4D MRI Flow Coupled to Physics-Based Fluid Simulation for Blood-Flow Visualization
Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data...
Saved in:
Published in | Computer graphics forum Vol. 33; no. 3; pp. 121 - 130 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically‐based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach. |
---|---|
AbstractList | Modern MRI measurements deliver volumetric and time-varying blood-flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically-based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach. [PUBLICATION ABSTRACT] Modern MRI measurements deliver volumetric and time-varying blood-flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically-based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach. |
Author | de Hoon, N. Jalba, A. Vilanova, A. van Pelt, R. |
Author_xml | – sequence: 1 givenname: N. surname: de Hoon fullname: de Hoon, N. organization: Computer Science and Mathematics, Eindhoven University of Technology, The Netherlands – sequence: 2 givenname: R. surname: van Pelt fullname: van Pelt, R. organization: Biomedical Engineering, Eindhoven University of Technology, The Netherlands – sequence: 3 givenname: A. surname: Jalba fullname: Jalba, A. organization: Computer Science and Mathematics, Eindhoven University of Technology, The Netherlands – sequence: 4 givenname: A. surname: Vilanova fullname: Vilanova, A. organization: Biomedical Engineering, Eindhoven University of Technology, The Netherlands |
BookMark | eNp9kMtOwzAQRS0EEqWw4A8isYFFwE78SJY0JQGJl3guLddxwODGxU4E5esxLbBAgtl4ND73auZugNXWtgqAbQT3UagD-dDsoySl2QoYIExZnFGSr4IBRKFnkJB1sOH9E4QQM0oG4AqPo7Ork6g09jUqbD8zqo46G10-zr2WPh4JHwal6XUdXetpb0SnbRs11kUjY20dL4R32vfC6PfF5yZYa4TxauvrHYLb8uimOI5PL6qT4vA0lmG9LJ4kSjaizkVCJ0w1KE2RwLXAeU5kDTM8YUxkKpcEJwlBbEKoYpgpKupwFoEoHYLdpe_M2Zde-Y5PtZfKGNEq23uOCMlpjhEmAd35hT7Z3rVhu0DhYEZJRgO1t6Sks9471fCZ01Ph5hxB_pkuD-nyRbqBPfjFSt0tzu-c0OY_xas2av63NS-q8lsRLxXad-rtRyHcM6csZYTfn1e8rEYpG48LXqUfzFOaIA |
CitedBy_id | crossref_primary_10_1016_j_media_2020_101773 crossref_primary_10_1098_rsif_2021_0751 crossref_primary_10_1002_mrm_28269 crossref_primary_10_1109_TIP_2024_3470553 crossref_primary_10_1016_j_media_2015_08_012 crossref_primary_10_1111_cgf_13394 crossref_primary_10_1007_s00366_022_01723_5 crossref_primary_10_1111_cgf_12803 |
Cites_doi | 10.1007/s10915-011-9547-6 10.1109/TVCG.2013.189 10.1016/S0045-7825(98)80008-X 10.1016/0010-4655(88)90020-3 10.1146/annurev.bioeng.10.061807.160521 10.1090/S0025-5718-04-01678-3 10.1145/1276377.1276502 10.1002/jmri.23632 10.1109/CGI.1997.601299 10.1145/1073204.1073298 10.1137/1.9780898719604 10.1016/S0065-2687(08)60442-2 10.1002/mrm.1910340618 10.1109/PacificVis.2013.6596137 10.1201/b10635 10.1161/CIR.0b013e31828124ad 10.1002/jmri.1098 10.1002/cav.17 10.1145/311535.311548 10.1145/1531326.1531347 10.1093/mnras/181.3.375 10.1046/j.1525-1594.2002.07085.x 10.1002/mrm.21109 10.1145/1073204.1073282 10.1007/s10439-005-2495-2 10.1109/TVCG.2004.39 |
ContentType | Journal Article |
Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1111/cgf.12368 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 130 |
ExternalDocumentID | 3372545461 10_1111_cgf_12368 CGF12368 ark_67375_WNG_FGB37DDC_G |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAMNL AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHQN AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c3688-b2ecfad9a26b7ef1331a4da4995cd084b77a8e9c5422517b56e747e6ad4675013 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Thu Jul 10 22:23:13 EDT 2025 Fri Jul 25 23:43:07 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Tue Jul 01 05:08:49 EDT 2025 Wed Jan 22 16:24:44 EST 2025 Mon Nov 18 03:20:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3688-b2ecfad9a26b7ef1331a4da4995cd084b77a8e9c5422517b56e747e6ad4675013 |
Notes | ark:/67375/WNG-FGB37DDC-G istex:24BEE3E15CF4E3F9052A1D559DCA51658052652C ArticleID:CGF12368 Supporting Information SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1545016586 |
PQPubID | 30877 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1559694145 proquest_journals_1545016586 crossref_primary_10_1111_cgf_12368 crossref_citationtrail_10_1111_cgf_12368 wiley_primary_10_1111_cgf_12368_CGF12368 istex_primary_ark_67375_WNG_FGB37DDC_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationTitleAlternate | Computer Graphics Forum |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Bridson R.: Fluid Simulation for Computer Graphics. A.K. Peters, 2008. 3, 8 Hong J.-M., Kim C.-H.: Controlling fluid animation with geometric potential. Computer Animation and Virtual Worlds 15, 3-4 (2004), 147-157. 3, 9 Funamoto K., Hayase T., Shirai A., Saijo Y., Yambe T.: Fundamental study of ultrasonic-measurement-integrated simulation of real blood flow in the aorta. Annals of Biomedical Engineering 33, 4 (2005), 415-428. 3 Verma V., Pang A.: Comparative flow visualization. IEEE Transactions on Visualization and Computer Graphics 10, 6 (2004), 609-24. 7 Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D.: LAPACK Users' Guide, third ed. Society for Industrial and Applied Mathematics, 1999. 8 Bammer R., Hope T., Aksoy M., Alley M.: Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magnetic Resonance in Medicine 57, 1 (2007), 127-140. 6 Markl M., Frydrychowicz A., Kozerke S., Hope M., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036. 1, 2 Selle A., Rasmussen N., Fedkiw R.: A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3 (2005), 910-914. 3 Taylor C.A., Hughes T., Zarins C.: Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanical Engineering 7825, 97 (1998), 155-196. 5 Brackbill J., Kothe D., Ruppel H.: FLIP: A low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1 (1988), 25-38. 3, 4 Ghil M., Malanotte-Rizzoli P.: Data assimilation in meteorology and oceanography. Advances in Geophysics 33 (1991), 141-266. 2 Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., Franco S., Fullerton H.J., Gillespie C., Hailpern S.M., Heit J.A., Howard V.J., Huffman M.D., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Magid D., Marcus G.M., Marelli A., Matchar D.B., McGuire D.K., Mohler E.R., Moy C.S., Mussolino M.E., Nichol G., Paynter N.P., Schreiner P.J., Sorlie P.D.J. Stein T. N. T., Virani S.S., Wong N.D., Woo D., Turner M.B.: Heart disease and stroke statistics - 2013 update. Circulation 127, 1 (2013), e6-e245. 1 Wood N.B., Weston S.J., Kilner P.J., Gosman A.D., Firmin D.N.: Combined MR imaging and CFD simulation of flow in the human descending aorta. Journal of Magnetic Resonance Imaging 13, 5 (2001), 699-713. 3 Potchen E.J., Haacke E.M.: Magnetic resonance angiography: concepts & applications. Mosby-Year Book, 1993. 7 Gingold R.A., Monaghan J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181 (1977), 375-389. 4 Glor F.P., Westenberg J. J. M., Vierendeels J., Danilouchkine M., Verdonck P.: Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend. Artificial Organs 26, 7 (2002), 622-35. 3 Batty C., Bertails F., Bridson R.: A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3 (2007), 100:1-100:7. 4, 5, 8 Gudbjartsson H., Patz S.: The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine 34, 6 (1995), 910-914. 6 Schwenke M., Hennemuth A., Fischer B., Friman O.: Blood flow computation in phase-contrast MRI by minimal paths in anisotropic media. Medical Image Computing and Computer-Assisted Intervention 14, 1 (2011), 436-443. 2 D'Elia M., Perego M., Veneziani A.: A variational data assimilation procedure for the incompressible navierstokes equations in hemodynamics. Journal of Scientific Computing 52, 2 (2012), 340-359. 3 Taylor C.A., Figueroa C.A.: Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 11 (2009), 109-34. 2 Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-Automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2783. 2 Horvath C., Geiger W.: Directable, high-resolution simulation of fire on the GPU. ACM Transactions on Graphics 28, 3 (2009), 41:1-41:8. 8 Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 4 Zhao H.: A fast sweeping method for Eikonal equations. Mathematics of Computation 74 (2005), 603-627. 4 2012 1991; 33 2013; 127 1995; 34 2008 1997 1993 2003 2011; 14 2012; 36 2007; 57 2012; 52 2005; 24 1999 2009; 28 2013; 19 2004; 10 1977; 181 2009; 11 2002; 26 1998; 7825 1988; 48 2004; 15 2005; 74 2013 2001; 13 2005; 33 2007; 26 e_1_2_9_30_2 e_1_2_9_10_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 e_1_2_9_14_2 e_1_2_9_13_2 e_1_2_9_16_2 e_1_2_9_15_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_19_2 Schwenke M. (e_1_2_9_23_2) 2011; 14 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_26_2 Potchen E.J. (e_1_2_9_22_2) 1993 e_1_2_9_29_2 e_1_2_9_28_2 |
References_xml | – reference: Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-Automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2783. 2 – reference: Selle A., Rasmussen N., Fedkiw R.: A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3 (2005), 910-914. 3 – reference: Gudbjartsson H., Patz S.: The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine 34, 6 (1995), 910-914. 6 – reference: Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 4 – reference: Markl M., Frydrychowicz A., Kozerke S., Hope M., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036. 1, 2 – reference: Funamoto K., Hayase T., Shirai A., Saijo Y., Yambe T.: Fundamental study of ultrasonic-measurement-integrated simulation of real blood flow in the aorta. Annals of Biomedical Engineering 33, 4 (2005), 415-428. 3 – reference: Taylor C.A., Hughes T., Zarins C.: Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanical Engineering 7825, 97 (1998), 155-196. 5 – reference: Bammer R., Hope T., Aksoy M., Alley M.: Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magnetic Resonance in Medicine 57, 1 (2007), 127-140. 6 – reference: Potchen E.J., Haacke E.M.: Magnetic resonance angiography: concepts & applications. Mosby-Year Book, 1993. 7 – reference: Taylor C.A., Figueroa C.A.: Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 11 (2009), 109-34. 2 – reference: Wood N.B., Weston S.J., Kilner P.J., Gosman A.D., Firmin D.N.: Combined MR imaging and CFD simulation of flow in the human descending aorta. Journal of Magnetic Resonance Imaging 13, 5 (2001), 699-713. 3 – reference: Ghil M., Malanotte-Rizzoli P.: Data assimilation in meteorology and oceanography. Advances in Geophysics 33 (1991), 141-266. 2 – reference: Verma V., Pang A.: Comparative flow visualization. IEEE Transactions on Visualization and Computer Graphics 10, 6 (2004), 609-24. 7 – reference: Horvath C., Geiger W.: Directable, high-resolution simulation of fire on the GPU. ACM Transactions on Graphics 28, 3 (2009), 41:1-41:8. 8 – reference: D'Elia M., Perego M., Veneziani A.: A variational data assimilation procedure for the incompressible navierstokes equations in hemodynamics. Journal of Scientific Computing 52, 2 (2012), 340-359. 3 – reference: Gingold R.A., Monaghan J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181 (1977), 375-389. 4 – reference: Zhao H.: A fast sweeping method for Eikonal equations. Mathematics of Computation 74 (2005), 603-627. 4 – reference: Batty C., Bertails F., Bridson R.: A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3 (2007), 100:1-100:7. 4, 5, 8 – reference: Brackbill J., Kothe D., Ruppel H.: FLIP: A low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1 (1988), 25-38. 3, 4 – reference: Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., Franco S., Fullerton H.J., Gillespie C., Hailpern S.M., Heit J.A., Howard V.J., Huffman M.D., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Magid D., Marcus G.M., Marelli A., Matchar D.B., McGuire D.K., Mohler E.R., Moy C.S., Mussolino M.E., Nichol G., Paynter N.P., Schreiner P.J., Sorlie P.D.J. Stein T. N. T., Virani S.S., Wong N.D., Woo D., Turner M.B.: Heart disease and stroke statistics - 2013 update. Circulation 127, 1 (2013), e6-e245. 1 – reference: Schwenke M., Hennemuth A., Fischer B., Friman O.: Blood flow computation in phase-contrast MRI by minimal paths in anisotropic media. Medical Image Computing and Computer-Assisted Intervention 14, 1 (2011), 436-443. 2 – reference: Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D.: LAPACK Users' Guide, third ed. Society for Industrial and Applied Mathematics, 1999. 8 – reference: Bridson R.: Fluid Simulation for Computer Graphics. A.K. Peters, 2008. 3, 8 – reference: Glor F.P., Westenberg J. J. M., Vierendeels J., Danilouchkine M., Verdonck P.: Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend. Artificial Organs 26, 7 (2002), 622-35. 3 – reference: Hong J.-M., Kim C.-H.: Controlling fluid animation with geometric potential. Computer Animation and Virtual Worlds 15, 3-4 (2004), 147-157. 3, 9 – volume: 28 start-page: 41:1 issue: 3 year: 2009 end-page: 41:8 article-title: Directable, high‐resolution simulation of fire on the GPU publication-title: ACM Transactions on Graphics – volume: 13 start-page: 699 issue: 5 year: 2001 end-page: 713 article-title: Combined MR imaging and CFD simulation of flow in the human descending aorta publication-title: Journal of Magnetic Resonance Imaging – volume: 26 start-page: 100:1 issue: 3 year: 2007 end-page: 100:7 article-title: A fast variational framework for accurate solid‐fluid coupling publication-title: ACM Transactions on Graphics – start-page: 129 year: 2013 end-page: 136 – volume: 26 start-page: 622 issue: 7 year: 2002 end-page: 35 article-title: Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend publication-title: Artificial Organs – volume: 24 start-page: 965 issue: 3 year: 2005 end-page: 972 article-title: Animating sand as a fluid publication-title: ACM Transactions on Graphics – start-page: 219 year: 2008 end-page: 228 – volume: 127 start-page: e6 issue: 1 year: 2013 article-title: Heart disease and stroke statistics – 2013 update publication-title: Circulation – volume: 33 start-page: 141 year: 1991 end-page: 266 article-title: Data assimilation in meteorology and oceanography publication-title: Advances in Geophysics – volume: 36 start-page: 1015 issue: 5 year: 2012 end-page: 1036 article-title: 4D flow MRI publication-title: Journal of Magnetic Resonance Imaging – start-page: 121 year: 1999 end-page: 128 – volume: 14 start-page: 436 issue: 1 year: 2011 end-page: 443 article-title: Blood flow computation in phase‐contrast MRI by minimal paths in anisotropic media publication-title: Medical Image Computing and Computer‐Assisted Intervention – volume: 57 start-page: 127 issue: 1 year: 2007 end-page: 140 article-title: Time‐resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging publication-title: Magnetic Resonance in Medicine – volume: 19 start-page: 2773 issue: 12 year: 2013 end-page: 2783 article-title: Semi‐Automatic vortex extraction in 4D PC‐MRI cardiac blood flow data using line predicates publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2012 – volume: 181 start-page: 375 year: 1977 end-page: 389 article-title: Smoothed particle hydrodynamics: theory and application to non‐spherical stars publication-title: Monthly Notices of the Royal Astronomical Society – start-page: 178 year: 1997 end-page: 188 – volume: 74 start-page: 603 year: 2005 end-page: 627 article-title: A fast sweeping method for Eikonal equations publication-title: Mathematics of Computation – year: 2008 – volume: 24 start-page: 910 issue: 3 year: 2005 end-page: 914 article-title: A vortex particle method for smoke, water and explosions publication-title: ACM Transactions on Graphics – volume: 15 start-page: 147 issue: 3–4 year: 2004 end-page: 157 article-title: Controlling fluid animation with geometric potential publication-title: Computer Animation and Virtual Worlds – volume: 11 start-page: 109 year: 2009 end-page: 34 article-title: Patient‐specific modeling of cardiovascular mechanics publication-title: Annual Review of Biomedical Engineering – volume: 10 start-page: 609 issue: 6 year: 2004 end-page: 24 article-title: Comparative flow visualization publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 7825 start-page: 155 issue: 97 year: 1998 end-page: 196 article-title: Finite element modeling of blood flow in arteries publication-title: Computer Methods in Applied Mechanical Engineering – volume: 52 start-page: 340 issue: 2 year: 2012 end-page: 359 article-title: A variational data assimilation procedure for the incompressible navierstokes equations in hemodynamics publication-title: Journal of Scientific Computing – start-page: 154 year: 2003 end-page: 159 – volume: 33 start-page: 415 issue: 4 year: 2005 end-page: 428 article-title: Fundamental study of ultrasonic‐measurement‐integrated simulation of real blood flow in the aorta publication-title: Annals of Biomedical Engineering – year: 1993 – year: 1999 – volume: 48 start-page: 25 issue: 1 year: 1988 end-page: 38 article-title: FLIP: A low‐dissipation, particle‐in‐cell method for fluid flow publication-title: Computer Physics Communications – volume: 34 start-page: 910 issue: 6 year: 1995 end-page: 914 article-title: The Rician distribution of noisy MRI data publication-title: Magnetic Resonance in Medicine – ident: e_1_2_9_9_2 doi: 10.1007/s10915-011-9547-6 – ident: e_1_2_9_19_2 doi: 10.1109/TVCG.2013.189 – ident: e_1_2_9_27_2 doi: 10.1016/S0045-7825(98)80008-X – ident: e_1_2_9_6_2 doi: 10.1016/0010-4655(88)90020-3 – ident: e_1_2_9_26_2 doi: 10.1146/annurev.bioeng.10.061807.160521 – ident: e_1_2_9_32_2 doi: 10.1090/S0025-5718-04-01678-3 – ident: e_1_2_9_4_2 doi: 10.1145/1276377.1276502 – ident: e_1_2_9_21_2 doi: 10.1002/jmri.23632 – ident: e_1_2_9_11_2 doi: 10.1109/CGI.1997.601299 – ident: e_1_2_9_29_2 – volume-title: Magnetic resonance angiography: concepts & applications year: 1993 ident: e_1_2_9_22_2 – ident: e_1_2_9_31_2 doi: 10.1145/1073204.1073298 – ident: e_1_2_9_2_2 doi: 10.1137/1.9780898719604 – ident: e_1_2_9_13_2 doi: 10.1016/S0065-2687(08)60442-2 – ident: e_1_2_9_15_2 doi: 10.1002/mrm.1910340618 – ident: e_1_2_9_7_2 doi: 10.1109/PacificVis.2013.6596137 – ident: e_1_2_9_8_2 doi: 10.1201/b10635 – ident: e_1_2_9_14_2 doi: 10.1161/CIR.0b013e31828124ad – ident: e_1_2_9_30_2 doi: 10.1002/jmri.1098 – volume: 14 start-page: 436 issue: 1 year: 2011 ident: e_1_2_9_23_2 article-title: Blood flow computation in phase‐contrast MRI by minimal paths in anisotropic media publication-title: Medical Image Computing and Computer‐Assisted Intervention – ident: e_1_2_9_18_2 doi: 10.1002/cav.17 – ident: e_1_2_9_25_2 doi: 10.1145/311535.311548 – ident: e_1_2_9_3_2 – ident: e_1_2_9_17_2 doi: 10.1145/1531326.1531347 – ident: e_1_2_9_20_2 – ident: e_1_2_9_12_2 doi: 10.1093/mnras/181.3.375 – ident: e_1_2_9_16_2 doi: 10.1046/j.1525-1594.2002.07085.x – ident: e_1_2_9_5_2 doi: 10.1002/mrm.21109 – ident: e_1_2_9_24_2 doi: 10.1145/1073204.1073282 – ident: e_1_2_9_10_2 doi: 10.1007/s10439-005-2495-2 – ident: e_1_2_9_28_2 doi: 10.1109/TVCG.2004.39 |
SSID | ssj0004765 |
Score | 2.1608183 |
Snippet | Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a... Modern MRI measurements deliver volumetric and time-varying blood-flow data of unprecedented quality. Visual analysis of these data potentially leads to a... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121 |
SubjectTerms | Analysis Cardiovascular disease Categories and Subject Descriptors (according to ACM CCS) Computer graphics Computer simulation Data assimilation Diseases G.1.1 [Mathematics of Computing] Numerical Analysis-Interpolation I.3.8 [Computer Graphics] Applications-4D PC-MRI Blood-Flow I.6.8 [Simulation and Modeling] Types of Simulation-Combined Imaging Joining Mathematical models Medical imaging Noise Risk Simulation Studies Visualization |
Title | 4D MRI Flow Coupled to Physics-Based Fluid Simulation for Blood-Flow Visualization |
URI | https://api.istex.fr/ark:/67375/WNG-FGB37DDC-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12368 https://www.proquest.com/docview/1545016586 https://www.proquest.com/docview/1559694145 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Me0kPTdMHdeqEbSmlF5lG3tWDnGK7sltoDmnt-lBY9qVg4lohtkjIKT8hvzG_JDOrR-3QQulFEuwsjHZ3Zr6VZr4l5J1UloV-13pMA3wD76e9yIdLGqj4wPhhBA-YbXEcjMbsy5RPG-SwqoUp-CHqD25oGc5fo4FLtVwzcn2adpA6BAt9MVcLAdHJb-ooFga84vVGxpiSVQizeOqeG7HoEQ7r1QbQXIerLt4k2-RnpWmRZnLWyVeqo68fkDj-56s8JU9KHEqPioWzQxp28Yw8XmMnfE4mbEC_nnymyTy7pP0sP59bQ1cZdUmjenl3c9uDEGigPZ8Z-m32qzwJjAIOpj1MiAcR13kyW2LtZlHx-YKMk0_f-yOvPIbB06BS5Cnf6lSaWPqBCm0Km9oDyYyErRLX5mPEVBjKyMaaMx_5zxQPLOxRbCANOGEOEPMlaS6yhX1FKE81BGUbS7gxCe4kZrFW1nDT7QZMBy3yoZoQoUuOcjwqYy6qvQoMlXBD1SJva9HzgpjjT0Lv3azWEvLiDDPZQi5-HA9FMux1w8GgL4Yt0q6mXZRGvBSILrHaKwK93tTNYH74T0UubJajDI-xFphx0N3N8d-1Ef1h4h52_130NdkCiMaK5LQ2aa4ucrsHMGil9t16vwcCowOo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9gAceCMCBQxCiMtGdGPvQ-JCEjYptDmUtvRSWX5tFTXNVk1WIE78BH4jv4QZ74MUgYS47FryWJq1PfY33pnPAC-UdjwOey7gBuEbrn4mSEJ85JFOt2wYJ1igaItJND7g74_E0Rq8aXJhKn6I9sCNLMOv12TgdCC9YuXmJO8Sd0hyBTboRm9izh_u_SKP4nEkGmZv4oypeYUojqdtemk32qCO_XIJaq4CVr_jZDfhuNG1CjQ57ZZL3TVff6Nx_N-PuQU3aijK3lZz5zasufkduL5CUHgXDvmQ7e5ts2xWfGaDojyfOcuWBfNxo2bx49v3Pu6CFuvLqWUfp2f1ZWAMoTDrU0w8ivjGh9MFpW9WSZ_34CB7tz8YB_VNDIFBlZJAh87kyqYqjHTscvRrtxS3Cr0lYezrhOs4VolLjeAhUaBpETl0U1ykLK7DAlHmfVifF3P3AJjIDe7LLlX44gpXlJSnRjsrbK8XcRN14FUzItLUNOV0W8ZMNu4KdpX0XdWB563oecXN8Sehl35YWwl1cUrBbLGQnyYjmY36vXg4HMhRBzabcZe1HS8kAUxK-EpQr2dtNVog_VZRc1eUJCNSSgfmAnX3g_x3beRglPnCw38XfQpXx_u7O3Jne_LhEVxDxMarWLVNWF9elO4xoqKlfuIn_08xnQfE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJw4I1YKGAQQlyyarO2k4gTuyHb8lihQksPSJZjO2jVZbPqbgTixE_gN_JLmHEebBFIiEsSyWNpYnvGn5OZbwAe6dzxKBy4gBuEb-j9TBCHeClknuzaMIrxgaItJnLvkL84Fscb8LTNhan5IboPbmQZ3l-TgS9ssWbk5mPRJ-qQ-BxscbmTUN2G9OAXdxSPpGiJvYkypqEVojCeruuZzWiLxvXLGaS5jlf9hpNdhg-tqnWcyUm_WuV98_U3Fsf_fJcrcKkBouxZvXKuwoabX4OLa_SE1-GIp-z1wT7LZuVnNiqrxcxZtiqZjxo1yx_fvg9xD7TYXk0tezv91JQCYwiE2ZAi4lHEdz6aLil5s075vAGH2fN3o72gqcMQGFQpDvLQmULbRIcyj1yBp9pdza3Gs5IwdifmeRTp2CVG8JAI0HIhHR5SnNQWvbBAjHkTNufl3N0CJgqDu7JLNN64Rn-S8MTkzgo7GEhuZA-etBOiTENSTrUyZqo9rOBQKT9UPXjYiS5qZo4_CT32s9pJ6NMTCmWLhHo_GatsPBxEaTpS4x5st9OuGiteKoKXlO4Vo14Puma0P_qpoueurEhGJJQMzAXq7uf479qo0TjzD7f_XfQ-nH-TZurV_uTlHbiAcI3XgWrbsLk6rdxdhESr_J5f-j8BGq4Gcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D+MRI+Flow+Coupled+to+Physics-Based+Fluid+Simulation+for+Blood-Flow+Visualization&rft.jtitle=Computer+graphics+forum&rft.au=de+Hoon%2C+N&rft.au=van+Pelt%2C+R&rft.au=Jalba%2C+A&rft.au=Vilanova%2C+A&rft.date=2014-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=121&rft_id=info:doi/10.1111%2Fcgf.12368&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3372545461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |