A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin‐based phantoms and Monte Carlo experiments

Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non‐contact imaging. Three analytical optical reflectance models for homogeneous, semi‐infinite, tissue have been proposed (Modifi...

Full description

Saved in:
Bibliographic Details
Published inJournal of biophotonics Vol. 17; no. 6; pp. e202300536 - n/a
Main Authors Bahl, Anisha, Segaud, Silvere, Xie, Yijing, Shapey, Jonathan, Bergholt, Mads S., Vercauteren, Tom
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.06.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non‐contact imaging. Three analytical optical reflectance models for homogeneous, semi‐infinite, tissue have been proposed (Modified Beer–Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin‐based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi‐infinite slab. Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non‐contact imaging. This work evaluates three major analytical models approximating semi‐infinite, homogeneous, biological tissues against both simulated and experimental data with known ground truth. The former is generated using Monte Carlo simulations and the latter by integrating sphere measurements of gelatin‐based optical tissue phantoms. Our results indicate that the Yudovsky model performs best followed closely by the Jacques model.
AbstractList Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non-contact imaging. Three analytical optical reflectance models for homogeneous, semi-infinite, tissue have been proposed (Modified Beer-Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin-based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi-infinite slab.
Information about tissue oxygen saturation (StO ) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non-contact imaging. Three analytical optical reflectance models for homogeneous, semi-infinite, tissue have been proposed (Modified Beer-Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin-based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi-infinite slab.
Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non‐contact imaging. Three analytical optical reflectance models for homogeneous, semi‐infinite, tissue have been proposed (Modified Beer–Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin‐based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi‐infinite slab. Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non‐contact imaging. This work evaluates three major analytical models approximating semi‐infinite, homogeneous, biological tissues against both simulated and experimental data with known ground truth. The former is generated using Monte Carlo simulations and the latter by integrating sphere measurements of gelatin‐based optical tissue phantoms. Our results indicate that the Yudovsky model performs best followed closely by the Jacques model.
Abstract Information about tissue oxygen saturation (StO 2 ) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non‐contact imaging. Three analytical optical reflectance models for homogeneous, semi‐infinite, tissue have been proposed (Modified Beer–Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin‐based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi‐infinite slab.
Author Xie, Yijing
Vercauteren, Tom
Bahl, Anisha
Bergholt, Mads S.
Segaud, Silvere
Shapey, Jonathan
Author_xml – sequence: 1
  givenname: Anisha
  orcidid: 0000-0001-6485-2091
  surname: Bahl
  fullname: Bahl, Anisha
  email: anisha.bahl@kcl.ac.uk
  organization: School of Biomedical Engineering & Imaging Sciences, King's College London
– sequence: 2
  givenname: Silvere
  surname: Segaud
  fullname: Segaud, Silvere
  organization: School of Biomedical Engineering & Imaging Sciences, King's College London
– sequence: 3
  givenname: Yijing
  orcidid: 0000-0002-3432-8587
  surname: Xie
  fullname: Xie, Yijing
  organization: School of Biomedical Engineering & Imaging Sciences, King's College London
– sequence: 4
  givenname: Jonathan
  orcidid: 0000-0003-0291-348X
  surname: Shapey
  fullname: Shapey, Jonathan
  organization: King's College Hospital
– sequence: 5
  givenname: Mads S.
  surname: Bergholt
  fullname: Bergholt, Mads S.
  organization: King's College London, Guy's Tower, Great Maze Pond
– sequence: 6
  givenname: Tom
  surname: Vercauteren
  fullname: Vercauteren, Tom
  organization: School of Biomedical Engineering & Imaging Sciences, King's College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38616109$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi1URP_AlSOyxIXLbp1M4rW5tatSWhX1AhK3yLHHbVaOHWKHdm99BG68H0-Ct1sWiQsnj6zffDPzfYdkzwePhLwu2LxgrDxetV2Yl6wExmrgz8hBIXg1Y7wSe7savu6TwxhXjHEGNbwg-yB4wQsmD8jPE6pDP6hRpe470pgms6bBUuWVW6dOK0f7YNDFzafprJ0i0hGtQ52U10g7T29DH27QY5gizeu4cPPYl7oYJ4zv6Tm6rO5_PfxoVURDh1vlU-hjHmLop-AT0qUaXaB4P-DY9ehTfEmeW-Uivnp6j8iXD2eflx9nV9fnF8uTq5kGLvisBQvGmkpDiRyZ1UwKKUBiy2uDqsU6u8KEruyibDVvZSUELCw3phKyVhqOyLut7jCGb3nb1PRd1OicerynAQayBCgFZPTtP-gqTGP2aUPxbOeilkWm5ltKjyHG7FQz5JPUuG4K1mwiazaRNbvIcsObJ9mp7dHs8D8ZZUBugbvO4fo_cs3l6cX1X_Hfm52o4A
Cites_doi 10.1364/BOE.6.004179
10.1016/j.jphotobiol.2016.03.047
10.1016/0169-2607(95)01640-F
10.1016/j.optcom.2014.03.075
10.1039/D3AN00680H
10.1364/OL.43.003814
10.1515/bmt-2017-0145
10.1364/AO.48.006670
10.1002/jbio.201000069
10.1177/15347346231206423
10.1126/sciadv.add6778
10.1364/AO.54.006116
10.1088/2040-8986/aab74c
10.1016/j.siny.2020.101145
10.3171/2020.10.FOCUS20782
10.1364/BOE.2.003193
10.1093/ons/opx057
10.1088/0031-9155/58/11/R37
10.1093/bjs/znad154
10.1016/j.media.2020.101699
10.1227/00006123-198710000-00003
10.1117/1.JMI.10.4.046001
10.1177/1553350611421021
10.1055/s-0043-123937
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley‐VCH GmbH.
2024 The Authors. Journal of Biophotonics published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley‐VCH GmbH.
– notice: 2024 The Authors. Journal of Biophotonics published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
DOI 10.1002/jbio.202300536
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
PubMed
CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage n/a
ExternalDocumentID 10_1002_jbio_202300536
38616109
JBIO202300536
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Medtronic
  funderid: RCSRF1819\7\34
– fundername: National Institute for Health and Care Research
  funderid: NIHR202114
– fundername: Engineering and Physical Sciences Research Council
– fundername: Royal Academy of Engineering
– fundername: Wellcome Trust
  funderid: WT203148/Z/16/Z; NS/A000049/1
– fundername: Wellcome Trust
  funderid: WT223880/Z/21/Z
– fundername: Wellcome Trust
  grantid: WT203148/Z/16/Z
– fundername: Wellcome Trust
  grantid: WT223880/Z/21/Z
– fundername: Wellcome Trust
  grantid: NS/A000049/1
GroupedDBID ---
05W
0R~
1OC
24P
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
WYJ
XV2
ZZTAW
NPM
AAYXX
CITATION
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c3686-b3f3dfd4c32e6e0fc0989839eb65deabe553608c4f72bc6b948837f6dd4895ac3
IEDL.DBID DR2
ISSN 1864-063X
IngestDate Sat Aug 17 04:58:02 EDT 2024
Thu Oct 10 20:18:50 EDT 2024
Fri Aug 23 01:07:43 EDT 2024
Sun Oct 13 09:39:44 EDT 2024
Sat Aug 24 00:58:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords oxygen saturation
Monte Carlo simulations
biological models
gelatin
imaging phantoms
Language English
License Attribution
2024 The Authors. Journal of Biophotonics published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3686-b3f3dfd4c32e6e0fc0989839eb65deabe553608c4f72bc6b948837f6dd4895ac3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-3432-8587
0000-0001-6485-2091
0000-0003-0291-348X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202300536
PMID 38616109
PQID 3066107591
PQPubID 1006377
PageCount 14
ParticipantIDs proquest_miscellaneous_3039233283
proquest_journals_3066107591
crossref_primary_10_1002_jbio_202300536
pubmed_primary_38616109
wiley_primary_10_1002_jbio_202300536_JBIO202300536
PublicationCentury 2000
PublicationDate June 2024
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2024
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2023; 10
2015; 6
2019; 92
2011; 2
2020; 63
2006; 11
2023; 9
2015; 54
1998
2023; 148
2008; 13
2018; 63
2021; 50
2016; 160
2011; 4
2011; 19
2018; 43
2018; 20
2022; 27
2009; 48
1999
2014; 325
1987; 21
2013; 58
2023; 23
2023
2021
1995; 47
2019; 24
2017; 13
2023; 110
2020; 25
2018; 78
2016; 371
Yudovsky D. (e_1_2_8_17_1) 2009; 48
Bhowmik A. (e_1_2_8_25_1) 2015; 54
e_1_2_8_29_1
Alerstam E. (e_1_2_8_26_1) 2008; 13
Clancy N. T. (e_1_2_8_15_1) 2015; 6
Pogue B. W. (e_1_2_8_19_1) 2006; 11
Gioux S. (e_1_2_8_37_1) 2019; 24
Renna M. S. (e_1_2_8_6_1) 2023; 110
Hughes V. S. (e_1_2_8_3_1) 2019; 92
e_1_2_8_22_1
Jacques S. L. (e_1_2_8_21_1) 2013; 58
e_1_2_8_23_1
Yudovsky D. (e_1_2_8_32_1) 2011; 4
e_1_2_8_18_1
Hummler H. (e_1_2_8_39_1) 2020; 25
e_1_2_8_35_1
Takami T. (e_1_2_8_2_1) 2017; 13
e_1_2_8_16_1
Zhang Y. (e_1_2_8_28_1) 2014; 325
Hackethal A. (e_1_2_8_5_1) 2018; 78
Wang L. (e_1_2_8_27_1) 1995; 47
Torkildsen H. E. (e_1_2_8_36_1) 2018; 43
MacKenzie L. E. (e_1_2_8_10_1) 2018; 20
Bahl A. (e_1_2_8_33_1) 2023; 10
Richardson M. (e_1_2_8_4_1) 2023; 23
Ma Y. (e_1_2_8_24_1) 2016; 371
Clancy N. T. (e_1_2_8_12_1) 2011; 19
Taylor‐Williams M. (e_1_2_8_9_1) 2022; 27
Sabino C. P. (e_1_2_8_14_1) 2016; 160
Clancy N. T. (e_1_2_8_38_1) 2020; 63
Teng C. W. (e_1_2_8_7_1) 2021; 50
Xie Y. (e_1_2_8_31_1) 2021
Ayala L. (e_1_2_8_11_1) 2023; 9
Kulcke A. (e_1_2_8_8_1) 2018; 63
Gautam R. (e_1_2_8_20_1) 2023; 148
e_1_2_8_30_1
Eggert H. R. (e_1_2_8_13_1) 1987; 21
Cook J. R. (e_1_2_8_34_1) 2011; 2
References_xml – volume: 24
  start-page: 1
  year: 2019
  publication-title: J. Biomed. Opt.
– volume: 54
  start-page: 6116
  year: 2015
  publication-title: Appl. Opt.
– volume: 371
  year: 2016
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 13
  start-page: 746
  year: 2017
  publication-title: Oper. Neurosurg.
– volume: 48
  start-page: 6670
  year: 2009
  publication-title: Appl. Opt.
– volume: 63
  start-page: 547
  year: 2018
  publication-title: Biomed. Tech.
– volume: 23
  start-page: 55
  year: 2023
  publication-title: Int. J. Low. Extrem. Wounds
– volume: 2
  start-page: 3193
  year: 2011
  publication-title: Biomed. Opt. Express
– volume: 148
  start-page: 4768
  year: 2023
  publication-title: Analyst
– volume: 20
  year: 2018
  publication-title: J. Opt.
– volume: 78
  start-page: 54
  year: 2018
  publication-title: Geburtshilfe Frauenheilkd.
– volume: 50
  start-page: E4
  year: 2021
  publication-title: Neurosurg. Focus
– volume: 19
  start-page: 134
  year: 2011
  publication-title: Surg. Innov.
– volume: 13
  start-page: 6
  year: 2008
  publication-title: J. Biomed. Opt.
– volume: 63
  year: 2020
  publication-title: Med. Image Anal.
– volume: 43
  start-page: 3814
  year: 2018
  publication-title: Opt. Lett.
– volume: 92
  start-page: 1093
  year: 2019
  publication-title: Br. J. Radiol.
– volume: 325
  start-page: 95
  year: 2014
  publication-title: Opt. Commun.
– volume: 160
  start-page: 72
  year: 2016
  publication-title: J. Photochem. Photobiol. B
– year: 1998
– volume: 6
  start-page: 4179
  year: 2015
  publication-title: Biomed. Opt. Express
– year: 2021
  publication-title: arXiv
– volume: 47
  start-page: 2
  year: 1995
  publication-title: Comput. Methods Programs Biomed.
– volume: 25
  start-page: 5
  year: 2020
  publication-title: Semin. Fetal Neonatal Med.
– volume: 58
  year: 2013
  publication-title: Phys. Med. Biol.
– volume: 4
  start-page: 305
  year: 2011
  publication-title: J. Biophotonics
– volume: 10
  year: 2023
  publication-title: J. Med. Imaging
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– year: 2023
– volume: 110
  start-page: 1131
  year: 2023
  publication-title: Br. J. Surg.
– volume: 27
  year: 2022
  publication-title: J. Biomed. Opt.
– volume: 21
  start-page: 459
  year: 1987
  publication-title: Neurosurgery
– volume: 11
  start-page: 4
  year: 2006
  publication-title: J. Biomed. Opt.
– year: 1999
– volume: 6
  start-page: 4179
  year: 2015
  ident: e_1_2_8_15_1
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.004179
  contributor:
    fullname: Clancy N. T.
– volume: 92
  start-page: 1093
  year: 2019
  ident: e_1_2_8_3_1
  publication-title: Br. J. Radiol.
  contributor:
    fullname: Hughes V. S.
– volume: 160
  start-page: 72
  year: 2016
  ident: e_1_2_8_14_1
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2016.03.047
  contributor:
    fullname: Sabino C. P.
– volume: 47
  start-page: 2
  year: 1995
  ident: e_1_2_8_27_1
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/0169-2607(95)01640-F
  contributor:
    fullname: Wang L.
– volume: 11
  start-page: 4
  year: 2006
  ident: e_1_2_8_19_1
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Pogue B. W.
– volume: 325
  start-page: 95
  year: 2014
  ident: e_1_2_8_28_1
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.03.075
  contributor:
    fullname: Zhang Y.
– ident: e_1_2_8_22_1
– volume: 148
  start-page: 4768
  year: 2023
  ident: e_1_2_8_20_1
  publication-title: Analyst
  doi: 10.1039/D3AN00680H
  contributor:
    fullname: Gautam R.
– volume: 43
  start-page: 3814
  year: 2018
  ident: e_1_2_8_36_1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.003814
  contributor:
    fullname: Torkildsen H. E.
– volume: 27
  year: 2022
  ident: e_1_2_8_9_1
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Taylor‐Williams M.
– volume: 371
  year: 2016
  ident: e_1_2_8_24_1
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  contributor:
    fullname: Ma Y.
– volume: 63
  start-page: 547
  year: 2018
  ident: e_1_2_8_8_1
  publication-title: Biomed. Tech.
  doi: 10.1515/bmt-2017-0145
  contributor:
    fullname: Kulcke A.
– volume: 48
  start-page: 6670
  year: 2009
  ident: e_1_2_8_17_1
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.006670
  contributor:
    fullname: Yudovsky D.
– volume: 4
  start-page: 305
  year: 2011
  ident: e_1_2_8_32_1
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201000069
  contributor:
    fullname: Yudovsky D.
– volume: 23
  start-page: 55
  year: 2023
  ident: e_1_2_8_4_1
  publication-title: Int. J. Low. Extrem. Wounds
  doi: 10.1177/15347346231206423
  contributor:
    fullname: Richardson M.
– volume: 9
  year: 2023
  ident: e_1_2_8_11_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add6778
  contributor:
    fullname: Ayala L.
– volume: 54
  start-page: 6116
  year: 2015
  ident: e_1_2_8_25_1
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.006116
  contributor:
    fullname: Bhowmik A.
– volume: 20
  year: 2018
  ident: e_1_2_8_10_1
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/aab74c
  contributor:
    fullname: MacKenzie L. E.
– volume: 25
  start-page: 5
  year: 2020
  ident: e_1_2_8_39_1
  publication-title: Semin. Fetal Neonatal Med.
  doi: 10.1016/j.siny.2020.101145
  contributor:
    fullname: Hummler H.
– volume: 50
  start-page: E4
  year: 2021
  ident: e_1_2_8_7_1
  publication-title: Neurosurg. Focus
  doi: 10.3171/2020.10.FOCUS20782
  contributor:
    fullname: Teng C. W.
– volume: 2
  start-page: 3193
  year: 2011
  ident: e_1_2_8_34_1
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.003193
  contributor:
    fullname: Cook J. R.
– volume: 13
  start-page: 746
  year: 2017
  ident: e_1_2_8_2_1
  publication-title: Oper. Neurosurg.
  doi: 10.1093/ons/opx057
  contributor:
    fullname: Takami T.
– ident: e_1_2_8_16_1
– volume: 13
  start-page: 6
  year: 2008
  ident: e_1_2_8_26_1
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Alerstam E.
– volume: 58
  year: 2013
  ident: e_1_2_8_21_1
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/11/R37
  contributor:
    fullname: Jacques S. L.
– ident: e_1_2_8_35_1
– volume: 110
  start-page: 1131
  year: 2023
  ident: e_1_2_8_6_1
  publication-title: Br. J. Surg.
  doi: 10.1093/bjs/znad154
  contributor:
    fullname: Renna M. S.
– ident: e_1_2_8_30_1
– year: 2021
  ident: e_1_2_8_31_1
  publication-title: arXiv
  contributor:
    fullname: Xie Y.
– ident: e_1_2_8_18_1
– volume: 63
  year: 2020
  ident: e_1_2_8_38_1
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101699
  contributor:
    fullname: Clancy N. T.
– volume: 21
  start-page: 459
  year: 1987
  ident: e_1_2_8_13_1
  publication-title: Neurosurgery
  doi: 10.1227/00006123-198710000-00003
  contributor:
    fullname: Eggert H. R.
– volume: 24
  start-page: 1
  year: 2019
  ident: e_1_2_8_37_1
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Gioux S.
– ident: e_1_2_8_23_1
– ident: e_1_2_8_29_1
– volume: 10
  year: 2023
  ident: e_1_2_8_33_1
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.10.4.046001
  contributor:
    fullname: Bahl A.
– volume: 19
  start-page: 134
  year: 2011
  ident: e_1_2_8_12_1
  publication-title: Surg. Innov.
  doi: 10.1177/1553350611421021
  contributor:
    fullname: Clancy N. T.
– volume: 78
  start-page: 54
  year: 2018
  ident: e_1_2_8_5_1
  publication-title: Geburtshilfe Frauenheilkd.
  doi: 10.1055/s-0043-123937
  contributor:
    fullname: Hackethal A.
SSID ssj0060353
Score 2.4075534
Snippet Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra...
Information about tissue oxygen saturation (StO ) and other related important physiological parameters can be extracted from diffuse reflectance spectra...
Abstract Information about tissue oxygen saturation (StO 2 ) and other related important physiological parameters can be extracted from diffuse reflectance...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202300536
SubjectTerms biological models
Comparative studies
Gelatin
Goodness of fit
imaging phantoms
Monte Carlo simulations
Oxygen content
oxygen saturation
Parameters
Reflectance
Spectra
Tissues
Title A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin‐based phantoms and Monte Carlo experiments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202300536
https://www.ncbi.nlm.nih.gov/pubmed/38616109
https://www.proquest.com/docview/3066107591
https://www.proquest.com/docview/3039233283/abstract/
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPWlbtooVeUy5ypUpdBRzbcZzuAJVSJNqqKtLsIt8iKJAgMrPpqo_Ajvfrk-DjzGQYWFRqd7lZvhwf-4_jfAfgnTSqKLQOFjDUpUIzn2rvfFoamhmde505XIc8_CL3j8TBKB_d-ou_50MMC27oGXG8RgfXptuaQ0N_mhP8eY8hb50jcxtpeqiKvg_8KEl5xFBmSoo0zMWjGbWRsq3F5Iuz0j2puahc49Sz9xT0rND9jpPTzcnYbNpfd3iO_1OrZXgy1aVku-9IK_DAN8_g8S1a4XO43iZ2zgonEUxL2ppo5JrEJXES4-p0eBEDr0w6T0JV8cMA9i1y0pDj9rwNXda3k470_KeYbhzN330gn-LevObP7yucXh25OMYgx-ddyMSRQyRpkV19edaSeWSC7gUc7X38sbufTuM6pJZLJVPDa-5qJyxnXnpaW4pBLHnpjcyd18bnoepUWVEXzFhpyjDI8KKWzglV5tryl7DUtI1_DYQJL5UpWZBxQZvmSlnHhePUqJpalRcJvJ_Ztbro8R1VD2pmFTZ1NTR1Amszs1dTN-6q8D4V5GWRl1kCb4fbwQHxq4qOjRWeCRKT8yDTEnjVd5chK65khjz7BFg0-l_KUB3sfP46nL35l0Sr8Cgci34z2xosjS8nfj3IprHZgIdMfNuIDnIDsHkUCQ
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHyqs0tICRkDilTeJHnN5KoWxLt0iolXqL_IpaaJOq2b1w4idw4__1l-BxNlkWDkhwjBPLj5mxv4zH3wC8ElrmuVJeAjqxMVOZi5WzLi50kmrFnUot-iHHh2J0zPZPeB9NiHdhOn6IweGGlhHWazRwdEhvzllDP-szvL2XIeE6FTfhlrd5jrb59tPAICUSGogoUylY7Hfjk563Mck2F-sv7kt_gM1F7Bo2n91l0H23u5iTLxvTid4wX39jdPyvcd2HezNoSrY7XXoAN1z9EO7-Qlj4CH5sEzOnCyeBm5Y0FVFIbRK84iSk1mmxEHOvTFtH_FjxbADVi5zV5LS5aLzWumbako4CKtSbBA1ot8j7EJ5XX3_7jjusJZenmOf4ovWNWDJGMi2yo67OGzJPTtA-huPdd0c7o3iW2iE2VEgRa1pRW1lmaOaESyqTYB5LWjgtuHVKO-6HnkjDqjzTRujCrzM0r4S1TBZcGboCS3VTu1UgGXNC6iLzSM7DUy6lsZRZmmhZJUbyPILXvWDLy47Bo-y4mrMSp7ocpjqC9V7u5cyS29L_UnmEmfMijeDl8NrbIB6sqDBZ_huPMin1SC2CJ52-DE1RKVKktI8gC1L_Sx_K_Td7H4enp_9S6QXcHh2ND8qDvcMPa3DHl7Mutm0dliZXU_fMo6iJfh7s5CdrdxdS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCQEB96PQAEjIXFK69iO43ArLUtbaEGISnuL_IpaoMmq2b1w4iNw4_vxSfA4u9kuHJDgmIeV2DMT__3IbwCeSaOKQutgAUNdKjTzqfbOp6WhmdG515nDeciDQ7l7JPbH-fjcX_w9H2KYcMPIiN9rDPCJqzeX0NBP5gR_3mPIW-fyIlwSkjMcfu18GABSkvLIocyUFGnojMcLbCNlm6vlV7ulP7TmqnSNfc_oOujFW_dbTj5vzKZmw379Dej4P9W6AdfmwpRs9Z50Ey745hZcPYcrvA0_tohdwsJJJNOStiYawSZxTpzExDodnsTMK7POk1BVXBlA5yInDTluT9vgs76ddaQHQMVy02j_7gV5HTfnNT-_fcf-1ZHJMWY5Pu3CQxw5QJQW2dZnX1qyTE3Q3YGj0auP27vpPLFDarlUMjW85q52wnLmpae1pZjFkpfeyNx5bXweqk6VFXXBjJWmDF8ZXtTSOaHKXFt-F9aatvH3gTDhpTIlCzouiNNcKeu4cJwaVVOr8iKB5wu7VpOe31H1pGZWYVNXQ1MnsL4wezWP464KA6qgL4u8zBJ4OlwOEYjLKjo2VrgnaEzOg05L4F7vLsOjuJIZAu0TYNHof3mHav_l3rvh6MG_FHoCl9_vjKq3e4dvHsKVcFr0G9vWYW16NvOPgoSamscxSn4BF6UWAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+analytical+models+of+diffuse+reflectance+in+homogeneous+biological+tissues%3A+Gelatin%E2%80%90based+phantoms+and+Monte+Carlo+experiments&rft.jtitle=Journal+of+biophotonics&rft.au=Bahl%2C+Anisha&rft.au=Segaud%2C+Silvere&rft.au=Xie%2C+Yijing&rft.au=Shapey%2C+Jonathan&rft.date=2024-06-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=17&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjbio.202300536&rft.externalDBID=10.1002%252Fjbio.202300536&rft.externalDocID=JBIO202300536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon