4D MRI Flow Coupled to Physics-Based Fluid Simulation for Blood-Flow Visualization

Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 33; no. 3; pp. 121 - 130
Main Authors de Hoon, N., van Pelt, R., Jalba, A., Vilanova, A.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically‐based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach.
AbstractList Modern MRI measurements deliver volumetric and time-varying blood-flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically-based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach. [PUBLICATION ABSTRACT]
Modern MRI measurements deliver volumetric and time-varying blood-flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically-based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach.
Author de Hoon, N.
Jalba, A.
Vilanova, A.
van Pelt, R.
Author_xml – sequence: 1
  givenname: N.
  surname: de Hoon
  fullname: de Hoon, N.
  organization: Computer Science and Mathematics, Eindhoven University of Technology, The Netherlands
– sequence: 2
  givenname: R.
  surname: van Pelt
  fullname: van Pelt, R.
  organization: Biomedical Engineering, Eindhoven University of Technology, The Netherlands
– sequence: 3
  givenname: A.
  surname: Jalba
  fullname: Jalba, A.
  organization: Computer Science and Mathematics, Eindhoven University of Technology, The Netherlands
– sequence: 4
  givenname: A.
  surname: Vilanova
  fullname: Vilanova, A.
  organization: Biomedical Engineering, Eindhoven University of Technology, The Netherlands
BookMark eNp9kMtOwzAQRS0EEqWw4A8isYFFwE78SJY0JQGJl3guLddxwODGxU4E5esxLbBAgtl4ND73auZugNXWtgqAbQT3UagD-dDsoySl2QoYIExZnFGSr4IBRKFnkJB1sOH9E4QQM0oG4AqPo7Ork6g09jUqbD8zqo46G10-zr2WPh4JHwal6XUdXetpb0SnbRs11kUjY20dL4R32vfC6PfF5yZYa4TxauvrHYLb8uimOI5PL6qT4vA0lmG9LJ4kSjaizkVCJ0w1KE2RwLXAeU5kDTM8YUxkKpcEJwlBbEKoYpgpKupwFoEoHYLdpe_M2Zde-Y5PtZfKGNEq23uOCMlpjhEmAd35hT7Z3rVhu0DhYEZJRgO1t6Sks9471fCZ01Ph5hxB_pkuD-nyRbqBPfjFSt0tzu-c0OY_xas2av63NS-q8lsRLxXad-rtRyHcM6csZYTfn1e8rEYpG48LXqUfzFOaIA
CitedBy_id crossref_primary_10_1016_j_media_2020_101773
crossref_primary_10_1098_rsif_2021_0751
crossref_primary_10_1002_mrm_28269
crossref_primary_10_1109_TIP_2024_3470553
crossref_primary_10_1016_j_media_2015_08_012
crossref_primary_10_1111_cgf_13394
crossref_primary_10_1007_s00366_022_01723_5
crossref_primary_10_1111_cgf_12803
Cites_doi 10.1007/s10915-011-9547-6
10.1109/TVCG.2013.189
10.1016/S0045-7825(98)80008-X
10.1016/0010-4655(88)90020-3
10.1146/annurev.bioeng.10.061807.160521
10.1090/S0025-5718-04-01678-3
10.1145/1276377.1276502
10.1002/jmri.23632
10.1109/CGI.1997.601299
10.1145/1073204.1073298
10.1137/1.9780898719604
10.1016/S0065-2687(08)60442-2
10.1002/mrm.1910340618
10.1109/PacificVis.2013.6596137
10.1201/b10635
10.1161/CIR.0b013e31828124ad
10.1002/jmri.1098
10.1002/cav.17
10.1145/311535.311548
10.1145/1531326.1531347
10.1093/mnras/181.3.375
10.1046/j.1525-1594.2002.07085.x
10.1002/mrm.21109
10.1145/1073204.1073282
10.1007/s10439-005-2495-2
10.1109/TVCG.2004.39
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12368
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 130
ExternalDocumentID 3372545461
10_1111_cgf_12368
CGF12368
ark_67375_WNG_FGB37DDC_G
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3688-b2ecfad9a26b7ef1331a4da4995cd084b77a8e9c5422517b56e747e6ad4675013
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Thu Jul 10 22:23:13 EDT 2025
Fri Jul 25 23:43:07 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Tue Jul 01 05:08:49 EDT 2025
Wed Jan 22 16:24:44 EST 2025
Mon Nov 18 03:20:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3688-b2ecfad9a26b7ef1331a4da4995cd084b77a8e9c5422517b56e747e6ad4675013
Notes ark:/67375/WNG-FGB37DDC-G
istex:24BEE3E15CF4E3F9052A1D559DCA51658052652C
ArticleID:CGF12368
Supporting Information
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1545016586
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1559694145
proquest_journals_1545016586
crossref_primary_10_1111_cgf_12368
crossref_citationtrail_10_1111_cgf_12368
wiley_primary_10_1111_cgf_12368_CGF12368
istex_primary_ark_67375_WNG_FGB37DDC_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Bridson R.: Fluid Simulation for Computer Graphics. A.K. Peters, 2008. 3, 8
Hong J.-M., Kim C.-H.: Controlling fluid animation with geometric potential. Computer Animation and Virtual Worlds 15, 3-4 (2004), 147-157. 3, 9
Funamoto K., Hayase T., Shirai A., Saijo Y., Yambe T.: Fundamental study of ultrasonic-measurement-integrated simulation of real blood flow in the aorta. Annals of Biomedical Engineering 33, 4 (2005), 415-428. 3
Verma V., Pang A.: Comparative flow visualization. IEEE Transactions on Visualization and Computer Graphics 10, 6 (2004), 609-24. 7
Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D.: LAPACK Users' Guide, third ed. Society for Industrial and Applied Mathematics, 1999. 8
Bammer R., Hope T., Aksoy M., Alley M.: Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magnetic Resonance in Medicine 57, 1 (2007), 127-140. 6
Markl M., Frydrychowicz A., Kozerke S., Hope M., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036. 1, 2
Selle A., Rasmussen N., Fedkiw R.: A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3 (2005), 910-914. 3
Taylor C.A., Hughes T., Zarins C.: Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanical Engineering 7825, 97 (1998), 155-196. 5
Brackbill J., Kothe D., Ruppel H.: FLIP: A low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1 (1988), 25-38. 3, 4
Ghil M., Malanotte-Rizzoli P.: Data assimilation in meteorology and oceanography. Advances in Geophysics 33 (1991), 141-266. 2
Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., Franco S., Fullerton H.J., Gillespie C., Hailpern S.M., Heit J.A., Howard V.J., Huffman M.D., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Magid D., Marcus G.M., Marelli A., Matchar D.B., McGuire D.K., Mohler E.R., Moy C.S., Mussolino M.E., Nichol G., Paynter N.P., Schreiner P.J., Sorlie P.D.J. Stein T. N. T., Virani S.S., Wong N.D., Woo D., Turner M.B.: Heart disease and stroke statistics - 2013 update. Circulation 127, 1 (2013), e6-e245. 1
Wood N.B., Weston S.J., Kilner P.J., Gosman A.D., Firmin D.N.: Combined MR imaging and CFD simulation of flow in the human descending aorta. Journal of Magnetic Resonance Imaging 13, 5 (2001), 699-713. 3
Potchen E.J., Haacke E.M.: Magnetic resonance angiography: concepts & applications. Mosby-Year Book, 1993. 7
Gingold R.A., Monaghan J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181 (1977), 375-389. 4
Glor F.P., Westenberg J. J. M., Vierendeels J., Danilouchkine M., Verdonck P.: Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend. Artificial Organs 26, 7 (2002), 622-35. 3
Batty C., Bertails F., Bridson R.: A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3 (2007), 100:1-100:7. 4, 5, 8
Gudbjartsson H., Patz S.: The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine 34, 6 (1995), 910-914. 6
Schwenke M., Hennemuth A., Fischer B., Friman O.: Blood flow computation in phase-contrast MRI by minimal paths in anisotropic media. Medical Image Computing and Computer-Assisted Intervention 14, 1 (2011), 436-443. 2
D'Elia M., Perego M., Veneziani A.: A variational data assimilation procedure for the incompressible navierstokes equations in hemodynamics. Journal of Scientific Computing 52, 2 (2012), 340-359. 3
Taylor C.A., Figueroa C.A.: Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 11 (2009), 109-34. 2
Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-Automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2783. 2
Horvath C., Geiger W.: Directable, high-resolution simulation of fire on the GPU. ACM Transactions on Graphics 28, 3 (2009), 41:1-41:8. 8
Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 4
Zhao H.: A fast sweeping method for Eikonal equations. Mathematics of Computation 74 (2005), 603-627. 4
2012
1991; 33
2013; 127
1995; 34
2008
1997
1993
2003
2011; 14
2012; 36
2007; 57
2012; 52
2005; 24
1999
2009; 28
2013; 19
2004; 10
1977; 181
2009; 11
2002; 26
1998; 7825
1988; 48
2004; 15
2005; 74
2013
2001; 13
2005; 33
2007; 26
e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
Schwenke M. (e_1_2_9_23_2) 2011; 14
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
Potchen E.J. (e_1_2_9_22_2) 1993
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – reference: Köhler B., Gasteiger R., Preim U., Theisel H., Gutberlet M., Preim B.: Semi-Automatic vortex extraction in 4D PC-MRI cardiac blood flow data using line predicates. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2773-2783. 2
– reference: Selle A., Rasmussen N., Fedkiw R.: A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3 (2005), 910-914. 3
– reference: Gudbjartsson H., Patz S.: The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine 34, 6 (1995), 910-914. 6
– reference: Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 4
– reference: Markl M., Frydrychowicz A., Kozerke S., Hope M., Wieben O.: 4D flow MRI. Journal of Magnetic Resonance Imaging 36, 5 (2012), 1015-1036. 1, 2
– reference: Funamoto K., Hayase T., Shirai A., Saijo Y., Yambe T.: Fundamental study of ultrasonic-measurement-integrated simulation of real blood flow in the aorta. Annals of Biomedical Engineering 33, 4 (2005), 415-428. 3
– reference: Taylor C.A., Hughes T., Zarins C.: Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanical Engineering 7825, 97 (1998), 155-196. 5
– reference: Bammer R., Hope T., Aksoy M., Alley M.: Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magnetic Resonance in Medicine 57, 1 (2007), 127-140. 6
– reference: Potchen E.J., Haacke E.M.: Magnetic resonance angiography: concepts & applications. Mosby-Year Book, 1993. 7
– reference: Taylor C.A., Figueroa C.A.: Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 11 (2009), 109-34. 2
– reference: Wood N.B., Weston S.J., Kilner P.J., Gosman A.D., Firmin D.N.: Combined MR imaging and CFD simulation of flow in the human descending aorta. Journal of Magnetic Resonance Imaging 13, 5 (2001), 699-713. 3
– reference: Ghil M., Malanotte-Rizzoli P.: Data assimilation in meteorology and oceanography. Advances in Geophysics 33 (1991), 141-266. 2
– reference: Verma V., Pang A.: Comparative flow visualization. IEEE Transactions on Visualization and Computer Graphics 10, 6 (2004), 609-24. 7
– reference: Horvath C., Geiger W.: Directable, high-resolution simulation of fire on the GPU. ACM Transactions on Graphics 28, 3 (2009), 41:1-41:8. 8
– reference: D'Elia M., Perego M., Veneziani A.: A variational data assimilation procedure for the incompressible navierstokes equations in hemodynamics. Journal of Scientific Computing 52, 2 (2012), 340-359. 3
– reference: Gingold R.A., Monaghan J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181 (1977), 375-389. 4
– reference: Zhao H.: A fast sweeping method for Eikonal equations. Mathematics of Computation 74 (2005), 603-627. 4
– reference: Batty C., Bertails F., Bridson R.: A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3 (2007), 100:1-100:7. 4, 5, 8
– reference: Brackbill J., Kothe D., Ruppel H.: FLIP: A low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1 (1988), 25-38. 3, 4
– reference: Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., Franco S., Fullerton H.J., Gillespie C., Hailpern S.M., Heit J.A., Howard V.J., Huffman M.D., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Magid D., Marcus G.M., Marelli A., Matchar D.B., McGuire D.K., Mohler E.R., Moy C.S., Mussolino M.E., Nichol G., Paynter N.P., Schreiner P.J., Sorlie P.D.J. Stein T. N. T., Virani S.S., Wong N.D., Woo D., Turner M.B.: Heart disease and stroke statistics - 2013 update. Circulation 127, 1 (2013), e6-e245. 1
– reference: Schwenke M., Hennemuth A., Fischer B., Friman O.: Blood flow computation in phase-contrast MRI by minimal paths in anisotropic media. Medical Image Computing and Computer-Assisted Intervention 14, 1 (2011), 436-443. 2
– reference: Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D.: LAPACK Users' Guide, third ed. Society for Industrial and Applied Mathematics, 1999. 8
– reference: Bridson R.: Fluid Simulation for Computer Graphics. A.K. Peters, 2008. 3, 8
– reference: Glor F.P., Westenberg J. J. M., Vierendeels J., Danilouchkine M., Verdonck P.: Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend. Artificial Organs 26, 7 (2002), 622-35. 3
– reference: Hong J.-M., Kim C.-H.: Controlling fluid animation with geometric potential. Computer Animation and Virtual Worlds 15, 3-4 (2004), 147-157. 3, 9
– volume: 28
  start-page: 41:1
  issue: 3
  year: 2009
  end-page: 41:8
  article-title: Directable, high‐resolution simulation of fire on the GPU
  publication-title: ACM Transactions on Graphics
– volume: 13
  start-page: 699
  issue: 5
  year: 2001
  end-page: 713
  article-title: Combined MR imaging and CFD simulation of flow in the human descending aorta
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 26
  start-page: 100:1
  issue: 3
  year: 2007
  end-page: 100:7
  article-title: A fast variational framework for accurate solid‐fluid coupling
  publication-title: ACM Transactions on Graphics
– start-page: 129
  year: 2013
  end-page: 136
– volume: 26
  start-page: 622
  issue: 7
  year: 2002
  end-page: 35
  article-title: Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend
  publication-title: Artificial Organs
– volume: 24
  start-page: 965
  issue: 3
  year: 2005
  end-page: 972
  article-title: Animating sand as a fluid
  publication-title: ACM Transactions on Graphics
– start-page: 219
  year: 2008
  end-page: 228
– volume: 127
  start-page: e6
  issue: 1
  year: 2013
  article-title: Heart disease and stroke statistics – 2013 update
  publication-title: Circulation
– volume: 33
  start-page: 141
  year: 1991
  end-page: 266
  article-title: Data assimilation in meteorology and oceanography
  publication-title: Advances in Geophysics
– volume: 36
  start-page: 1015
  issue: 5
  year: 2012
  end-page: 1036
  article-title: 4D flow MRI
  publication-title: Journal of Magnetic Resonance Imaging
– start-page: 121
  year: 1999
  end-page: 128
– volume: 14
  start-page: 436
  issue: 1
  year: 2011
  end-page: 443
  article-title: Blood flow computation in phase‐contrast MRI by minimal paths in anisotropic media
  publication-title: Medical Image Computing and Computer‐Assisted Intervention
– volume: 57
  start-page: 127
  issue: 1
  year: 2007
  end-page: 140
  article-title: Time‐resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging
  publication-title: Magnetic Resonance in Medicine
– volume: 19
  start-page: 2773
  issue: 12
  year: 2013
  end-page: 2783
  article-title: Semi‐Automatic vortex extraction in 4D PC‐MRI cardiac blood flow data using line predicates
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2012
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  article-title: Smoothed particle hydrodynamics: theory and application to non‐spherical stars
  publication-title: Monthly Notices of the Royal Astronomical Society
– start-page: 178
  year: 1997
  end-page: 188
– volume: 74
  start-page: 603
  year: 2005
  end-page: 627
  article-title: A fast sweeping method for Eikonal equations
  publication-title: Mathematics of Computation
– year: 2008
– volume: 24
  start-page: 910
  issue: 3
  year: 2005
  end-page: 914
  article-title: A vortex particle method for smoke, water and explosions
  publication-title: ACM Transactions on Graphics
– volume: 15
  start-page: 147
  issue: 3–4
  year: 2004
  end-page: 157
  article-title: Controlling fluid animation with geometric potential
  publication-title: Computer Animation and Virtual Worlds
– volume: 11
  start-page: 109
  year: 2009
  end-page: 34
  article-title: Patient‐specific modeling of cardiovascular mechanics
  publication-title: Annual Review of Biomedical Engineering
– volume: 10
  start-page: 609
  issue: 6
  year: 2004
  end-page: 24
  article-title: Comparative flow visualization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 7825
  start-page: 155
  issue: 97
  year: 1998
  end-page: 196
  article-title: Finite element modeling of blood flow in arteries
  publication-title: Computer Methods in Applied Mechanical Engineering
– volume: 52
  start-page: 340
  issue: 2
  year: 2012
  end-page: 359
  article-title: A variational data assimilation procedure for the incompressible navierstokes equations in hemodynamics
  publication-title: Journal of Scientific Computing
– start-page: 154
  year: 2003
  end-page: 159
– volume: 33
  start-page: 415
  issue: 4
  year: 2005
  end-page: 428
  article-title: Fundamental study of ultrasonic‐measurement‐integrated simulation of real blood flow in the aorta
  publication-title: Annals of Biomedical Engineering
– year: 1993
– year: 1999
– volume: 48
  start-page: 25
  issue: 1
  year: 1988
  end-page: 38
  article-title: FLIP: A low‐dissipation, particle‐in‐cell method for fluid flow
  publication-title: Computer Physics Communications
– volume: 34
  start-page: 910
  issue: 6
  year: 1995
  end-page: 914
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magnetic Resonance in Medicine
– ident: e_1_2_9_9_2
  doi: 10.1007/s10915-011-9547-6
– ident: e_1_2_9_19_2
  doi: 10.1109/TVCG.2013.189
– ident: e_1_2_9_27_2
  doi: 10.1016/S0045-7825(98)80008-X
– ident: e_1_2_9_6_2
  doi: 10.1016/0010-4655(88)90020-3
– ident: e_1_2_9_26_2
  doi: 10.1146/annurev.bioeng.10.061807.160521
– ident: e_1_2_9_32_2
  doi: 10.1090/S0025-5718-04-01678-3
– ident: e_1_2_9_4_2
  doi: 10.1145/1276377.1276502
– ident: e_1_2_9_21_2
  doi: 10.1002/jmri.23632
– ident: e_1_2_9_11_2
  doi: 10.1109/CGI.1997.601299
– ident: e_1_2_9_29_2
– volume-title: Magnetic resonance angiography: concepts & applications
  year: 1993
  ident: e_1_2_9_22_2
– ident: e_1_2_9_31_2
  doi: 10.1145/1073204.1073298
– ident: e_1_2_9_2_2
  doi: 10.1137/1.9780898719604
– ident: e_1_2_9_13_2
  doi: 10.1016/S0065-2687(08)60442-2
– ident: e_1_2_9_15_2
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_9_7_2
  doi: 10.1109/PacificVis.2013.6596137
– ident: e_1_2_9_8_2
  doi: 10.1201/b10635
– ident: e_1_2_9_14_2
  doi: 10.1161/CIR.0b013e31828124ad
– ident: e_1_2_9_30_2
  doi: 10.1002/jmri.1098
– volume: 14
  start-page: 436
  issue: 1
  year: 2011
  ident: e_1_2_9_23_2
  article-title: Blood flow computation in phase‐contrast MRI by minimal paths in anisotropic media
  publication-title: Medical Image Computing and Computer‐Assisted Intervention
– ident: e_1_2_9_18_2
  doi: 10.1002/cav.17
– ident: e_1_2_9_25_2
  doi: 10.1145/311535.311548
– ident: e_1_2_9_3_2
– ident: e_1_2_9_17_2
  doi: 10.1145/1531326.1531347
– ident: e_1_2_9_20_2
– ident: e_1_2_9_12_2
  doi: 10.1093/mnras/181.3.375
– ident: e_1_2_9_16_2
  doi: 10.1046/j.1525-1594.2002.07085.x
– ident: e_1_2_9_5_2
  doi: 10.1002/mrm.21109
– ident: e_1_2_9_24_2
  doi: 10.1145/1073204.1073282
– ident: e_1_2_9_10_2
  doi: 10.1007/s10439-005-2495-2
– ident: e_1_2_9_28_2
  doi: 10.1109/TVCG.2004.39
SSID ssj0004765
Score 2.1608183
Snippet Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a...
Modern MRI measurements deliver volumetric and time-varying blood-flow data of unprecedented quality. Visual analysis of these data potentially leads to a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121
SubjectTerms Analysis
Cardiovascular disease
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Computer simulation
Data assimilation
Diseases
G.1.1 [Mathematics of Computing] Numerical Analysis-Interpolation
I.3.8 [Computer Graphics] Applications-4D PC-MRI Blood-Flow
I.6.8 [Simulation and Modeling] Types of Simulation-Combined
Imaging
Joining
Mathematical models
Medical imaging
Noise
Risk
Simulation
Studies
Visualization
Title 4D MRI Flow Coupled to Physics-Based Fluid Simulation for Blood-Flow Visualization
URI https://api.istex.fr/ark:/67375/WNG-FGB37DDC-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12368
https://www.proquest.com/docview/1545016586
https://www.proquest.com/docview/1559694145
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Me0kPTdMHdeqEbSmlF5lG3tWDnGK7sltoDmnt-lBY9qVg4lohtkjIKT8hvzG_JDOrR-3QQulFEuwsjHZ3Zr6VZr4l5J1UloV-13pMA3wD76e9yIdLGqj4wPhhBA-YbXEcjMbsy5RPG-SwqoUp-CHqD25oGc5fo4FLtVwzcn2adpA6BAt9MVcLAdHJb-ooFga84vVGxpiSVQizeOqeG7HoEQ7r1QbQXIerLt4k2-RnpWmRZnLWyVeqo68fkDj-56s8JU9KHEqPioWzQxp28Yw8XmMnfE4mbEC_nnymyTy7pP0sP59bQ1cZdUmjenl3c9uDEGigPZ8Z-m32qzwJjAIOpj1MiAcR13kyW2LtZlHx-YKMk0_f-yOvPIbB06BS5Cnf6lSaWPqBCm0Km9oDyYyErRLX5mPEVBjKyMaaMx_5zxQPLOxRbCANOGEOEPMlaS6yhX1FKE81BGUbS7gxCe4kZrFW1nDT7QZMBy3yoZoQoUuOcjwqYy6qvQoMlXBD1SJva9HzgpjjT0Lv3azWEvLiDDPZQi5-HA9FMux1w8GgL4Yt0q6mXZRGvBSILrHaKwK93tTNYH74T0UubJajDI-xFphx0N3N8d-1Ef1h4h52_130NdkCiMaK5LQ2aa4ucrsHMGil9t16vwcCowOo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9gAceCMCBQxCiMtGdGPvQ-JCEjYptDmUtvRSWX5tFTXNVk1WIE78BH4jv4QZ74MUgYS47FryWJq1PfY33pnPAC-UdjwOey7gBuEbrn4mSEJ85JFOt2wYJ1igaItJND7g74_E0Rq8aXJhKn6I9sCNLMOv12TgdCC9YuXmJO8Sd0hyBTboRm9izh_u_SKP4nEkGmZv4oypeYUojqdtemk32qCO_XIJaq4CVr_jZDfhuNG1CjQ57ZZL3TVff6Nx_N-PuQU3aijK3lZz5zasufkduL5CUHgXDvmQ7e5ts2xWfGaDojyfOcuWBfNxo2bx49v3Pu6CFuvLqWUfp2f1ZWAMoTDrU0w8ivjGh9MFpW9WSZ_34CB7tz8YB_VNDIFBlZJAh87kyqYqjHTscvRrtxS3Cr0lYezrhOs4VolLjeAhUaBpETl0U1ykLK7DAlHmfVifF3P3AJjIDe7LLlX44gpXlJSnRjsrbK8XcRN14FUzItLUNOV0W8ZMNu4KdpX0XdWB563oecXN8Sehl35YWwl1cUrBbLGQnyYjmY36vXg4HMhRBzabcZe1HS8kAUxK-EpQr2dtNVog_VZRc1eUJCNSSgfmAnX3g_x3beRglPnCw38XfQpXx_u7O3Jne_LhEVxDxMarWLVNWF9elO4xoqKlfuIn_08xnQfE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJw4I1YKGAQQlyyarO2k4gTuyHb8lihQksPSJZjO2jVZbPqbgTixE_gN_JLmHEebBFIiEsSyWNpYnvGn5OZbwAe6dzxKBy4gBuEb-j9TBCHeClknuzaMIrxgaItJnLvkL84Fscb8LTNhan5IboPbmQZ3l-TgS9ssWbk5mPRJ-qQ-BxscbmTUN2G9OAXdxSPpGiJvYkypqEVojCeruuZzWiLxvXLGaS5jlf9hpNdhg-tqnWcyUm_WuV98_U3Fsf_fJcrcKkBouxZvXKuwoabX4OLa_SE1-GIp-z1wT7LZuVnNiqrxcxZtiqZjxo1yx_fvg9xD7TYXk0tezv91JQCYwiE2ZAi4lHEdz6aLil5s075vAGH2fN3o72gqcMQGFQpDvLQmULbRIcyj1yBp9pdza3Gs5IwdifmeRTp2CVG8JAI0HIhHR5SnNQWvbBAjHkTNufl3N0CJgqDu7JLNN64Rn-S8MTkzgo7GEhuZA-etBOiTENSTrUyZqo9rOBQKT9UPXjYiS5qZo4_CT32s9pJ6NMTCmWLhHo_GatsPBxEaTpS4x5st9OuGiteKoKXlO4Vo14Puma0P_qpoueurEhGJJQMzAXq7uf479qo0TjzD7f_XfQ-nH-TZurV_uTlHbiAcI3XgWrbsLk6rdxdhESr_J5f-j8BGq4Gcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D+MRI+Flow+Coupled+to+Physics-Based+Fluid+Simulation+for+Blood-Flow+Visualization&rft.jtitle=Computer+graphics+forum&rft.au=de+Hoon%2C+N&rft.au=van+Pelt%2C+R&rft.au=Jalba%2C+A&rft.au=Vilanova%2C+A&rft.date=2014-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=121&rft_id=info:doi/10.1111%2Fcgf.12368&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3372545461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon