Punicalagin, a Pomegranate‐Derived Ellagitannin, Suppresses Obesity and Obesity‐Induced Inflammatory Responses Via the Nrf2/Keap1 Signaling Pathway

Scope Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity‐induced inflammatory and oxidant responses are investigated in vitro and in vivo. Methods and results The effect of PCG on adipogenesis is examin...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 63; no. 22; pp. e1900574 - n/a
Main Authors Kang, Bobin, Kim, Chae Young, Hwang, Jisu, Jo, Kyungae, Kim, Singeun, Suh, Hyung Joo, Choi, Hyeon‐Son
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scope Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity‐induced inflammatory and oxidant responses are investigated in vitro and in vivo. Methods and results The effect of PCG on adipogenesis is examined using Oil red O staining. The effects and mechanism of action of PCG on inflammatory responses are determined in adipocyte‐conditioned medium (ACM)‐cultured macrophages, a cell‐to‐cell contact system, and a transwell system. The effects of PCG on obesity and obesity‐induced inflammatory/oxidant responses are examined in high‐fat diet (HFD)‐fed mice. PCG effectively suppresses lipid accumulation in adipocytes and adipocyte‐induced inflammatory responses in adipocyte‐macrophage co‐culture systems. Small interfering RNA (siRNA) transfection indicates that the PCG‐mediated anti‐inflammatory effect is exerted via the nuclear factor erythroid 2‐related factor 2/Kelch‐like ECH‐associated protein 1(Nrf2/Keap1) pathway. PCG administration results in a significant reduction in body and white adipose tissue (WAT) weights. PCG favorably regulates pro‐ and anti‐inflammatory cytokines, downregulating nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB). Immunohistochemical (IHC) analysis demonstrates that PCG differentially modulates the distribution of complement component 3 receptor 4 subunit (CD11c) and cluster of differentiation 206 (CD206). PCG regulates the level of antioxidant and oxidant molecules by activating Nrf2/Keap1 signaling. Conclusions PCG ameliorates obesity and obesity‐induced inflammatory responses via activation of Nrf2/Keap1 signaling, suggesting that PCG has potential as an oral agent to control obesity‐mediated diseases. Punicalagin (PCG) ameliorates obesity and obesity‐induced inflammatory/oxidative responses in vitro and in vivo. PCG‐mediated suppression of obesity‐induced inflammatory/oxidative responses is due to the activation of the Nrf2/Keap1 signaling pathway. The PCG‐mediated anti‐inflammatory response in obesity is involved in the regulation of M1 and M2 phenotypes.
AbstractList SCOPEPunicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity-induced inflammatory and oxidant responses are investigated in vitro and in vivo. METHODS AND RESULTSThe effect of PCG on adipogenesis is examined using Oil red O staining. The effects and mechanism of action of PCG on inflammatory responses are determined in adipocyte-conditioned medium (ACM)-cultured macrophages, a cell-to-cell contact system, and a transwell system. The effects of PCG on obesity and obesity-induced inflammatory/oxidant responses are examined in high-fat diet (HFD)-fed mice. PCG effectively suppresses lipid accumulation in adipocytes and adipocyte-induced inflammatory responses in adipocyte-macrophage co-culture systems. Small interfering RNA (siRNA) transfection indicates that the PCG-mediated anti-inflammatory effect is exerted via the nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1(Nrf2/Keap1) pathway. PCG administration results in a significant reduction in body and white adipose tissue (WAT) weights. PCG favorably regulates pro- and anti-inflammatory cytokines, downregulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Immunohistochemical (IHC) analysis demonstrates that PCG differentially modulates the distribution of complement component 3 receptor 4 subunit (CD11c) and cluster of differentiation 206 (CD206). PCG regulates the level of antioxidant and oxidant molecules by activating Nrf2/Keap1 signaling. CONCLUSIONSPCG ameliorates obesity and obesity-induced inflammatory responses via activation of Nrf2/Keap1 signaling, suggesting that PCG has potential as an oral agent to control obesity-mediated diseases.
Scope Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity‐induced inflammatory and oxidant responses are investigated in vitro and in vivo. Methods and results The effect of PCG on adipogenesis is examined using Oil red O staining. The effects and mechanism of action of PCG on inflammatory responses are determined in adipocyte‐conditioned medium (ACM)‐cultured macrophages, a cell‐to‐cell contact system, and a transwell system. The effects of PCG on obesity and obesity‐induced inflammatory/oxidant responses are examined in high‐fat diet (HFD)‐fed mice. PCG effectively suppresses lipid accumulation in adipocytes and adipocyte‐induced inflammatory responses in adipocyte‐macrophage co‐culture systems. Small interfering RNA (siRNA) transfection indicates that the PCG‐mediated anti‐inflammatory effect is exerted via the nuclear factor erythroid 2‐related factor 2/Kelch‐like ECH‐associated protein 1(Nrf2/Keap1) pathway. PCG administration results in a significant reduction in body and white adipose tissue (WAT) weights. PCG favorably regulates pro‐ and anti‐inflammatory cytokines, downregulating nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB). Immunohistochemical (IHC) analysis demonstrates that PCG differentially modulates the distribution of complement component 3 receptor 4 subunit (CD11c) and cluster of differentiation 206 (CD206). PCG regulates the level of antioxidant and oxidant molecules by activating Nrf2/Keap1 signaling. Conclusions PCG ameliorates obesity and obesity‐induced inflammatory responses via activation of Nrf2/Keap1 signaling, suggesting that PCG has potential as an oral agent to control obesity‐mediated diseases. Punicalagin (PCG) ameliorates obesity and obesity‐induced inflammatory/oxidative responses in vitro and in vivo. PCG‐mediated suppression of obesity‐induced inflammatory/oxidative responses is due to the activation of the Nrf2/Keap1 signaling pathway. The PCG‐mediated anti‐inflammatory response in obesity is involved in the regulation of M1 and M2 phenotypes.
Scope Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity‐induced inflammatory and oxidant responses are investigated in vitro and in vivo. Methods and results The effect of PCG on adipogenesis is examined using Oil red O staining. The effects and mechanism of action of PCG on inflammatory responses are determined in adipocyte‐conditioned medium (ACM)‐cultured macrophages, a cell‐to‐cell contact system, and a transwell system. The effects of PCG on obesity and obesity‐induced inflammatory/oxidant responses are examined in high‐fat diet (HFD)‐fed mice. PCG effectively suppresses lipid accumulation in adipocytes and adipocyte‐induced inflammatory responses in adipocyte‐macrophage co‐culture systems. Small interfering RNA (siRNA) transfection indicates that the PCG‐mediated anti‐inflammatory effect is exerted via the nuclear factor erythroid 2‐related factor 2/Kelch‐like ECH‐associated protein 1(Nrf2/Keap1) pathway. PCG administration results in a significant reduction in body and white adipose tissue (WAT) weights. PCG favorably regulates pro‐ and anti‐inflammatory cytokines, downregulating nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB). Immunohistochemical (IHC) analysis demonstrates that PCG differentially modulates the distribution of complement component 3 receptor 4 subunit (CD11c) and cluster of differentiation 206 (CD206). PCG regulates the level of antioxidant and oxidant molecules by activating Nrf2/Keap1 signaling. Conclusions PCG ameliorates obesity and obesity‐induced inflammatory responses via activation of Nrf2/Keap1 signaling, suggesting that PCG has potential as an oral agent to control obesity‐mediated diseases.
Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity-induced inflammatory and oxidant responses are investigated in vitro and in vivo. The effect of PCG on adipogenesis is examined using Oil red O staining. The effects and mechanism of action of PCG on inflammatory responses are determined in adipocyte-conditioned medium (ACM)-cultured macrophages, a cell-to-cell contact system, and a transwell system. The effects of PCG on obesity and obesity-induced inflammatory/oxidant responses are examined in high-fat diet (HFD)-fed mice. PCG effectively suppresses lipid accumulation in adipocytes and adipocyte-induced inflammatory responses in adipocyte-macrophage co-culture systems. Small interfering RNA (siRNA) transfection indicates that the PCG-mediated anti-inflammatory effect is exerted via the nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1(Nrf2/Keap1) pathway. PCG administration results in a significant reduction in body and white adipose tissue (WAT) weights. PCG favorably regulates pro- and anti-inflammatory cytokines, downregulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Immunohistochemical (IHC) analysis demonstrates that PCG differentially modulates the distribution of complement component 3 receptor 4 subunit (CD11c) and cluster of differentiation 206 (CD206). PCG regulates the level of antioxidant and oxidant molecules by activating Nrf2/Keap1 signaling. PCG ameliorates obesity and obesity-induced inflammatory responses via activation of Nrf2/Keap1 signaling, suggesting that PCG has potential as an oral agent to control obesity-mediated diseases.
Author Hwang, Jisu
Suh, Hyung Joo
Jo, Kyungae
Kim, Singeun
Choi, Hyeon‐Son
Kim, Chae Young
Kang, Bobin
Author_xml – sequence: 1
  givenname: Bobin
  surname: Kang
  fullname: Kang, Bobin
  organization: Korea University
– sequence: 2
  givenname: Chae Young
  surname: Kim
  fullname: Kim, Chae Young
  organization: Korea University
– sequence: 3
  givenname: Jisu
  surname: Hwang
  fullname: Hwang, Jisu
  organization: Korea University
– sequence: 4
  givenname: Kyungae
  surname: Jo
  fullname: Jo, Kyungae
  organization: Korea University
– sequence: 5
  givenname: Singeun
  surname: Kim
  fullname: Kim, Singeun
  organization: Korea University
– sequence: 6
  givenname: Hyung Joo
  surname: Suh
  fullname: Suh, Hyung Joo
  organization: Korea University
– sequence: 7
  givenname: Hyeon‐Son
  orcidid: 0000-0002-0165-7886
  surname: Choi
  fullname: Choi, Hyeon‐Son
  email: hschoi@swu.ac.kr
  organization: Seoul Women's University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31444955$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFZ4sKhu7Xjj2yOqLRlRWlXLXCNJvF46ypxgp1Q7Y2fwI3_xy_B0bZ74MJpZqTnfTUz7yHZ851HQl5zNueMZSett2GeMV4wpnL5jBxwzcVMciH2dn2m9slhjPeMCZ5J8YLsCy6lLJQ6IL9Xo3c1NLB2_pgCXXUtrgN4GPDPz18fMLgfaOhZMwEDeD9Rt2PfB4wRI72uMLphQ8Gbpz7Jlt6MdZItvW2gbWHowobeYOw7P4m-OaDDHdKrYLOTTwg9p7du7aFxfk1XMNw9wOYleW6hifjqsR6Rr-dnX04_zi6vL5an7y9ntdCLfKZqVuuCa6isVFktc8WtNsJUZqGtBkSTBos615U01nALVuagFliIXFbAxBF5t_XtQ_d9xDiUrYs1pns9dmMss2whlUr_zBP69h_0vhtDWjtRQvC8EJkuEjXfUnXoYgxoyz64FsKm5KycIiunyMpdZEnw5tF2rFo0O_wpowTILfDgGtz8x678fHV-IzTLxV-NA6hW
CitedBy_id crossref_primary_10_1016_j_phyplu_2022_100313
crossref_primary_10_1002_mnfr_202000312
crossref_primary_10_3390_jcm11226724
crossref_primary_10_1039_D2FO01552H
crossref_primary_10_3390_antiox10020192
crossref_primary_10_3390_molecules26237238
crossref_primary_10_5812_gct_138980
crossref_primary_10_2174_1389557522666211229112223
crossref_primary_10_3390_nu16040506
crossref_primary_10_3390_antiox11102067
crossref_primary_10_3390_antiox9060473
crossref_primary_10_1042_BSR20212196
crossref_primary_10_2174_2211536610666210716153929
crossref_primary_10_1016_j_jep_2021_113847
crossref_primary_10_3390_antiox9070573
crossref_primary_10_1080_10408398_2023_2219763
crossref_primary_10_1016_j_arr_2021_101268
crossref_primary_10_1016_j_lfs_2023_122252
crossref_primary_10_3390_foods9030368
crossref_primary_10_1021_acs_jafc_1c04849
crossref_primary_10_1039_D3FO00286A
crossref_primary_10_1016_j_supflu_2021_105300
crossref_primary_10_26599_FSHW_2022_9250123
crossref_primary_10_3390_ijms22116110
crossref_primary_10_1039_D0FO01545H
crossref_primary_10_1002_mnfr_202001031
crossref_primary_10_1016_j_yexcr_2023_113717
crossref_primary_10_1007_s12257_020_0149_8
crossref_primary_10_3390_nano12030368
crossref_primary_10_3390_nu14091879
crossref_primary_10_1016_j_fbio_2023_102629
crossref_primary_10_3390_ph16030342
crossref_primary_10_1016_j_phrs_2021_105853
Cites_doi 10.1038/nm0302-240
10.1007/s11154-014-9305-9
10.1039/C5FO00426H
10.1111/j.1541-4337.2010.00131.x
10.1016/j.jnutbio.2016.02.003
10.1042/CS20150436
10.3390/ijms12053117
10.1016/j.pneurobio.2012.09.003
10.1016/j.bbamcr.2008.01.002
10.1172/JCI29881
10.1016/j.foodchem.2011.11.106
10.1016/j.jep.2006.09.006
10.1248/bpb.b18-00064
10.2337/db08-1475
10.1016/j.bbrc.2017.03.119
10.1021/jf000404a
10.1021/jf020842c
10.4110/in.2006.6.4.169
10.1155/2013/789764
10.1172/JCI92035
10.1016/j.biopha.2018.09.169
10.1016/j.fct.2009.01.031
10.1016/j.fct.2008.04.035
10.1007/s00018-016-2223-0
10.1038/ncomms11624
10.1021/jf071689v
10.1155/2018/8917804
10.1016/j.phrs.2015.04.008
10.1248/bpb.b17-00837
10.1172/JCI21625
10.1080/10408391003748100
10.1111/avj.12745
10.1155/2013/184598
10.1124/dmd.104.002824
10.1111/j.1365-2443.2010.01473.x
10.1002/mnfr.201500490
10.1016/S0753-3322(02)00205-6
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7QO
7QP
7T5
7T7
7TK
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1002/mnfr.201900574
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage n/a
ExternalDocumentID 10_1002_mnfr_201900574
31444955
MNFR3607
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QO
7QP
7T5
7T7
7TK
8FD
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c3687-5c0c6916abf452c4751f6d3dbd86f6aeedd3dfe676b4dfd1faf47a58e9374ba03
IEDL.DBID DR2
ISSN 1613-4125
IngestDate Sat Aug 17 01:01:09 EDT 2024
Fri Sep 13 08:32:17 EDT 2024
Fri Aug 23 02:20:19 EDT 2024
Sat Sep 28 08:31:01 EDT 2024
Sat Aug 24 01:12:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords HFD-fed mice
punicalagin
Nrf2/Keap1 signaling
obesity-induced inflammatory response
co-culture
obesity
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3687-5c0c6916abf452c4751f6d3dbd86f6aeedd3dfe676b4dfd1faf47a58e9374ba03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0165-7886
PMID 31444955
PQID 2331793269
PQPubID 2045123
PageCount 12
ParticipantIDs proquest_miscellaneous_2284554137
proquest_journals_2331793269
crossref_primary_10_1002_mnfr_201900574
pubmed_primary_31444955
wiley_primary_10_1002_mnfr_201900574_MNFR3607
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol Nutr Food Res
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 47
2015; 6
2015; 16
2000; 48
2018; 108
2004; 25
2015; 97
2002; 56
2002; 8
2016; 32
2013; 100
2006; 6
2016; 73
2018; 41
2011; 12
2015; 129
2011; 16
2007; 109
2003; 51
2007; 55
2009; 58
2016; 7
2012; 132
2018; 2018
2004; 114
2008; 1783
2007; 117
2013; 2013
2011; 51
2019
2008; 46
2018; 96
2016; 60
2017; 486
2005; 33
2017; 127
2010; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Ye M. (e_1_2_7_15_1) 2019
e_1_2_7_26_1
Sikaris K. A. (e_1_2_7_28_1) 2004; 25
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
El‐Beih N. M. (e_1_2_7_25_1) 2019
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Pinheiro A. (e_1_2_7_27_1) 2018; 2018
References_xml – volume: 96
  start-page: 408
  year: 2018
  publication-title: Aust. Vet. J.
– volume: 56
  start-page: 276
  year: 2002
  publication-title: Biomed. Pharmacother.
– volume: 48
  start-page: 4581
  year: 2000
  publication-title: J. Agric. Food Chem.
– volume: 73
  start-page: 3221
  year: 2016
  publication-title: Cell. Mol. Life Sci.
– volume: 2018
  start-page: 1
  year: 2018
  publication-title: J. Immunol. Res.
– volume: 51
  start-page: 3493
  year: 2003
  publication-title: J. Agric. Food Chem.
– volume: 32
  start-page: 20
  year: 2016
  publication-title: J. Nutr. Biochem.
– volume: 132
  start-page: 1585
  year: 2012
  publication-title: Food Chem.
– volume: 16
  start-page: 123
  year: 2011
  publication-title: Genes Cells
– volume: 25
  start-page: 165
  year: 2004
  publication-title: Clin. Biochem. Rev.
– year: 2019
  publication-title: Biosci. Rep.
– volume: 2018
  year: 2018
  publication-title: J. Immunol. Res.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 47
  start-page: 1085
  year: 2009
  publication-title: Food Chem. Toxicol.
– volume: 58
  start-page: 2574
  year: 2009
  publication-title: Diabetes
– volume: 127
  start-page: 1
  year: 2017
  publication-title: J. Clin. Invest.
– volume: 129
  start-page: 989
  year: 2015
  publication-title: Clin. Sci.
– volume: 2013
  start-page: 1
  year: 2013
  publication-title: Evidence‐Based Complement. Altern. Med.
– volume: 486
  start-page: 774
  year: 2017
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 46
  start-page: 2728
  year: 2008
  publication-title: Food Chem. Toxicol.
– volume: 51
  start-page: 626
  year: 2011
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 60
  start-page: 1139
  year: 2016
  publication-title: Mol. Nutr. Food Res.
– volume: 55
  year: 2007
  publication-title: J. Agric. Food Chem.
– volume: 1783
  start-page: 713
  year: 2008
  publication-title: Biochim. Biophys. Acta‐Mol. Cell. Res.
– volume: 114
  start-page: 1752
  year: 2004
  publication-title: J. Clin. Invest.
– volume: 9
  start-page: 635
  year: 2010
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 109
  start-page: 177
  year: 2007
  publication-title: J. Ethnopharmacol.
– volume: 41
  start-page: 680
  year: 2018
  publication-title: Biol. Pharm. Bull.
– volume: 33
  start-page: 644
  year: 2005
  publication-title: Drug Metab. Dispos.
– year: 2019
  publication-title: Mol. Biol. Rep.
– volume: 12
  start-page: 3117
  year: 2011
  publication-title: Int. J. Mol. Sci.
– volume: 117
  start-page: 175
  year: 2007
  publication-title: J. Clin. Invest.
– volume: 41
  start-page: 1228
  year: 2018
  publication-title: Biol. Pharm. Bull.
– volume: 97
  start-page: 84
  year: 2015
  publication-title: Pharmacol. Res.
– volume: 16
  start-page: 35
  year: 2015
  publication-title: Rev. Endocr. Metab. Disord.
– volume: 6
  start-page: 169
  year: 2006
  publication-title: Immune Netw
– volume: 108
  start-page: 1507
  year: 2018
  publication-title: Biomed. Pharmacother.
– volume: 100
  start-page: 30
  year: 2013
  publication-title: Progr. Neurobiol.
– volume: 6
  start-page: 2049
  year: 2015
  publication-title: Food Funct.
– volume: 2013
  start-page: 1
  year: 2013
  publication-title: Oxid. Med. Cell. Longevity
– volume: 8
  start-page: 240
  year: 2002
  publication-title: Nat. Med.
– ident: e_1_2_7_38_1
  doi: 10.1038/nm0302-240
– ident: e_1_2_7_13_1
  doi: 10.1007/s11154-014-9305-9
– ident: e_1_2_7_26_1
  doi: 10.1039/C5FO00426H
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1541-4337.2010.00131.x
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jnutbio.2016.02.003
– ident: e_1_2_7_11_1
  doi: 10.1042/CS20150436
– ident: e_1_2_7_8_1
  doi: 10.3390/ijms12053117
– ident: e_1_2_7_35_1
  doi: 10.1016/j.pneurobio.2012.09.003
– ident: e_1_2_7_36_1
  doi: 10.1016/j.bbamcr.2008.01.002
– ident: e_1_2_7_30_1
  doi: 10.1172/JCI29881
– ident: e_1_2_7_4_1
  doi: 10.1016/j.foodchem.2011.11.106
– ident: e_1_2_7_1_1
  doi: 10.1016/j.jep.2006.09.006
– ident: e_1_2_7_18_1
  doi: 10.1248/bpb.b18-00064
– year: 2019
  ident: e_1_2_7_15_1
  publication-title: Biosci. Rep.
  contributor:
    fullname: Ye M.
– ident: e_1_2_7_32_1
  doi: 10.2337/db08-1475
– ident: e_1_2_7_40_1
  doi: 10.1016/j.bbrc.2017.03.119
– ident: e_1_2_7_5_1
  doi: 10.1021/jf000404a
– year: 2019
  ident: e_1_2_7_25_1
  publication-title: Mol. Biol. Rep.
  contributor:
    fullname: El‐Beih N. M.
– ident: e_1_2_7_20_1
  doi: 10.1021/jf020842c
– ident: e_1_2_7_31_1
  doi: 10.4110/in.2006.6.4.169
– ident: e_1_2_7_6_1
  doi: 10.1155/2013/789764
– volume: 2018
  start-page: 6879183
  year: 2018
  ident: e_1_2_7_27_1
  publication-title: J. Immunol. Res.
  contributor:
    fullname: Pinheiro A.
– ident: e_1_2_7_9_1
  doi: 10.1172/JCI92035
– ident: e_1_2_7_17_1
  doi: 10.1016/j.biopha.2018.09.169
– ident: e_1_2_7_21_1
  doi: 10.1016/j.fct.2009.01.031
– ident: e_1_2_7_19_1
  doi: 10.1016/j.fct.2008.04.035
– ident: e_1_2_7_34_1
  doi: 10.1007/s00018-016-2223-0
– ident: e_1_2_7_37_1
  doi: 10.1038/ncomms11624
– ident: e_1_2_7_22_1
  doi: 10.1021/jf071689v
– ident: e_1_2_7_33_1
  doi: 10.1155/2018/8917804
– volume: 25
  start-page: 165
  year: 2004
  ident: e_1_2_7_28_1
  publication-title: Clin. Biochem. Rev.
  contributor:
    fullname: Sikaris K. A.
– ident: e_1_2_7_39_1
  doi: 10.1016/j.phrs.2015.04.008
– ident: e_1_2_7_16_1
  doi: 10.1248/bpb.b17-00837
– ident: e_1_2_7_29_1
  doi: 10.1172/JCI21625
– ident: e_1_2_7_2_1
  doi: 10.1080/10408391003748100
– ident: e_1_2_7_24_1
  doi: 10.1111/avj.12745
– ident: e_1_2_7_12_1
  doi: 10.1155/2013/184598
– ident: e_1_2_7_23_1
  doi: 10.1124/dmd.104.002824
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-2443.2010.01473.x
– ident: e_1_2_7_14_1
  doi: 10.1002/mnfr.201500490
– ident: e_1_2_7_41_1
  doi: 10.1016/S0753-3322(02)00205-6
SSID ssj0031243
Score 2.4767942
Snippet Scope Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and...
Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity-induced...
ScopePunicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and...
SCOPEPunicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1900574
SubjectTerms Adipocytes
Adipogenesis
Adipose tissue
Antioxidants
CD11c antigen
Cell culture
co‐culture
Cytokines
HFD‐fed mice
High fat diet
In vitro methods and tests
In vivo methods and tests
Inflammation
Lipids
Lymphocytes B
Macrophages
Nrf2/Keap1 signaling
Obesity
obesity‐induced inflammatory response
Oils & fats
Oxidants
Oxidizing agents
Pomegranates
punicalagin
Signal transduction
Signaling
siRNA
Transfection
Title Punicalagin, a Pomegranate‐Derived Ellagitannin, Suppresses Obesity and Obesity‐Induced Inflammatory Responses Via the Nrf2/Keap1 Signaling Pathway
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201900574
https://www.ncbi.nlm.nih.gov/pubmed/31444955
https://www.proquest.com/docview/2331793269/abstract/
https://search.proquest.com/docview/2284554137
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hnrjwfhgKWiQEl7qx95kcEW1UQI2iQFFv1j6rqMmmahwQnPgJ3Ph__BJm1w8IHBDi5seOvbZndr5Zz36D0FPFNGdMyVyy0TBnyhe5tpTnhkhCVCm19XEe8ngijk7Y61N--ssq_oYfop9wi5aRxuto4EqvBz9JQ5fBRz5PcGgAOSIhaGTTi6ho1vNHUXBeKcMefFbOwJV3rI0FGWyLb3ulP6DmNnJNrmd8Hamu003Gyfn-ptb75vNvfI7_81Q30LUWl-IXjSLdRFdcuIWyg7mr8TPckocu8KTj7r-Nvk3TupJFrHK0hxWerpaRdyIAdv3-5esBKPYHZ_HhIjaoU2GkPRxLiCay8jVuCxJgFWy3DWKxkIgBsVfBg6YuUwYAnjVpvCD0fq4wAFY8ufRk8MapixK_nZ_FUCKc4Slg2Y_q0x10Mj589_Iob6s85IYKGOG4KYwAkKq0Z5wYJnnphaVW26HwQoEPhx3vhBSaWW9LrzyTig8dACumVUHvop2wCu4-woXm1ukYw3nJhlxDLGcNNXSkKXPOjzL0vPvK1UVD5lE1tM2kii--6l98hnY7Jahao15XhNI4nBEBF3rSnwZzjP9YVHCrDbQBdw8IraQyQ_ca5elvRSF4hXiUZyhPKvCXPlTHk_GMikI--Mf2D9HVeLBZMbmLdurLjXsE0KnWj5N5_AAUKhbM
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BOcAFyttQYJEQXOrG9r6SI6KNUtpYUWgRN2ufVUTiVK0Doqf-hN74f_wSZtcPFDggxM2Wd-z1embnm_XsNwi9klQxSqWIBR30YypdEitDWKwzkWUyFco4vw45zvnomL7_xNpsQr8XpuaH6BbcvGWE-dobuF-Q7v1iDV2UzhN6gkcDzEGvoxtg8yxEVdOOQYqA-wo59uC1YgrOvOVtTLLeuvy6X_oDbK5j1-B8hneQartd55x83llVakdf_Mbo-F_vtYluN9AUv6116S66Zst7KNqd2Qq_xg1_6BznLX3_ffR9EraWzH2ho20s8WS58NQTJcDXH5dXu6DbX6zBe3PfoAq1kbaxryIa-MrPcVOTAMvStMcg5muJaBDbLx0o6yIkAeBpnckLQh9nEgNmxfmZy3oHVp6m-MPsxEcT5QmeAJz9Kr89QMfDvaN3o7gp9BBrwmGSYzrRHHCqVI6yTFPBUscNMcr0ueMS3DicOMsFV9Q4kzrpqJCsbwFbUSUT8hBtlMvSPkY4UcxY5cM4J2ifKQjnjCaaDBSh1rpBhN60n7k4rfk8ipq5OSv8wBfdwEdoq9WCorHr8yIjxM9oGYcbvewug0X63yyytMsVtAGPDyAtJSJCj2rt6R5FIH6FkJRFKA468Jc-FON8OCU8EU_-sf0LdHN0ND4sDvfzg6folm9Qb6DcQhvV2co-AyRVqefBVn4Cd9Ea7g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BkRAXKG9DgUVCcKkbe5_JEZFGLaVWFCjqzdpnFZE4UeuA6Kk_oTf-H7-EWb8gcECImy3v2Ov1zM4369lvEHqhmOaMKRlLNujHTPkk1pby2BBJiEqltj6sQx5mYu-IvT3mx7_s4q_5IboFt2AZ1XwdDHxpfe8naei88IHPExwaQA52FV1jgpKg18NJRyBFwXtVKfbgtGIGvrylbUxIb11-3S39gTXXoWvle0a3kGp7XaecfNpZlXrHnP9G6Pg_r7WJbjbAFL-uNek2uuKKOygaTl2JX-KGPXSGs5a8_y76Nq42lsxCmaNtrPB4MQ_EEwWA1-8Xl0PQ7M_O4t1ZaFBWlZG2caghWrGVn-GmIgFWhW2PQSxUEjEgtl94UNV5lQKAJ3UeLwh9nCoMiBVnp570Dpxapvj99CTEEsUJHgOY_aK-3kNHo90Pb_bipsxDbKiAKY6bxAhAqUp7xolhkqdeWGq17QsvFDhxOPFOSKGZ9Tb1yjOpeN8BsmJaJfQ-2igWhXuIcKK5dToEcV6yPtcQzFlDDR1oypzzgwi9ar9yvqzZPPKat5nkYeDzbuAjtNUqQd5Y9VlOKA3zGRFwo-fdZbDH8JNFFW6xgjbg7wGipVRG6EGtPN2jKESvEJDyCMWVCvylD_lhNppQkchH_9j-Gbo-Ho7yd_vZwWN0I1yvd09uoY3ydOWeAIwq9dPKUn4AHloZnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Punicalagin%2C+a+Pomegranate-Derived+Ellagitannin%2C+Suppresses+Obesity+and+Obesity-Induced+Inflammatory+Responses+Via+the+Nrf2%2FKeap1+Signaling+Pathway&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Kang%2C+Bobin&rft.au=Kim%2C+Chae+Young&rft.au=Hwang%2C+Jisu&rft.au=Jo%2C+Kyungae&rft.date=2019-11-01&rft.eissn=1613-4133&rft.volume=63&rft.issue=22&rft.spage=e1900574&rft.epage=e1900574&rft_id=info:doi/10.1002%2Fmnfr.201900574&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon