC04D872F
ArticleID:APP42998
Nowovens Institute (NWI) of North Carolina State University
ark:/67375/WNG-T5F4MZPG-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1733458642
PQPubID 1006379
PageCount 9
ParticipantIDs proquest_miscellaneous_1778026800
proquest_journals_1733458642
crossref_primary_10_1002_app_42998
wiley_primary_10_1002_app_42998_APP42998
istex_primary_ark_67375_WNG_T5F4MZPG_S
PublicationCentury 2000
PublicationDate February 15, 2016
PublicationDateYYYYMMDD 2016-02-15
PublicationDate_xml – month: 02
  year: 2016
  text: February 15, 2016
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationTitleAlternate J. Appl. Polym. Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Harpham, A. S.; Shambaugh, R. L. Ind. Eng. Chem. Res. 1996, 35, 3776.
Podgórski, A.; Bałazy, A.; Gradoń, L. Chem. Eng. Sci. 2006, 61, 6804.
Hassan, M. A.; Yeom, B.; Wilkie, A.; Pourdeyhimi, B.; Khan, S. A. J. Membr. Sci. 2013, 427, 336.
Wang, J.; Kim, S. C.; Pui, D. Y. H. Aerosol Sci. Technol. 2008, 42, 722.
Jena, A.; Gupta, K. Fluid Part. Sep. J. 2002, 14, 227.
Uyttendaele, M. A. J.; Shambaugh, R. L. AIChE J. 1990, 36, 175.
Zhao, R. Int. Nonwoven J. 2005, 14, 2.
Marla, V. T.; Shambaugh, R. L. Ind. Eng. Chem. Res. 2003, 42, 6993.
Harpham, A. S.; Shambaugh, R. L. Ind. Eng. Chem. Res. 1999, 36, 3937.
Lee, Y.; Wadsworth, L. C. Polymer 1992, 33, 1200.
Shambaugh, B. R.; Papavassiliou, D. V.; Shambaugh, R. L. Ind. Eng. Chem. Res. 2011, 50, 12233.
Mengeloglu, F.; Karakus, K. Sensors 2008, 8, 500.
Shambaugh, R. L. Ind. Eng. Chem. Res. 1988, 27, 2363.
Krutka, H. M.; Shambaugh, R. L.; Papavassiliou, D. V. Ind. Eng. Chem. Res. 2005, 44, 8922.
Krutka, H. M.; Shambaugh, R. L.; Papavassiliou, D. V. Ind. Eng. Chem. Res. 2002, 41, 5125.
Wang, J.; Kim, S. C.; Pui, D. Y. H. Aerosol Sci. 2009, 39, 323.
Marla, V. T.; Shambaugh, R. L. Ind. Eng. Chem. Res. 2004, 43, 2789.
Rao, R. S.; Shambaugh, R. L. Ind. Eng. Chem. Res. 1993, 32, 3100.
Tate, B. D.; Shambaugh, R. L. Ind. Eng. Chem. Res. 1998, 37, 3772.
Krutka, H. M.; Shambaugh, R. L.; Papavassiliou, D. V. Ind. Eng. Chem. Res. 2003, 42, 5541.
Krutka, H. M.; Shambaugh, R. L.; Papavassiliou, D. V. Ind. Eng. Chem. Res. 2004, 43, 4199.
Jena, A.; Gupta, K. Int. Nonwovens J. 2003, 123, 45.
Ellison, C. J.; Phatak, A.; Giles, D. W.; Macosko, C. W.; Bates, F. S. Polymer 2007, 48, 3306.
Shambaugh, B. R.; Papavassiliou, D. V.; Shambaugh, R. L. Ind. Eng. Chem. Res. 2012, 51, 3472.
McNally, E. K. Tappi J. 1998, 81, 193.
2004; 43
2002; 14
1990; 36
2012
2013; 427
2011
2008; 8
1998; 81
2004
2002
1996; 35
1992; 33
2005; 44
1999
2012; 51
1998; 37
2006; 61
2002; 41
1993; 32
1988; 27
1999; 36
2011; 50
1983
2008; 42
2003; 123
2003; 42
2007; 48
2005; 14
2009; 39
Jena A. (e_1_2_6_30_1) 2003; 123
e_1_2_6_32_1
e_1_2_6_31_1
McNally E. K. (e_1_2_6_10_1) 1998; 81
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
Jena A. (e_1_2_6_29_1) 2002; 14
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Zhao R. (e_1_2_6_7_1) 2005; 14
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – year: 2011
– volume: 81
  start-page: 193
  year: 1998
  publication-title: Tappi J.
– year: 1983
– volume: 61
  start-page: 6804
  year: 2006
  publication-title: Chem. Eng. Sci.
– volume: 427
  start-page: 336
  year: 2013
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 500
  year: 2008
  publication-title: Sensors
– volume: 42
  start-page: 722
  year: 2008
  publication-title: Aerosol Sci. Technol.
– volume: 27
  start-page: 2363
  year: 1988
  publication-title: Ind. Eng. Chem. Res.
– volume: 43
  start-page: 2789
  year: 2004
  publication-title: Ind. Eng. Chem. Res.
– volume: 35
  start-page: 3776
  year: 1996
  publication-title: Ind. Eng. Chem. Res.
– volume: 48
  start-page: 3306
  year: 2007
  publication-title: Polymer
– volume: 39
  start-page: 323
  year: 2009
  publication-title: Aerosol Sci.
– volume: 36
  start-page: 3937
  year: 1999
  publication-title: Ind. Eng. Chem. Res.
– volume: 51
  start-page: 3472
  year: 2012
  publication-title: Ind. Eng. Chem. Res.
– year: 2012
– volume: 36
  start-page: 175
  year: 1990
  publication-title: AIChE J.
– volume: 32
  start-page: 3100
  year: 1993
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 1200
  year: 1992
  publication-title: Polymer
– volume: 37
  start-page: 3772
  year: 1998
  publication-title: Ind. Eng. Chem. Res.
– year: 2002
– volume: 14
  start-page: 2
  year: 2005
  publication-title: Int. Nonwoven J.
– volume: 41
  start-page: 5125
  year: 2002
  publication-title: Ind. Eng. Chem. Res.
– year: 2004
– volume: 43
  start-page: 4199
  year: 2004
  publication-title: Ind. Eng. Chem. Res.
– volume: 50
  start-page: 12233
  year: 2011
  publication-title: Ind. Eng. Chem. Res.
– volume: 14
  start-page: 227
  year: 2002
  publication-title: Fluid Part. Sep. J.
– volume: 44
  start-page: 8922
  year: 2005
  publication-title: Ind. Eng. Chem. Res.
– volume: 42
  start-page: 5541
  year: 2003
  publication-title: Ind. Eng. Chem. Res.
– volume: 123
  start-page: 45
  year: 2003
  publication-title: Int. Nonwovens J.
– volume: 42
  start-page: 6993
  year: 2003
  publication-title: Ind. Eng. Chem. Res.
– year: 1999
– ident: e_1_2_6_5_1
  doi: 10.1021/ie00084a021
– volume: 14
  start-page: 2
  year: 2005
  ident: e_1_2_6_7_1
  publication-title: Int. Nonwoven J.
  contributor:
    fullname: Zhao R.
– ident: e_1_2_6_22_1
  doi: 10.1021/ie200836a
– ident: e_1_2_6_26_1
– volume: 123
  start-page: 45
  year: 2003
  ident: e_1_2_6_30_1
  publication-title: Int. Nonwovens J.
  contributor:
    fullname: Jena A.
– ident: e_1_2_6_23_1
  doi: 10.1021/ie202501u
– ident: e_1_2_6_17_1
  doi: 10.1021/ie0505864
– ident: e_1_2_6_12_1
  doi: 10.1021/ie960074c
– ident: e_1_2_6_28_1
– ident: e_1_2_6_31_1
  doi: 10.1080/02786820802249133
– ident: e_1_2_6_21_1
  doi: 10.1021/ie030767a
– ident: e_1_2_6_15_1
  doi: 10.1021/ie030457s
– ident: e_1_2_6_20_1
  doi: 10.1021/ie030517u
– volume: 14
  start-page: 227
  year: 2002
  ident: e_1_2_6_29_1
  publication-title: Fluid Part. Sep. J.
  contributor:
    fullname: Jena A.
– ident: e_1_2_6_13_1
  doi: 10.1021/ie970145n
– ident: e_1_2_6_2_1
  doi: 10.1016/j.memsci.2012.09.050
– ident: e_1_2_6_19_1
  doi: 10.1021/ie00024a020
– ident: e_1_2_6_27_1
– ident: e_1_2_6_24_1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.polymer.2007.04.005
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jaerosci.2007.12.003
– ident: e_1_2_6_8_1
– ident: e_1_2_6_14_1
  doi: 10.1021/ie020366f
– ident: e_1_2_6_4_1
  doi: 10.1016/0032-3861(92)90764-N
– ident: e_1_2_6_9_1
– ident: e_1_2_6_6_1
– ident: e_1_2_6_16_1
  doi: 10.1021/ie040043e
– ident: e_1_2_6_33_1
  doi: 10.1016/j.ces.2006.07.022
– volume: 81
  start-page: 193
  year: 1998
  ident: e_1_2_6_10_1
  publication-title: Tappi J.
  contributor:
    fullname: McNally E. K.
– ident: e_1_2_6_11_1
  doi: 10.1021/ie980219a
– ident: e_1_2_6_18_1
  doi: 10.1002/aic.690360203
– ident: e_1_2_6_25_1
  doi: 10.3390/s8010500
SSID ssj0011506
Score 2.2536902
Snippet ABSTRACT Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of...
Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage np
SubjectTerms Air flow
Channels
Economics
Fibers
fiilter media
Filtration
Materials science
Media
meltblowing die
meltblown
microfibers
nonwovens
Nozzles
Parallel plates
Polymers
Title Fabrication of micro-meltblown filtration media using parallel plate die design
URI https://api.istex.fr/ark:/67375/WNG-T5F4MZPG-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.42998
https://www.proquest.com/docview/1733458642/abstract/
https://search.proquest.com/docview/1778026800
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CekkO_Uyp27SopZRcnNiWJdnkFEo3IZCwbRMSSkFI9iiEOLthswulp_6E_Mb-kmrkjyaFQunBYPAYZI1GejN-egJ4ix6zF6YUMUdhqHSTxB7HidgoXldcFWUddLYPDuXecb5_Kk6XYLvfC9PqQwwFN4qMMF9TgBt7vfVbNJSOwaLJlDb6kpAeAaJPg3QUAR3Z0jvS2OcUolcVSrKt4c07a9E96tZvd4Dmbbga1pvRA_jat7SlmVxsLuZ2s_r-h4jjf37KQ7jf4VC20w6cR7CEk8ewekud8Al8HBk760p6bOrYJXH3fv64ucRmbhufvTN33nSquyzsQGHEoj9jJCfeNNiwq8YjWVaf-ysQRdbgePTh6P1e3J3AEFdc-hCq0eMfxKyoHKn-ZJkzKuO25rYwoqqNh0sFVZGq1KaGJzaVzpRJ7lBKk6JI-VNYnkwn-AyYMzKrErRKGZnL3A8CVXCXlw45Isoygje9L_RVK7ShW0nlTPv-0aF_IngXvDRYmNkFMdOU0CeHu_pIjPKDL-Nd_TmC9d6NugvKa50qznNR-IwrgtfDYx9O9I_ETHC6IBtV-LTUw-gINoLP_t4avTMeh5vn_276AlY85Aq871Ssw_J8tsCXHtbM7aswfn8Bbaz0Ag
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7U9kF9qHdMrTqKiC9pk0zmEvCliNtVu8uqWyyCDDPJjJSmu2XdBfHJn-Bv9Jd4ZnKxFQTxIRDICUzmzJn5zsk33wA8sYjZpS5YTC3TvnSTxIjjWKwFrUoqZFEFne3RmA8P89dH7GgNnnd7YRp9iL7g5iMjzNc-wH1Beve3aqg_B8vPpvISbGC4s5BQvevFozzU4Q3BI40xq2CdrlCS7favXliNNnzHfr0ANc8D1rDiDK7Bp66tDdHkZGe1NDvltz9kHP_3Y67DZgtFyV4zdm7Amp3dhKvnBApvwduBNou2qkfmjpx6-t7P7z9Obb00NSbwxB3XrfAuCZtQiCfSfyZeUbyubU3OagSzpDrGK3BFbsPh4OX0xTBuD2GIS8oxiiqLEMjaTJbOC_9kmdMio6aiRmpWVhoRk_SFpDI1qaaJSbnTRZI7y7lOLUvpHVifzWf2LhCneVYm1gihec5zHAdCUpcXzlJrLS8ieNw5Q501WhuqUVXOFPaPCv0TwdPgpt5CL048OU0w9WG8r6ZskI8-TvbV-wi2Oz-qNi6_qFRQmjOJSVcEj_rHGFH-N4me2fnK2wiJmSki6QieBaf9vTVqbzIJN1v_bvoQLg-nowN18Gr85h5cQQQWaOAp24b15WJl7yPKWZoHYTD_Arc0-CQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UFkQfvIvRqqOI-JI2yWQuwadiTeuly6otLSIMM8kZKU13l3UXxCd_gr_RX-LM5GIrCOJDIJAJTOacM_Odk2--AXiCDrNLXbCYItO-dJPEDsexWAtaV1TIog4623sjvnuQvz5iRyvwvN8L0-pDDAU3HxlhvvYBPqvt5m_RUH8Mlp9M5QVYyznNvEtvvx-0ozzS4S2_I41dUsF6WaEk2xxePbcYrflx_XoOaZ7Fq2HBKa_Cp76rLc_kZGO5MBvVtz9UHP_zW67BlQ6Ikq3Wc67DCk5uwOUz8oQ34V2pzbyr6ZGpJaeevPfz-49TbBamcek7scdNJ7tLwhYU4mn0n4nXE28abMiscVCW1MfuCkyRW3BQvtx_sRt3RzDEFeUuhmp0AAgxk5X1sj9ZZrXIqKmpkZpVtXZ4SfoyUpWaVNPEpNzqIsktcq5TZCm9DauT6QTvALGaZ1WCRgjNc547LxCS2rywSBGRFxE87m2hZq3Shmo1lTPlxkeF8YngabDS0ELPTzw1TTB1ONpR-6zM9z6Od9SHCNZ7M6ouKr-oVFCaM-lSrggeDY9dPPmfJHqC06VvI6TLSx2OjuBZsNnfe6O2xuNwc_ffmz6Ei-PtUr19NXpzDy45-BU44Clbh9XFfIn3HcRZmAfBlX8B3u320w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+micro%E2%80%90meltblown+filtration+media+using+parallel+plate+die+design&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Hassan%2C+Mohammad+Abouelreesh&rft.au=Khan%2C+Saad+A.&rft.au=Pourdeyhimi%2C+Behnam&rft.date=2016-02-15&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=133&rft.issue=7&rft_id=info:doi/10.1002%2Fapp.42998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_42998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon