Visual Analysis of Sets of Heterogeneous Matrices Using Projection-Based Distance Functions and Semantic Zoom

Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node‐link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is re...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 33; no. 3; pp. 411 - 420
Main Authors Behrisch, Michael, Davey, James, Fischer, Fabian, Thonnard, Olivier, Schreck, Tobias, Keim, Daniel, Kohlhammer, Jörn
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node‐link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network traffic a dynamic set of hosts and their peer‐to‐peer connections on different ports must be analysed. A matrix visualization focused on the display of one matrix at a time cannot cope with this task. We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing matrices of potentially varying size. Our approach considers the rows and/or columns of a matrix as the basic elements of the analysis. We project these vectors for pairs of matrices into a low‐dimensional space which is used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking, clustering and comparison in sets of matrices. We present an interactive system in which users may explore the matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths.
AbstractList Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node-link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network traffic a dynamic set of hosts and their peer-to-peer connections on different ports must be analysed. A matrix visualization focused on the display of one matrix at a time cannot cope with this task. We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing matrices of potentially varying size. Our approach considers the rows and/or columns of a matrix as the basic elements of the analysis. We project these vectors for pairs of matrices into a low-dimensional space which is used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking, clustering and comparison in sets of matrices. We present an interactive system in which users may explore the matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths.
Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node-link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network traffic a dynamic set of hosts and their peer-to-peer connections on different ports must be analysed. A matrix visualization focused on the display of one matrix at a time cannot cope with this task. We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing matrices of potentially varying size. Our approach considers the rows and/or columns of a matrix as the basic elements of the analysis. We project these vectors for pairs of matrices into a low-dimensional space which is used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking, clustering and comparison in sets of matrices. We present an interactive system in which users may explore the matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths. [PUBLICATION ABSTRACT]
Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node‐link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network traffic a dynamic set of hosts and their peer‐to‐peer connections on different ports must be analysed. A matrix visualization focused on the display of one matrix at a time cannot cope with this task. We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing matrices of potentially varying size. Our approach considers the rows and/or columns of a matrix as the basic elements of the analysis. We project these vectors for pairs of matrices into a low‐dimensional space which is used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking, clustering and comparison in sets of matrices. We present an interactive system in which users may explore the matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths.
Author Fischer, Fabian
Thonnard, Olivier
Keim, Daniel
Schreck, Tobias
Behrisch, Michael
Davey, James
Kohlhammer, Jörn
Author_xml – sequence: 1
  givenname: Michael
  surname: Behrisch
  fullname: Behrisch, Michael
  organization: Universität Konstanz, Germany
– sequence: 2
  givenname: James
  surname: Davey
  fullname: Davey, James
  organization: Fraunhofer IGD, Germany
– sequence: 3
  givenname: Fabian
  surname: Fischer
  fullname: Fischer, Fabian
  organization: Universität Konstanz, Germany
– sequence: 4
  givenname: Olivier
  surname: Thonnard
  fullname: Thonnard, Olivier
  organization: Symantec Research Labs, France
– sequence: 5
  givenname: Tobias
  surname: Schreck
  fullname: Schreck, Tobias
  organization: Universität Konstanz, Germany
– sequence: 6
  givenname: Daniel
  surname: Keim
  fullname: Keim, Daniel
  organization: Universität Konstanz, Germany
– sequence: 7
  givenname: Jörn
  surname: Kohlhammer
  fullname: Kohlhammer, Jörn
  organization: Technische Universität Darmstadt, Germany
BookMark eNp9kM1uEzEURi1UJNLCgjewxAYW03rGfzPLEkiKFAoSLUhsLMdzHTnM2MX2iObt6yTAohJ4c62r833SPafoxAcPCL2syXld3oXZ2PO6oZ18gmY1E7JqBe9O0IzU5S8J58_QaUpbQgiTgs_Q-NWlSQ_40uthl1zCweIvkA_zCjLEsAEPYUr4o87RGUj4Njm_wZ9j2ILJLvjqrU7Q43cuZe0N4MXkD_uEte9L2ah9dgZ_D2F8jp5aPSR48XueodvF-5v5VbX6tPwwv1xVhopWVr0kDaXCGi6Ar22joWXN2gJpeyNtuYj1bU97sebcAABtWsaIsEx3nBEqCD1Dr4-9dzH8nCBlNbpkYBj04RZVc96Jri0OCvrqEboNUyw29hTjxRvjXaHeHCkTQ0oRrLqLbtRxp2qi9uJVEa8O4gt78Yg1Luu9kRy1G_6X-OUG2P27Ws2Xiz-J6pgo0uH-b0LHH0pIKrn6dr1Uy1W7uOHXTHH6AJyBpUs
CitedBy_id crossref_primary_10_1111_cgf_70000
crossref_primary_10_1093_bib_bby019
crossref_primary_10_1109_TVCG_2017_2745298
crossref_primary_10_1109_TVCG_2018_2865940
crossref_primary_10_1109_TVCG_2020_3030408
crossref_primary_10_1109_TVCG_2018_2865139
Cites_doi 10.1109/TVCG.2013.192
10.1109/34.601251
10.1080/00029890.1962.11989827
10.1186/1471-2105-11-330
10.1515/9783110854688
10.1002/0470013192.bsa501
10.1109/34.6778
10.1007/3-540-70659-3_13
10.1109/T-C.1973.223602
10.1109/TVCG.2012.191
10.1145/996546.996554
10.1023/B:VISI.0000029664.99615.94
10.1109/PACIFICVIS.2008.4475479
10.1057/palgrave.ivs.9500092
10.1201/9781420036121
10.1109/TSMC.1983.6313167
10.1109/TPAMI.2004.1265866
10.1142/S0129054196000051
10.1145/1345448.1345453
10.1007/978-3-540-33037-0_26
10.1109/TVCG.2012.208
10.1109/VAST.2012.6400549
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12397
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 420
ExternalDocumentID 3372545451
10_1111_cgf_12397
CGF12397
ark_67375_WNG_GL8FT5N4_5
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3687-d702336fc56e5bf2ae842bfe08dc7f8654d8d3d6b55ceee3284406f4a95403603
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 11 02:13:27 EDT 2025
Fri Jul 25 05:55:45 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Tue Jul 01 02:23:04 EDT 2025
Wed Jan 22 16:24:44 EST 2025
Wed Oct 30 09:54:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3687-d702336fc56e5bf2ae842bfe08dc7f8654d8d3d6b55ceee3284406f4a95403603
Notes istex:193F428AD363479BFA1A083342EC27BF024FC683
ark:/67375/WNG-GL8FT5N4-5
ArticleID:CGF12397
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1545016459
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1559698047
proquest_journals_1545016459
crossref_primary_10_1111_cgf_12397
crossref_citationtrail_10_1111_cgf_12397
wiley_primary_10_1111_cgf_12397_CGF12397
istex_primary_ark_67375_WNG_GL8FT5N4_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References van der Maaten L., Hinton G.: Visualizing Data using t-SNE. JMLR 9 (Nov. 2008), 2579-2605. 5
Zhang K., Wang J. T.-L., Shasha D.: On the editing distance between undirected acyclic graphs. Int. J. Found. Comput. Sci. 7, 1 (1996), 43-58. 3
Bertin J.: Graphics and graphic information-processing. de Gruyter, 1981. 1
Burch M., Vehlow C., Beck F., Diehl S., Weiskopf D.: Parallel edge splatting for scalable dynamic graph vis. IEEE TVCG 17, 12 (2011), 2344-2353. 3
Gusfield D., Irving R.W.: The stable marriage problem: structure and algorithms. MIT Press, 1989. 5
Cordella L., Foggia P., Sansone C., Vento M.: An efficient algorithm for the inexact matching of arg graphs using a contextual transformational model. In Pattern Recognition, 1996., Proc. of the 13th Int. Conference on (1996), vol. 3, IEEE, pp. 180-184 vol. 3. 3
Jolliffe I.: Principal component analysis. Wiley Online Library, 2005. 5
Lowe D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 2 (2004), 91-110. 3
Dinkla K., Westenberg M., van Wijk J.: Compressed adjacency matrices: Untangling gene regulatory networks. Vis. and Computer Graphics, IEEE Trans. on 18, 12 (2012), 2457-2466. 2
Ghoniem M., Fekete J.-D., Castagliola P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Info Vis. 4, 2 (July 2005), 114-135. 1, 2
Cox T.F., Cox M.: Multidimensional Scaling, Second edition, 2 ed. Chapman and Hall/CRC, 2000. 5
Henry N., Fekete J.-D.: Matrixexplorer: a dual-representation system to explore social networks. IEEE TVCG 12 (2006), 677-684. 1, 2
Yang D., Xie Z., Rundensteiner E.A., Ward M.O.: Managing discoveries in the visual analytics process. SIGKDD Explor. Newsl. 9, 2 (Dec. 2007), 22-29. 3
Caelli T., Kosinov S.: An eigenspace projection clustering method for inexact graph matching. IEEE TPAMI 26, 4 (2004), 515-519. 3, 4, 9
Pelillo M.: A unifying framework for relational structure matching. In Pattern Recognition, 1998. Proc.. Fourteenth Int. Conference on (1998), vol. 2, pp. 1316-1319 vol. 2. 3
Gale D., Shapley L.S.: College admissions and the stability of marriage. The American Mathematical Monthly 69, 1 (1962), pp. 9-15. 5
Petit J.: Experiments on the minimum linear arrangement problem. J. Exp. Algorithmics 8 (Dec. 2003). 8
Fischler M.A., Elschlager R.: The representation and matching of pictorial structures. IEEE TC 22, 1 (1973), 67-92. 3
Umeyama S.: An eigendecomposition approach to weighted graph matching problems. Pattern Analysis and Machine Intelligence, IEEE Trans. on 10, 5 (1988), 695-703. 3
Wilson R., Hancock E.: Structural matching by discrete relaxation. Pattern Analysis and Machine Intelligence, IEEE Trans. on 19, 6 (1997), 634-648. 3
Sanfeliu A., Fu K.-S.: A distance measure between attributed relational graphs for pattern recognition. Systems, Man and Cybernetics, IEEE Trans. on, 3 (1983), 353-362. 3
Wu H.-M., Tzeng S., Chen C.-H.: Handbook of Data Vis. Springer, 2008, ch. Matrix Visualization, pp. 681-708. 2
Carreira-Perpinan M.A.: A Review of Dimension Reduction Techniques. Department of Computer Science. University of Sheffield. Tech. Rep. CS-96-09 09 (1997), 1-69. 5
Sips M., Köthur P., Unger A., Hege H.-C., Dransch D.: A visual analytics approach to multiscale exploration of environmental time series. IEEE Trans. Vis. Comput. Graph. 18, 12 (2012), 2899-2907. 2
Perin C., Vuillemot R., Fekete J.-D.: Soccerstories: A kick-off for visual soccer analysis. Vis. and Computer Graphics, IEEE Trans. on 19, 12 (2013), 2506-2515. 8
Henry N., Fekete J.-D., McGuffin M.J.: NodeTrix: a Hybrid Visualization of Social Networks. IEEE TVCG 13, 6 (2007), 1302-9. 1, 2
2002; 2396
2004; 60
2012
2006; 12
1983; 3
2011
2010
2004; 26
1988; 10
2008; 9
2009
2008
2007
2012; 18
2005
2004
2004; 1
1997; 09
2002
2011; 17
2007; 13
2013; 19
1973; 22
2000
2003; 8
1997; 19
2005; 4
2007; 9
1962; 69
1998; 2
1981
2013
1996; 3
1989
1996; 7
e_1_2_10_22_2
e_1_2_10_23_2
Burch M. (e_1_2_10_7_2) 2011; 17
Abello J. (e_1_2_10_2_2) 2004
e_1_2_10_40_2
(e_1_2_10_33_2) 2008; 9
Carreira‐Perpinan M.A. (e_1_2_10_12_2) 1997; 09
Wyk B. (e_1_2_10_38_2) 2002
Henry N. (e_1_2_10_21_2) 2007; 13
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_39_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_37_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_8_2
(e_1_2_10_34_2) 2009
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
Fekete J.‐D. (e_1_2_10_16_2) 2004
Behrisch M. (e_1_2_10_5_2) 2012
Paulovich F.V. (e_1_2_10_28_2) 2007
Gusfield D. (e_1_2_10_18_2) 1989
Henry N. (e_1_2_10_20_2) 2006; 12
Pelillo M. (e_1_2_10_26_2) 1998; 2
e_1_2_10_29_2
Cordella L. (e_1_2_10_9_2) 1996; 3
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Bertin J.: Graphics and graphic information-processing. de Gruyter, 1981. 1
– reference: Cox T.F., Cox M.: Multidimensional Scaling, Second edition, 2 ed. Chapman and Hall/CRC, 2000. 5
– reference: Yang D., Xie Z., Rundensteiner E.A., Ward M.O.: Managing discoveries in the visual analytics process. SIGKDD Explor. Newsl. 9, 2 (Dec. 2007), 22-29. 3
– reference: Dinkla K., Westenberg M., van Wijk J.: Compressed adjacency matrices: Untangling gene regulatory networks. Vis. and Computer Graphics, IEEE Trans. on 18, 12 (2012), 2457-2466. 2
– reference: Sips M., Köthur P., Unger A., Hege H.-C., Dransch D.: A visual analytics approach to multiscale exploration of environmental time series. IEEE Trans. Vis. Comput. Graph. 18, 12 (2012), 2899-2907. 2
– reference: Lowe D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 2 (2004), 91-110. 3
– reference: Sanfeliu A., Fu K.-S.: A distance measure between attributed relational graphs for pattern recognition. Systems, Man and Cybernetics, IEEE Trans. on, 3 (1983), 353-362. 3
– reference: Petit J.: Experiments on the minimum linear arrangement problem. J. Exp. Algorithmics 8 (Dec. 2003). 8
– reference: Fischler M.A., Elschlager R.: The representation and matching of pictorial structures. IEEE TC 22, 1 (1973), 67-92. 3
– reference: Umeyama S.: An eigendecomposition approach to weighted graph matching problems. Pattern Analysis and Machine Intelligence, IEEE Trans. on 10, 5 (1988), 695-703. 3
– reference: Pelillo M.: A unifying framework for relational structure matching. In Pattern Recognition, 1998. Proc.. Fourteenth Int. Conference on (1998), vol. 2, pp. 1316-1319 vol. 2. 3
– reference: Wilson R., Hancock E.: Structural matching by discrete relaxation. Pattern Analysis and Machine Intelligence, IEEE Trans. on 19, 6 (1997), 634-648. 3
– reference: Ghoniem M., Fekete J.-D., Castagliola P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Info Vis. 4, 2 (July 2005), 114-135. 1, 2
– reference: Wu H.-M., Tzeng S., Chen C.-H.: Handbook of Data Vis. Springer, 2008, ch. Matrix Visualization, pp. 681-708. 2
– reference: Henry N., Fekete J.-D.: Matrixexplorer: a dual-representation system to explore social networks. IEEE TVCG 12 (2006), 677-684. 1, 2
– reference: Gale D., Shapley L.S.: College admissions and the stability of marriage. The American Mathematical Monthly 69, 1 (1962), pp. 9-15. 5
– reference: Cordella L., Foggia P., Sansone C., Vento M.: An efficient algorithm for the inexact matching of arg graphs using a contextual transformational model. In Pattern Recognition, 1996., Proc. of the 13th Int. Conference on (1996), vol. 3, IEEE, pp. 180-184 vol. 3. 3
– reference: van der Maaten L., Hinton G.: Visualizing Data using t-SNE. JMLR 9 (Nov. 2008), 2579-2605. 5
– reference: Jolliffe I.: Principal component analysis. Wiley Online Library, 2005. 5
– reference: Zhang K., Wang J. T.-L., Shasha D.: On the editing distance between undirected acyclic graphs. Int. J. Found. Comput. Sci. 7, 1 (1996), 43-58. 3
– reference: Henry N., Fekete J.-D., McGuffin M.J.: NodeTrix: a Hybrid Visualization of Social Networks. IEEE TVCG 13, 6 (2007), 1302-9. 1, 2
– reference: Burch M., Vehlow C., Beck F., Diehl S., Weiskopf D.: Parallel edge splatting for scalable dynamic graph vis. IEEE TVCG 17, 12 (2011), 2344-2353. 3
– reference: Gusfield D., Irving R.W.: The stable marriage problem: structure and algorithms. MIT Press, 1989. 5
– reference: Carreira-Perpinan M.A.: A Review of Dimension Reduction Techniques. Department of Computer Science. University of Sheffield. Tech. Rep. CS-96-09 09 (1997), 1-69. 5
– reference: Perin C., Vuillemot R., Fekete J.-D.: Soccerstories: A kick-off for visual soccer analysis. Vis. and Computer Graphics, IEEE Trans. on 19, 12 (2013), 2506-2515. 8
– reference: Caelli T., Kosinov S.: An eigenspace projection clustering method for inexact graph matching. IEEE TPAMI 26, 4 (2004), 515-519. 3, 4, 9
– start-page: 61
  year: 2012
  end-page: 65
– year: 2011
– year: 1981
– volume: 12
  start-page: 677
  year: 2006
  end-page: 684
  article-title: Matrixexplorer: a dual‐representation system to explore social networks
  publication-title: IEEE TVCG
– volume: 17
  start-page: 2344
  issue: 12
  year: 2011
  end-page: 2353
  article-title: Parallel edge splatting for scalable dynamic graph vis
  publication-title: IEEE TVCG
– volume: 13
  start-page: 1302
  issue: 6
  year: 2007
  end-page: 9
  article-title: N T : a Hybrid Visualization of Social Networks
  publication-title: IEEE TVCG
– year: 2005
– volume: 19
  start-page: 634
  issue: 6
  year: 1997
  end-page: 648
  article-title: Structural matching by discrete relaxation
  publication-title: Pattern Analysis and Machine Intelligence, IEEE Trans. on
– volume: 3
  start-page: 353
  year: 1983
  end-page: 362
  article-title: A distance measure between attributed relational graphs for pattern recognition
  publication-title: Systems, Man and Cybernetics, IEEE Trans. on
– year: 1989
– start-page: 133
  year: 2002
  end-page: 142
– volume: 3
  start-page: 180
  year: 1996
  end-page: 184
  article-title: An efficient algorithm for the inexact matching of arg graphs using a contextual transformational model
  publication-title: Pattern Recognition
– year: 2000
– volume: 9
  start-page: 22
  issue: 2
  year: 2007
  end-page: 29
  article-title: Managing discoveries in the visual analytics process
  publication-title: SIGKDD Explor. Newsl.
– start-page: 27
  year: 2007
  end-page: 36
– start-page: 681
  year: 2008
  end-page: 708
– volume: 69
  start-page: 9
  issue: 1
  year: 1962
  end-page: 15
  article-title: College admissions and the stability of marriage
  publication-title: The American Mathematical Monthly
– start-page: 155
  year: 2009
  end-page: 162
– volume: 8
  year: 2003
  article-title: Experiments on the minimum linear arrangement problem
  publication-title: J. Exp. Algorithmics
– volume: 2396
  start-page: 74
  year: 2002
  end-page: 83
– volume: 19
  start-page: 2506
  issue: 12
  year: 2013
  end-page: 2515
  article-title: S : A kick‐off for visual soccer analysis
  publication-title: Vis. and Computer Graphics, IEEE Trans. on
– year: 2010
– year: 2012
– volume: 09
  start-page: 1
  year: 1997
  end-page: 69
  article-title: A Review of Dimension Reduction Techniques
  publication-title: Department of Computer Science. University of Sheffield. Tech. Rep. CS-96-09
– start-page: 215
  year: 2008
  end-page: 222
– start-page: 167
  year: 2004
  end-page: 174
– volume: 22
  start-page: 67
  issue: 1
  year: 1973
  end-page: 92
  article-title: The representation and matching of pictorial structures
  publication-title: IEEE TC
– volume: 26
  start-page: 515
  issue: 4
  year: 2004
  end-page: 519
  article-title: An eigenspace projection clustering method for inexact graph matching
  publication-title: IEEE TPAMI
– volume: 7
  start-page: 43
  issue: 1
  year: 1996
  end-page: 58
  article-title: On the editing distance between undirected acyclic graphs
  publication-title: Int. J. Found. Comput. Sci.
– volume: 2
  start-page: 1316
  issue: 3
  year: 1998
  end-page: 1319
  article-title: A unifying framework for relational structure matching
  publication-title: Pattern Recognition
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  article-title: Visualizing Data using t‐SNE
  publication-title: JMLR
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: IJCV
– volume: 18
  start-page: 2457
  issue: 12
  year: 2012
  end-page: 2466
  article-title: Compressed adjacency matrices: Untangling gene regulatory networks
  publication-title: Vis. and Computer Graphics, IEEE Trans. on
– volume: 4
  start-page: 114
  issue: 2
  year: 2005
  end-page: 135
  article-title: On the readability of graphs using node‐link and matrix‐based representations: a controlled experiment and statistical analysis
  publication-title: Info Vis.
– volume: 1
  start-page: 183
  year: 2004
  end-page: 190
– volume: 18
  start-page: 2899
  issue: 12
  year: 2012
  end-page: 2907
  article-title: A visual analytics approach to multiscale exploration of environmental time series
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 10
  start-page: 695
  issue: 5
  year: 1988
  end-page: 703
  article-title: An eigendecomposition approach to weighted graph matching problems
  publication-title: Pattern Analysis and Machine Intelligence, IEEE Trans. on
– year: 2013
– ident: e_1_2_10_23_2
– ident: e_1_2_10_29_2
  doi: 10.1109/TVCG.2013.192
– ident: e_1_2_10_36_2
  doi: 10.1109/34.601251
– ident: e_1_2_10_19_2
  doi: 10.1080/00029890.1962.11989827
– start-page: 74
  volume-title: Lecture Notes in Computer Science
  year: 2002
  ident: e_1_2_10_38_2
– start-page: 61
  volume-title: Proc. EuroVA International Workshop on Visual Analytics
  year: 2012
  ident: e_1_2_10_5_2
– ident: e_1_2_10_6_2
  doi: 10.1186/1471-2105-11-330
– ident: e_1_2_10_4_2
  doi: 10.1515/9783110854688
– start-page: 167
  volume-title: Proc. of the IEEE Symp. on Info Vis
  year: 2004
  ident: e_1_2_10_16_2
– ident: e_1_2_10_22_2
  doi: 10.1002/0470013192.bsa501
– ident: e_1_2_10_32_2
  doi: 10.1109/34.6778
– volume-title: The stable marriage problem: structure and algorithms
  year: 1989
  ident: e_1_2_10_18_2
– ident: e_1_2_10_24_2
  doi: 10.1007/3-540-70659-3_13
– ident: e_1_2_10_15_2
  doi: 10.1109/T-C.1973.223602
– ident: e_1_2_10_31_2
  doi: 10.1109/TVCG.2012.191
– start-page: 27
  volume-title: Proc. of the 2008 Brazilian SIBGRAPI
  year: 2007
  ident: e_1_2_10_28_2
– volume: 9
  start-page: 2579
  year: 2008
  ident: e_1_2_10_33_2
  article-title: Visualizing Data using t‐SNE
  publication-title: JMLR
– ident: e_1_2_10_27_2
  doi: 10.1145/996546.996554
– ident: e_1_2_10_25_2
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 09
  start-page: 1
  year: 1997
  ident: e_1_2_10_12_2
  article-title: A Review of Dimension Reduction Techniques
  publication-title: Department of Computer Science. University of Sheffield. Tech. Rep. CS-96-09
– ident: e_1_2_10_14_2
  doi: 10.1109/PACIFICVIS.2008.4475479
– volume: 12
  start-page: 677
  year: 2006
  ident: e_1_2_10_20_2
  article-title: Matrixexplorer: a dual‐representation system to explore social networks
  publication-title: IEEE TVCG
– volume: 2
  start-page: 1316
  issue: 3
  year: 1998
  ident: e_1_2_10_26_2
  article-title: A unifying framework for relational structure matching
  publication-title: Pattern Recognition
– volume: 3
  start-page: 180
  year: 1996
  ident: e_1_2_10_9_2
  article-title: An efficient algorithm for the inexact matching of arg graphs using a contextual transformational model
  publication-title: Pattern Recognition
– ident: e_1_2_10_17_2
  doi: 10.1057/palgrave.ivs.9500092
– ident: e_1_2_10_10_2
– ident: e_1_2_10_8_2
  doi: 10.1201/9781420036121
– ident: e_1_2_10_30_2
  doi: 10.1109/TSMC.1983.6313167
– volume: 13
  start-page: 1302
  issue: 6
  year: 2007
  ident: e_1_2_10_21_2
  article-title: NodeTrix: a Hybrid Visualization of Social Networks
  publication-title: IEEE TVCG
– ident: e_1_2_10_11_2
  doi: 10.1109/TPAMI.2004.1265866
– ident: e_1_2_10_40_2
  doi: 10.1142/S0129054196000051
– ident: e_1_2_10_35_2
– ident: e_1_2_10_39_2
  doi: 10.1145/1345448.1345453
– volume: 17
  start-page: 2344
  issue: 12
  year: 2011
  ident: e_1_2_10_7_2
  article-title: Parallel edge splatting for scalable dynamic graph vis
  publication-title: IEEE TVCG
– ident: e_1_2_10_37_2
  doi: 10.1007/978-3-540-33037-0_26
– ident: e_1_2_10_13_2
  doi: 10.1109/TVCG.2012.208
– start-page: 155
  volume-title: Proc. IEEE Symp. on VAST
  year: 2009
  ident: e_1_2_10_34_2
– start-page: 183
  volume-title: Info Vis., 2004. INFOVIS 2004. IEEE Symp. on
  year: 2004
  ident: e_1_2_10_2_2
– ident: e_1_2_10_3_2
  doi: 10.1109/VAST.2012.6400549
SSID ssj0004765
Score 2.1553807
Snippet Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node‐link representations...
Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node-link representations...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 411
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer networks
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval-Search process
Information processing
Mathematical analysis
Mathematical models
Monitors
Networks
Semantics
Studies
Visual
Visualization
Title Visual Analysis of Sets of Heterogeneous Matrices Using Projection-Based Distance Functions and Semantic Zoom
URI https://api.istex.fr/ark:/67375/WNG-GL8FT5N4-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12397
https://www.proquest.com/docview/1545016459
https://www.proquest.com/docview/1559698047
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB-O-qIP1k88rRKlFF_uKLtJdpc-1dO7Q-wh1WoRIeRTSutt6d5B8ck_oX9j_xJnsh9eRUH6tMvubMhmZjK_JJNfADZNYbXh2g4Sp7MBDxz7QWKgTfA5jokK7QJtcN6byekBf3soDnuw0-6Fqfkhugk38ozYX5ODa1OtOLn9FobY7Ra0k5xytQgQ7f-mjuKZFC2vNzHGNKxClMXTfXklFt2gZj2_AjRX4WqMN-N1-NrWtE4zOR4uF2Zof_xB4njNX7kDtxscynZrw7kLPT-_B7dW2AnvQ_npqFqSTMNbwsrAPvhFvE4pi6ZE4_PlsmJ7keffVywmILD39ewOavzy58UrDJOOvSaYivbFxhhHo6kzPXdY3HfU7JFlXxC_P4CD8ZuPo-mgOZ9hYFOJfZPLMOCnMlghvTAh0T7niQl-O3c2C7kU3OUuddIIgaHYpxgJET4ErguEiancTh_C2ryc-0fAbECclmqeOsNpTIaDHimxnLxIULe568PLVlPKNuTldIbGiWoHMdiGKrZhH150oqc1Y8ffhLaiujsJfXZMKW6ZUJ9nEzV5R5OMM65EHzZae1CNd1eKYCdRk4miD8-71-iXtNiiY8srWu6VRY52iHWPyv93bdRoMo43j_9f9AncROzG66y1DVhbnC39U8RHC_MsOsIvHrYLzg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gA9tDzVLS0YhBCXXbWJ7SQSlz7YXWB3haCFCglZjh9V1XaDursS6qk_gd_IL2HGebBFICFOiZJJ4nhmPJ_t8WeAZ3lmdM61aUdWJ23uObaDxEAb4XXsE2XaelrgPBzJ_iF_cySOFuBlvRam5IdoBtzIM0J7TQ5OA9JzXm6OfQfb3Sy5AUu0ozcx5--__0UexRMpamZv4oypeIUoj6d59Fo0WqKK_XYNas4D1hBxuqvwpS5rmWhy2plN8465_I3G8X9_5jasVFCU7ZS2cwcW3PguLM8RFN6D4uPJZEYyFXUJKzz74Kbh2KdEmgLtzxWzCRsGqn83YSEHgb0rB3hQ6T-uvu9ipLRsn5AqmhjrYigN1s702OLrzlG5J4Z9Rgh_Hw67rw72-u1qi4a2iSU2TzbBmB9Lb4R0IveRdimPcu-2UmsSn0rBbWpjK3MhMBq7GIMhIgjPdYZIMZZb8QNYHBdjtwbMeIRqseaxzTl1y7DfIyW-J82ibfyWbcGLWlXKVPzltI3Gmar7MViHKtRhC542ol9L0o4_CT0P-m4k9MUpZbklQn0a9VRvQOOMI65ECzZqg1CVg08UIU9iJxNZC540t9E1ab5Fh5pXNOMrsxQNEcsetP_30qi9XjecrP-76GO42T8YDtTg9ejtQ7iFUI6XSWwbsDi9mLlNhEvT_FHwip_PKA_q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVkLwAOUmFtpiEEK87GpJbCcRT7Tb7La0qwoorRCS5fiCqsKm6u5KiCc-gW_kSzrjXNgikBBPiZJJ4nhmPMf2-BjgaZEZXXBtupHVSZd7ju0gMdBGeB37RJm2nhY474_l6JDvHovjJXjZrIWp-CHaATfyjNBek4OfWb_g5OaT72GzmyVXYIXLfkb7Ngze_OKO4okUDbE3UcbUtEKUxtM-eikYrVC9fr2ENBfxagg4-U342BS1yjM57c1nRc98-43F8T__ZRVu1ECUvaos5xYsucltuL5AT3gHyvcn0znJ1MQlrPTsrZuF44jSaEq0PlfOp2w_EP27KQsZCOygGt5Blf_8_mMT46RlA8KpaGAsx0AabJ3picXXfUHVnhj2AQH8XTjMt99tjbr1Bg1dE0tsnGyCET-W3gjpROEj7VIeFd71U2sSn0rBbWpjKwshMBa7GEMh4gfPdYY4MZb9-B4sT8qJuw_MeARqseaxLTh1yrDXIyW-J82iF_gt24HnjaaUqdnLaRONz6rpxWAdqlCHHXjSip5VlB1_EnoW1N1K6PNTynFLhDoaD9Vwj0YZx1yJDqw19qBq954qwp3ETSayDjxub6Nj0myLDjWvaL5XZinaIZY9KP_vpVFbwzycPPh30Udw9WCQq72d8euHcA1xHK8y2NZgeXY-d-uIlWbFRvCJC5byDpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Analysis+of+Sets+of+Heterogeneous+Matrices+Using+Projection%E2%80%90Based+Distance+Functions+and+Semantic+Zoom&rft.jtitle=Computer+graphics+forum&rft.au=Behrisch%2C+Michael&rft.au=Davey%2C+James&rft.au=Fischer%2C+Fabian&rft.au=Thonnard%2C+Olivier&rft.date=2014-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=411&rft.epage=420&rft_id=info:doi/10.1111%2Fcgf.12397&rft.externalDBID=10.1111%252Fcgf.12397&rft.externalDocID=CGF12397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon