Statistical inference on representational geometries
Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference me...
Saved in:
Published in | eLife Vol. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
eLife Sciences Publications Ltd
23.08.2023
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (
rsatoolbox.readthedocs.io
). |
---|---|
AbstractList | Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io). Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io). Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox ( rsatoolbox.readthedocs.io ). |
Author | Diedrichsen, Jörn Kriegeskorte, Nikolaus Kipnis, Alexander D Schütt, Heiko H |
Author_xml | – sequence: 1 givenname: Heiko H orcidid: 0000-0002-2491-5710 surname: Schütt fullname: Schütt, Heiko H – sequence: 2 givenname: Alexander D surname: Kipnis fullname: Kipnis, Alexander D – sequence: 3 givenname: Jörn orcidid: 0000-0003-0264-8532 surname: Diedrichsen fullname: Diedrichsen, Jörn – sequence: 4 givenname: Nikolaus orcidid: 0000-0001-7433-9005 surname: Kriegeskorte fullname: Kriegeskorte, Nikolaus |
BookMark | eNptkV9LWzEYxsNQpnZe7QsUvBmMav4n52qMsjmh4IUKuws5yZuacpp0yamwb7_YlqFibhLe55eHJ3nO0FHKCRD6TPClEoJfwSIGuNRUSPkBnVIs8Axr_vvoxfkEnde6wm0prjXpPqITpiTBDNNTxO9GO8Y6RmeHaUwBCiQH05ymBTYFKqRnPaemLiGvYSwR6id0HOxQ4fywT9DDzx_381-zxe31zfz7YuaY1HJmlet7ortO2E4HrLy3jjtlqQesqVSeMcl9xxwLpCdYcCKUpspzpQMVSrIJutn7-mxXZlPi2pa_JttodoNclsaWFn0A4zCWijqmHTgelOu8h15LHjC3yhLavL7tvTbbfg3etYcVO7wyfa2k-GiW-ckQzLnUVDeHLweHkv9soY5mHauDYbAJ8rYaqoVklNBONPTiDbrK29I-cUd1gkuheaO-7ilXcq0Fwv80BJvnds2uXbNrt9HkDe3ivpsWNw7v3vkH7zaooQ |
CitedBy_id | crossref_primary_10_1016_j_neuropsychologia_2024_108962 crossref_primary_10_1038_s44271_025_00214_9 crossref_primary_10_1073_pnas_2317881121 crossref_primary_10_1523_JNEUROSCI_0936_24_2024 crossref_primary_10_3758_s13428_025_02636_z |
Cites_doi | 10.1098/rstb.2016.0278 10.1038/nature06713 10.5281/zenodo.596855 10.1371/journal.pone.0232551 10.1038/srep27755 10.1371/journal.pcbi.1005508 10.1016/j.media.2007.06.004 10.1146/annurev-neuro-062012-170325 10.2202/1544-6115.1175 10.1103/PhysRevX.8.031003 10.1016/j.conb.2021.10.010 10.51628/001c.27664 10.3389/fninf.2014.00088 10.1146/annurev-psych-120710-100412 10.1038/s41593-018-0210-5 10.1109/MEMS51782.2021.9375160 10.1038/nn.4244 10.1017/s0140525x98001253 10.1073/pnas.2014196118 10.1523/JNEUROSCI.5547-11.2012 10.1214/009053607000000505 10.1016/j.neuroimage.2017.08.077 10.3905/jpm.2004.110 10.1016/j.conb.2019.04.002 10.1038/nn.3839 10.1016/j.tics.2006.07.005 10.1016/j.neuropsychologia.2015.10.023 10.1371/journal.pcbi.1005350 10.1038/nn.2731 10.3389/fninf.2011.00013 10.1038/s41593-018-0108-2 10.1016/j.neuroimage.2013.08.048 10.1371/journal.pcbi.1003915 10.3389/fpsyg.2012.00245 10.1146/annurev.neuro.29.051605.113024 10.1371/journal.pcbi.1006897 10.1016/j.cobme.2021.100288 10.1016/j.neuroimage.2019.06.064 10.1016/j.neuron.2018.03.044 10.1073/pnas.1403112111 10.1038/nature24636 10.1016/j.neuroimage.2010.07.073 10.1016/j.conb.2018.01.009 10.1016/j.neuroimage.2015.12.012 10.1016/j.neuroimage.2016.07.040 10.1016/j.neuroimage.2021.118686 10.1016/j.neuroimage.2007.04.042 10.1038/s41583-021-00502-3 10.1016/j.cobeha.2021.06.002 10.1038/nn.4038 10.1137/0135023 10.1371/journal.pcbi.1003553 10.1162/jocn_a_01755 10.1523/JNEUROSCI.3156-13.2014 10.1109/42.906424 10.1073/pnas.2011417118 10.1006/nimg.1998.0395 10.1038/nature18933 10.1073/pnas.1905544116 10.1126/science.1193125 10.1016/j.neuroimage.2009.06.060 10.1073/pnas.0705654104 10.1098/rstb.2020.0040 10.1201/9780429246593 10.1038/nn.3635 10.1016/j.mathsocsci.2011.08.008 10.1016/s1053-8119(02)91132-8 10.1016/j.neuroimage.2006.09.039 10.1016/j.neuroimage.2012.08.052 10.1146/annurev-vision-082114-035447 10.1016/S1053-8119(09)70884-5 10.1371/journal.pcbi.1006299 10.1038/nature14539 10.1038/nrn1888 10.1038/ncomms15037 10.3389/fninf.2014.00014 10.1371/journal.pcbi.1005604 10.1016/j.neuron.2008.10.043 10.3758/BF03330618 10.1088/1741-2552/ab0ab5 10.1073/pnas.0600244103 10.1016/j.neuron.2017.12.018 10.1109/TMI.2010.2046908 10.1016/j.neuroimage.2007.09.034 10.1038/s41586-019-1346-5 10.1016/j.copsyc.2018.10.003 10.48550/ARXIV.2104.13714 10.1038/s41467-021-22244-7 10.1017/S0140525X20001685 10.1101/2020.03.23.003046 10.32470/CCN.2019.1018-0 10.1016/0010-0285(70)90002-2 10.1038/s41551-019-0455-7 10.1038/s41467-022-28091-4 10.1038/s41593-019-0550-9 10.1101/2021.02.22.432340 10.1137/0701007 10.3389/neuro.06.004.2008 10.1002/(sici)1099-1492(199706/08)10:4/5<171::aid-nbm453>3.0.co;2-l 10.1146/annurev-neuro-080317-061906 10.1038/nn.4504 10.1016/j.neuroimage.2017.08.051 10.1038/s41592-018-0235-4 10.1364/OPTICA.395825 10.1016/j.jmp.2016.10.007 10.1016/j.tics.2013.06.007 10.1016/j.neuroimage.2014.09.060 10.1016/j.tics.2015.03.009 |
ContentType | Journal Article |
Copyright | 2023, Schütt et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Schütt et al. 2023, Schütt et al 2023 Schütt et al |
Copyright_xml | – notice: 2023, Schütt et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Schütt et al. – notice: 2023, Schütt et al 2023 Schütt et al |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.82566 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_c00672c38cec4f7c9ddeb864f04a7a12 PMC10446828 10_7554_eLife_82566 |
GrantInformation_xml | – fundername: ; grantid: Forschungsstipendium SCHU 3351/1-1 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3686-a7cbb18995a98f07ddac4c7a2de08267d3364d93c3f1b1054157827d478f25763 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Thu Aug 21 18:36:38 EDT 2025 Fri Jul 11 08:56:50 EDT 2025 Fri Jul 25 11:51:32 EDT 2025 Tue Jul 01 04:08:33 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3686-a7cbb18995a98f07ddac4c7a2de08267d3364d93c3f1b1054157827d478f25763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Université du Luxembourg, Esch-Belval, Luxembourg. Max Planck Institute for Biological Cybernetics, Tuebingen, Germany. |
ORCID | 0000-0001-7433-9005 0000-0002-2491-5710 0000-0003-0264-8532 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.82566 |
PMID | 37610302 |
PQID | 2859546584 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c00672c38cec4f7c9ddeb864f04a7a12 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10446828 proquest_miscellaneous_2856321295 proquest_journals_2859546584 crossref_primary_10_7554_eLife_82566 crossref_citationtrail_10_7554_eLife_82566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-23 |
PublicationDateYYYYMMDD | 2023-08-23 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | eLife |
PublicationYear | 2023 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Jozwik (bib50) 2016; 83 Kriegeskorte (bib66) 2008; 60 Kriegeskorte (bib69) 2015; 1 Wandell (bib108) 2015; 19 Fonov (bib38) 2009; 47 Weldon (bib110) 2021; 376 Xue (bib113) 2010; 330 Kay (bib52) 2008; 452 Ejaz (bib36) 2015; 18 Uğurbil (bib106) 2021; 18 Klein (bib60) 2017; 13 Ali (bib4) 2012; 64 Kriegeskorte (bib63) 2006; 103 Ledoit (bib79) 2004; 30 Hebart (bib47) 2014; 8 Edelman (bib34) 1998; 26 Jenkinson (bib49) 2002; 17 Haxby (bib46) 2014; 37 Kell (bib53) 2018; 98 Konkle (bib61) 2022; 13 Kriegeskorte (bib68) 2013; 17 Kriegeskorte (bib71) 2018; 21 Tustison (bib105) 2010; 29 Zhuang (bib119) 2021; 118 Storrs (bib100) 2014 Yarkoni (bib116) 2020; 45 Smith (bib97) 2018; 97 Xu (bib112) 2021; 12 Khaligh-Razavi (bib57) 2017; 76 Chung (bib19) 2021; 70 Baillet (bib9) 2017; 20 Kornblith (bib62) 2019 Kriegeskorte (bib70) 2016; 371 Ramírez (bib90) 2014; 34 Allen (bib6) 2021 Chaimow (bib17) 2018; 164 Bodurka (bib12) 2007; 34 Greve (bib44) 2009; 48 Friston (bib40) 2019; 201 Cichy (bib20) 2014; 17 Abbott (bib2) 2020; 4 Kriegeskorte (bib73) 2019; 55 Cox (bib25) 1997; 10 Kriegeskorte (bib74) 2021; 22 Norman (bib85) 2006; 10 Abadi (bib1) 2015 Steinmetz (bib98) 2018; 50 Gorgolewski (bib43) 2018 Abraham (bib3) 2014; 8 Kriegeskorte (bib64) 2007; 104 Wang (bib109) 2020; 7 Averbeck (bib8) 2006; 7 Dumoulin (bib32) 2008; 39 Efron (bib35) 1994 Yamins (bib115) 2016; 19 Schütt (bib94) 2023 Shepard (bib96) 1970; 1 Mehrer (bib81) 2021; 118 Carlin (bib16) 2017; 13 Horikawa (bib48) 2017; 8 Storrs (bib101) 2021; 33 Mehrer (bib80) 2017 Bandettini (bib10) 2021; 40 Cichy (bib21) 2016; 6 Krizhevsky (bib75) 2012 Connolly (bib24) 2012; 32 Székely (bib103) 2007; 35 Nili (bib84) 2020; 15 Kendall (bib55) 1948 Kriegeskorte (bib72) 2019; 42 Avants (bib7) 2008; 12 Gorgolewski (bib42) 2011; 5 Jun (bib51) 2017; 551 Parvizi (bib86) 2018; 21 Stringer (bib102) 2019; 571 Chung (bib18) 2018; 8 de Vries (bib28) 2020; 23 Glasser (bib41) 2016; 536 Naselaris (bib82) 2011; 56 Kriegeskorte (bib65) 2008; 2 Sejnowski (bib95) 2014; 17 Craik (bib26) 2019; 16 Walther (bib107) 2016; 137 Cichy (bib23) 2021 Khaligh-Razavi (bib56) 2014; 10 Paszke (bib87) 2019 Kietzmann (bib58) 2019; 116 Allefeld (bib5) 2016; 141 Kriegeskorte (bib67) 2012; 3 Cadena (bib13) 2019; 15 Ritchie (bib91) 2021; 245 Kemeny (bib54) 1959; 88 Wu (bib111) 2006; 29 Dale (bib27) 1999; 9 Kipnis (bib59) 2023 Guo (bib45) 2021 Esteban (bib37) 2019; 16 Lanczos (bib77) 1964; 1 Nili (bib83) 2014; 10 Cai (bib15) 2019; 15 Kubilius (bib76) 2019 Cadena (bib14) 2019 LeCun (bib78) 2015; 521 Power (bib89) 2014; 84 Satterthwaite (bib92) 2013; 64 Pedregosa (bib88) 2015; 104 Stevenson (bib99) 2011; 14 Young (bib117) 1978; 35 Freeman (bib39) 2018; 24 Behzadi (bib11) 2007; 37 Diedrichsen (bib31) 2020; 5 Edelman (bib33) 1998; 21 Schäfer (bib93) 2005; 4 Diedrichsen (bib30) 2018; 180 Zhang (bib118) 2001; 20 Tong (bib104) 2012; 63 Diedrichsen (bib29) 2017; 13 Cichy (bib22) 2019 Yamins (bib114) 2014; 111 |
References_xml | – year: 2017 ident: bib80 article-title: Deep neural networks trained on ecologically relevant categories better explain human IT – volume: 371 year: 2016 ident: bib70 article-title: Inferring brain-computational mechanisms with models of activity measurements publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences doi: 10.1098/rstb.2016.0278 – volume: 452 start-page: 352 year: 2008 ident: bib52 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – volume-title: Zenodo year: 2018 ident: bib43 article-title: Nipype doi: 10.5281/zenodo.596855 – volume: 15 year: 2020 ident: bib84 article-title: Inferring exemplar discriminability in brain representations publication-title: PLOS ONE doi: 10.1371/journal.pone.0232551 – volume: 6 year: 2016 ident: bib21 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Scientific Reports doi: 10.1038/srep27755 – volume: 13 year: 2017 ident: bib29 article-title: Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005508 – volume: 12 start-page: 26 year: 2008 ident: bib7 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.06.004 – volume: 37 start-page: 435 year: 2014 ident: bib46 article-title: Decoding neural representational spaces using multivariate pattern analysis publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-062012-170325 – volume: 4 year: 2005 ident: bib93 article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics publication-title: Statistical Applications in Genetics and Molecular Biology doi: 10.2202/1544-6115.1175 – volume: 8 year: 2018 ident: bib18 article-title: Classification and geometry of general perceptual manifolds publication-title: Physical Review X doi: 10.1103/PhysRevX.8.031003 – volume: 70 start-page: 137 year: 2021 ident: bib19 article-title: Neural population geometry: An approach for understanding biological and artificial neural networks publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2021.10.010 – volume: 5 year: 2020 ident: bib31 article-title: Comparing representational geometries using whitened unbiased-distance-matrix similarity publication-title: Neurons, Behavior, Data Analysis, and Theory doi: 10.51628/001c.27664 – volume: 8 year: 2014 ident: bib47 article-title: The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2014.00088 – volume: 63 start-page: 483 year: 2012 ident: bib104 article-title: Decoding patterns of human brain activity publication-title: Annual Review of Psychology doi: 10.1146/annurev-psych-120710-100412 – volume: 21 start-page: 1148 year: 2018 ident: bib71 article-title: Cognitive computational neuroscience publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0210-5 – start-page: 540 year: 2021 ident: bib45 article-title: Flexible, Multi-Shank Stacked Array for High-Density Omini-Directional Intracortical Recording doi: 10.1109/MEMS51782.2021.9375160 – volume: 19 start-page: 356 year: 2016 ident: bib115 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4244 – volume: 21 start-page: 449 year: 1998 ident: bib33 article-title: Representation is representation of similarities publication-title: The Behavioral and Brain Sciences doi: 10.1017/s0140525x98001253 – volume: 118 year: 2021 ident: bib119 article-title: Unsupervised neural network models of the ventral visual stream publication-title: PNAS doi: 10.1073/pnas.2014196118 – volume-title: arXiv year: 2015 ident: bib1 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems – volume: 32 start-page: 2608 year: 2012 ident: bib24 article-title: The representation of biological classes in the human brain publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5547-11.2012 – volume: 35 start-page: 2769 year: 2007 ident: bib103 article-title: Measuring and testing dependence by correlation of distances publication-title: The Annals of Statistics doi: 10.1214/009053607000000505 – year: 2012 ident: bib75 article-title: Imagenet classification with deep convolutional neural networks – volume: 164 start-page: 32 year: 2018 ident: bib17 article-title: Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.077 – volume-title: Github year: 2023 ident: bib59 article-title: Fmri-simulations – volume: 30 start-page: 110 year: 2004 ident: bib79 article-title: Honey, i shrunk the sample covariance matrix publication-title: The Journal of Portfolio Management doi: 10.3905/jpm.2004.110 – volume: 55 start-page: 167 year: 2019 ident: bib73 article-title: Interpreting encoding and decoding models publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2019.04.002 – volume: 17 start-page: 1440 year: 2014 ident: bib95 article-title: Putting big data to good use in neuroscience publication-title: Nature Neuroscience doi: 10.1038/nn.3839 – volume: 88 start-page: 577 year: 1959 ident: bib54 article-title: Mathematics without numbers publication-title: Daedalus – volume: 10 start-page: 424 year: 2006 ident: bib85 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2006.07.005 – volume: 83 start-page: 201 year: 2016 ident: bib50 article-title: Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2015.10.023 – volume: 13 year: 2017 ident: bib60 article-title: Mindboggling morphometry of human brains publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005350 – volume: 14 start-page: 139 year: 2011 ident: bib99 article-title: How advances in neural recording affect data analysis publication-title: Nature Neuroscience doi: 10.1038/nn.2731 – volume: 5 year: 2011 ident: bib42 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2011.00013 – volume: 21 start-page: 474 year: 2018 ident: bib86 article-title: Promises and limitations of human intracranial electroencephalography publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0108-2 – volume: 84 start-page: 320 year: 2014 ident: bib89 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 10 year: 2014 ident: bib56 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1003915 – volume: 3 year: 2012 ident: bib67 article-title: Inverse MDS: Inferring dissimilarity structure from multiple item arrangements publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2012.00245 – volume: 29 start-page: 477 year: 2006 ident: bib111 article-title: Complete functional characterization of sensory neurons by system identification publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.29.051605.113024 – volume: 15 year: 2019 ident: bib13 article-title: Deep convolutional models improve predictions of macaque V1 responses to natural images publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006897 – volume: 18 year: 2021 ident: bib106 article-title: Ultrahigh field and ultrahigh resolution fMRI publication-title: Current Opinion in Biomedical Engineering doi: 10.1016/j.cobme.2021.100288 – volume: 201 year: 2019 ident: bib40 article-title: Variational representational similarity analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.06.064 – volume: 98 start-page: 630 year: 2018 ident: bib53 article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy publication-title: Neuron doi: 10.1016/j.neuron.2018.03.044 – volume: 111 start-page: 8619 year: 2014 ident: bib114 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: PNAS doi: 10.1073/pnas.1403112111 – volume: 551 start-page: 232 year: 2017 ident: bib51 article-title: Fully integrated silicon probes for high-density recording of neural activity publication-title: Nature doi: 10.1038/nature24636 – volume: 56 start-page: 400 year: 2011 ident: bib82 article-title: Encoding and decoding in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.073 – volume: 50 start-page: 92 year: 2018 ident: bib98 article-title: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2018.01.009 – volume: 137 start-page: 188 year: 2016 ident: bib107 article-title: Reliability of dissimilarity measures for multi-voxel pattern analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.12.012 – volume: 141 start-page: 378 year: 2016 ident: bib5 article-title: Valid population inference for information-based imaging: From the second-level t-test to prevalence inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.07.040 – volume: 245 year: 2021 ident: bib91 article-title: The unreliable influence of multivariate noise normalization on the reliability of neural dissimilarity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118686 – volume: 37 start-page: 90 year: 2007 ident: bib11 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 22 start-page: 703 year: 2021 ident: bib74 article-title: Neural tuning and representational geometry publication-title: Nature Reviews. Neuroscience doi: 10.1038/s41583-021-00502-3 – volume: 40 start-page: 189 year: 2021 ident: bib10 article-title: Challenges and opportunities of mesoscopic brain mapping with fMRI publication-title: Current Opinion in Behavioral Sciences doi: 10.1016/j.cobeha.2021.06.002 – volume: 18 start-page: 1034 year: 2015 ident: bib36 article-title: Hand use predicts the structure of representations in sensorimotor cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4038 – volume: 35 start-page: 285 year: 1978 ident: bib117 article-title: A consistent extension of condorcet’s election principle publication-title: SIAM Journal on Applied Mathematics doi: 10.1137/0135023 – volume: 10 year: 2014 ident: bib83 article-title: A toolbox for representational similarity analysis publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1003553 – volume: 33 start-page: 2044 year: 2021 ident: bib101 article-title: Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_a_01755 – year: 2019 ident: bib14 article-title: How well do deep neural networks trained on object recognition characterize the Mouse visual system? – volume: 34 start-page: 12155 year: 2014 ident: bib90 article-title: The neural code for face orientation in the human fusiform face area publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.3156-13.2014 – start-page: 1 volume-title: Advances in Neural Information Processing Systems year: 2019 ident: bib76 – volume: 20 start-page: 45 year: 2001 ident: bib118 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.906424 – volume: 118 year: 2021 ident: bib81 article-title: An ecologically motivated image dataset for deep learning yields better models of human vision publication-title: PNAS doi: 10.1073/pnas.2011417118 – start-page: 8024 volume-title: Advances in Neural Information Processing System year: 2019 ident: bib87 – volume: 9 start-page: 179 year: 1999 ident: bib27 article-title: Cortical Surface-Based Analysis publication-title: NeuroImage doi: 10.1006/nimg.1998.0395 – volume: 536 start-page: 171 year: 2016 ident: bib41 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 116 start-page: 21854 year: 2019 ident: bib58 article-title: Recurrence is required to capture the representational dynamics of the human visual system publication-title: PNAS doi: 10.1073/pnas.1905544116 – volume: 330 start-page: 97 year: 2010 ident: bib113 article-title: Greater neural pattern similarity across repetitions is associated with better memory publication-title: Science doi: 10.1126/science.1193125 – volume: 48 start-page: 63 year: 2009 ident: bib44 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.060 – volume: 104 start-page: 20600 year: 2007 ident: bib64 article-title: Individual faces elicit distinct response patterns in human anterior temporal cortex publication-title: PNAS doi: 10.1073/pnas.0705654104 – volume: 376 year: 2021 ident: bib110 article-title: Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences doi: 10.1098/rstb.2020.0040 – volume-title: An Introduction to the Bootstrap year: 1994 ident: bib35 doi: 10.1201/9780429246593 – volume: 17 start-page: 455 year: 2014 ident: bib20 article-title: Resolving human object recognition in space and time publication-title: Nature Neuroscience doi: 10.1038/nn.3635 – volume: 64 start-page: 28 year: 2012 ident: bib4 article-title: Experiments with Kemeny ranking: What works when? publication-title: Mathematical Social Sciences doi: 10.1016/j.mathsocsci.2011.08.008 – volume: 17 start-page: 825 year: 2002 ident: bib49 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1016/s1053-8119(02)91132-8 – volume: 34 start-page: 542 year: 2007 ident: bib12 article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise—Implications for fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.039 – volume: 64 start-page: 240 year: 2013 ident: bib92 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.052 – volume: 1 start-page: 417 year: 2015 ident: bib69 article-title: Deep neural networks: A new framework for modeling biological vision and brain information processing publication-title: Annual Review of Vision Science doi: 10.1146/annurev-vision-082114-035447 – volume: 47 year: 2009 ident: bib38 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: NeuroImage doi: 10.1016/S1053-8119(09)70884-5 – volume: 15 year: 2019 ident: bib15 article-title: Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006299 – volume: 521 start-page: 436 year: 2015 ident: bib78 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 7 start-page: 358 year: 2006 ident: bib8 article-title: Neural correlations, population coding and computation publication-title: Nature Reviews. Neuroscience doi: 10.1038/nrn1888 – volume: 8 year: 2017 ident: bib48 article-title: Generic decoding of seen and imagined objects using hierarchical visual features publication-title: Nature Communications doi: 10.1038/ncomms15037 – volume: 8 year: 2014 ident: bib3 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2014.00014 – volume-title: Software Heritage year: 2023 ident: bib94 article-title: Representational Similarity Analysis 3.0 – volume: 13 year: 2017 ident: bib16 article-title: Adjudicating between face-coding models with individual-face fMRI responses publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005604 – volume: 60 start-page: 1126 year: 2008 ident: bib66 article-title: Matching categorical object representations in inferior temporal cortex of man and monkey publication-title: Neuron doi: 10.1016/j.neuron.2008.10.043 – volume: 26 start-page: 309 year: 1998 ident: bib34 article-title: Toward direct visualization of the internal shape representation space by fMRI publication-title: Psychobiology doi: 10.3758/BF03330618 – volume: 16 year: 2019 ident: bib26 article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ab0ab5 – volume: 103 start-page: 3863 year: 2006 ident: bib63 article-title: Information-based functional brain mapping publication-title: PNAS doi: 10.1073/pnas.0600244103 – volume: 97 start-page: 263 year: 2018 ident: bib97 article-title: Statistical challenges in “big data” human neuroimaging publication-title: Neuron doi: 10.1016/j.neuron.2017.12.018 – volume: 29 start-page: 1310 year: 2010 ident: bib105 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2046908 – volume: 39 start-page: 647 year: 2008 ident: bib32 article-title: Population receptive field estimates in human visual cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.034 – volume: 571 start-page: 361 year: 2019 ident: bib102 article-title: High-dimensional geometry of population responses in visual cortex publication-title: Nature doi: 10.1038/s41586-019-1346-5 – volume: 24 start-page: 83 year: 2018 ident: bib39 article-title: The neural representational geometry of social perception publication-title: Current Opinion in Psychology doi: 10.1016/j.copsyc.2018.10.003 – volume-title: arXiv year: 2021 ident: bib23 article-title: The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion doi: 10.48550/ARXIV.2104.13714 – volume: 12 year: 2021 ident: bib112 article-title: Limits to visual representational correspondence between convolutional neural networks and the human brain publication-title: Nature Communications doi: 10.1038/s41467-021-22244-7 – volume: 45 start-page: 1 year: 2020 ident: bib116 article-title: The generalizability crisis publication-title: The Behavioral and Brain Sciences doi: 10.1017/S0140525X20001685 – volume-title: bioRxiv year: 2014 ident: bib100 article-title: Noise Ceiling on the Crossvalidated Performance of Reweighted Models of Representational Dissimilarity: Addendum to Khaligh-Razavi & Kriegeskorte (2014) doi: 10.1101/2020.03.23.003046 – year: 2019 ident: bib22 article-title: The Algonauts Project: A Platform for Communication between the Sciences of Biological and Artificial Intelligence doi: 10.32470/CCN.2019.1018-0 – volume: 1 start-page: 1 year: 1970 ident: bib96 article-title: Second-order isomorphism of internal representations: Shapes of states publication-title: Cognitive Psychology doi: 10.1016/0010-0285(70)90002-2 – volume: 4 start-page: 232 year: 2020 ident: bib2 article-title: A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-019-0455-7 – volume: 13 year: 2022 ident: bib61 article-title: A self-supervised domain-general learning framework for human ventral stream representation publication-title: Nature Communications doi: 10.1038/s41467-022-28091-4 – volume: 23 start-page: 138 year: 2020 ident: bib28 article-title: A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0550-9 – volume-title: bioRxiv year: 2021 ident: bib6 article-title: A Massive 7T fMRI Dataset to Bridge Cognitive and Computational Neuroscience doi: 10.1101/2021.02.22.432340 – volume: 1 start-page: 76 year: 1964 ident: bib77 article-title: Evaluation of Noisy Data publication-title: Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis doi: 10.1137/0701007 – volume: 2 year: 2008 ident: bib65 article-title: Representational similarity analysis - connecting the branches of systems neuroscience publication-title: Frontiers in Systems Neuroscience doi: 10.3389/neuro.06.004.2008 – volume: 10 start-page: 171 year: 1997 ident: bib25 article-title: Software tools for analysis and visualization of fMRI data publication-title: NMR in Biomedicine doi: 10.1002/(sici)1099-1492(199706/08)10:4/5<171::aid-nbm453>3.0.co;2-l – volume: 42 start-page: 407 year: 2019 ident: bib72 article-title: Peeling the onion of brain representations publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-080317-061906 – year: 2019 ident: bib62 article-title: Similarity of Neural Network Representations Revisited – volume: 20 start-page: 327 year: 2017 ident: bib9 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nature Neuroscience doi: 10.1038/nn.4504 – volume: 180 start-page: 119 year: 2018 ident: bib30 article-title: Pattern component modeling: A flexible approach for understanding the representational structure of brain activity patterns publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.051 – volume: 16 start-page: 111 year: 2019 ident: bib37 article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI publication-title: Nature Methods doi: 10.1038/s41592-018-0235-4 – volume: 7 year: 2020 ident: bib109 article-title: Three-photon neuronal imaging in deep mouse brain publication-title: Optica doi: 10.1364/OPTICA.395825 – volume: 76 start-page: 184 year: 2017 ident: bib57 article-title: Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models publication-title: Journal of Mathematical Psychology doi: 10.1016/j.jmp.2016.10.007 – volume-title: Rank Correlation Methods year: 1948 ident: bib55 – volume: 17 start-page: 401 year: 2013 ident: bib68 article-title: Representational geometry: integrating cognition, computation, and the brain publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2013.06.007 – volume: 104 start-page: 209 year: 2015 ident: bib88 article-title: Data-driven HRF estimation for encoding and decoding models publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.09.060 – volume: 19 start-page: 349 year: 2015 ident: bib108 article-title: Computational neuroimaging and population receptive fields publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2015.03.009 |
SSID | ssj0000748819 |
Score | 2.419216 |
Snippet | Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Accuracy Brain Calcium imaging Computational neuroscience Estimates Functional magnetic resonance imaging Geometry human mouse Nervous system Neural networks Neuroimaging Neuroscience Neurosciences representational similarity analysis Statistical inference toolbox Tools and Resources |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP7E6pcJOQl3bpE16VFGGqCcHu4U0P3Sgnbjt4H_ve2k7VxC8eGz7KOl7Sd77muT7CBlQmhtq0ySyDnowIAYeFTHDS-WEctYqr0Xw-JSPxux-kk3WpL5wT1hND1w7bqj9YqGmQlvNHNcFjMdS5MzFTHHl9YVTyHlrYMrPwRw6ZlLUB_I4pMyhfZg6ewl4yPMh_qQgz9TfKS-7myPXss3dDtluysTwqm7eLtmw1R7ZrIUjv_YJwxrRUyyD0bQ9sxfOqtCTVLYHivAVL3b27lWz5gdkfHf7fDOKGv2DSNNc5JHiuiwTAESZKoSLuTFKM81Vaiwk7pwbcDQzBdXUJSXUSZCLId9zw7hwiCPoIelVs8oekTA2RZoagA8WCdygVBWp40plmcthmoldQC5al0jdkIOjRsWbBJCA_pPef9L7LyCDlfFHzYnxu9k1-nZlgkTW_gaEVzbhlX-FNyD9NjKyGV1ziaR7KOIuWEDOV49hXOBih6rsbOltcgp5ucgCIjoR7TSo-6SavnqG7QSXuQGLHv_HJ5yQLdSoxx_RKe2T3uJzaU-hklmUZ77TfgM6hPQW priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgRn1hfrLAnodo2aZOeRMVlEfXkwt5KmocuaKuuHvz3zmTb1YJ4bDu0ZfL4ZjLJ9wH0GcsMs0kcWoc9GDMGEeYRp0vlpHLWKq9FcHefDUf8ZpyOmwW3abOtsp0T_URtak1r5GdEtEbC3ZKfv76FpBpF1dVGQmMRlom6jLZ0ibGYr7EgPEpEvNmxPIHAeWZvJ86eYlbkWRF_gMjz9XeCzO4WyV-YM1iHtSZY7F3MWncDFmy1CSsz-civLeAUKXqiZTSatCf3enXV81SV7bEiesWjrV-8dtZ0G0aD64erYdioIISaZTILldBlGWNalKpcukgYozTXQiXGInxnwqC7ucmZZi4uMVpCREbUF4YL6SibYDuwVNWV3YVeZPIkMZhEWKJxw4BVJk4olaYuw8kmcgGctC4pdEMRTkoVzwWmCuS_wvuv8P4LoD83fp0xY_xtdkm-nZsQnbW_Ub8_Fs3oKLSvCGsmtdXcCZ3jpFvKjLuIK6HiJICDtmWKZoxNi58eEcDx_DGODip5qMrWn94mY4jOeRqA7LRo54e6T6rJk-fZjqnYjRnp3v9f34dV0qCnheaEHcDSx_unPcRI5aM88t3xG_pK6uM priority: 102 providerName: ProQuest |
Title | Statistical inference on representational geometries |
URI | https://www.proquest.com/docview/2859546584 https://www.proquest.com/docview/2856321295 https://pubmed.ncbi.nlm.nih.gov/PMC10446828 https://doaj.org/article/c00672c38cec4f7c9ddeb864f04a7a12 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB78gcUX0WpprB5X8KmQM8ludjdPoqKIVCmlB_cWNvtDD65Jeyrof9-ZveRoxCcfk8yGMLuz881u9vsAjhgTlrksjZ3HEYwVg4yLhNOl9kp753TQIri5FVdjfj3JJyvQiXG2Dnx4s7QjPanxfDZ6_vtyggGP-HUkMRseu-9T70ZY6gixCuuYkiRF6E2L88OULHGcpsXifN7rNpvwAaOM5LayXnIKHP494Nn_bfK_PHS5DVstgByeLnp8B1Zc_RE2FpKSL7vACT0G8mU0mnan-YZNPQz0ld1RI3rFnWt-Bz2thz0YX178Or-KW2WE2DChRKylqaoUS6VcF8on0lptuJE6sw5TupAWu4Dbghnm0woRFGZpRALScqk8VRjsE6zVTe0-wzCxRZZZLCwcUbshiFWZl1rnuRc4ASU-gm-dS0rT0oaTesWsxPKBXFkGV5bBlREcLY3_LNgy3jY7I98uTYjiOtxo5ndlGzGlCbvEhinjDPfSFDgRV0pwn3AtdZpFcND1TNkNm5Lo-EjeXfEIvi4fY8TQNoiuXfMUbATDjF3kEahej_Y-qP-knt4H7u2UNsCxSt1_f9MvsEma9bQwnbEDWHucP7lDRDaP1QBW5UQOYP3s4vbHz0FYHxiEkfwPiyH-Mw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB7qKaIv4hWjVSPUFyE22d1kNw8iVltO7elBpIW-xc1e6gFNak-L9E_5G53ZJKcGxLc-JhmSMDu7881evg9gk_PCcseyxHmMYKwYZFKmgi61V9o7p4MWwcG8mB6JT8f58Rr8Hs7C0LbKYUwMA7VtDc2RbxHRGgl3K_Hu9GdCqlG0ujpIaHRhse8uf2HJtny79xHb9xVjuzuHH6ZJryqQGF6oItHS1HWGZUauS-VTaa02wkjNrMN0WEiLvy9syQ33WY3oAzMcZlFphVSe0DnH996AdcGxlJnA-vbO_POX1awOJmSFObY7CCgxVW-52cK7N1iHBR7Gq9QXFAJGsHa8KfOvLLd7F-708DR-38XTPVhzzX242QlWXj4AQdg0UDuj0WI4Kxi3TRzIMYeDTPSKE9f-CGpdy4dwdC0eegSTpm3cY4hTWzJmsWxxRByHEFkxL7XOc1_g8Jb6CF4PLqlMT0pO2hjfKyxOyH9V8F8V_BfB5sr4tOPi-LfZNvl2ZUIE2uFGe3ZS9f2xMmEN2nBlnBFemhKH-VoVwqdCS52xCDaGlqn6Xr2srmIwgperx9gfaZFFN669CDYFRzxQ5hGoUYuOfmj8pFl8C8zeGS2vYw385P9ffwG3pocHs2q2N99_CrcZ4i6a5mZ8AybnZxfuGeKk8_p5H5wxfL3u_vAHDJwniQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4gRsML8RoKqDXBF5N62t1td_tgjIonIEh8kOS81e1e4CTaAgdi-Gv-Ome27cEmxjce20627ezMzsxevg9gh_PCcseyxHm0YKwYZFKmgi61V9o7pwMXwZejYu9YfJ7lsxX4PZyFoW2Vw5gYBmrbGpojnxDQGhF3KzHx_baIr7vTd2fnCTFI0UrrQKfRmciBu_6F5dvi7f4u9vUrxqafvn3cS3qGgcTwQhWJlqauMyw5cl0qn0prtRFGamYdhsZCWvwVYUtuuM9qzEQw2mFElVZI5SlT59juHbgreZ6Rj8mZXM7vYGhWGG27I4ESg_bEHc69e4MVWUBkvAmCgStglOCOt2f-Fe-mD2C9T1Tj951lPYQV1zyCex115fVjEJSlBpBnFJoPpwbjtokDTOZwpImaOHHtz8DbtXgCx7ein6ew2rSN24A4tSVjFgsYRxBymCwr5qXWee4LHOhSH8HrQSWV6eHJiSXjR4VlCumvCvqrgv4i2FkKn3WoHP8W-0C6XYoQlHa40V6cVL1nViasRhuujDPCS1PigF-rQvhUaKkzFsH20DNV79-L6sYaI3i5fIyeScstunHtVZApOGYGZR6BGvXo6IPGT5r5acD4zmihHavhzf-__QXcRy-oDvePDrZgjWECRvPdjG_D6uXFlXuGCdNl_TxYZgzfb9sV_gCBfCpZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+on+representational+geometries&rft.jtitle=eLife&rft.au=Sch%C3%BCtt%2C+Heiko+H&rft.au=Kipnis%2C+Alexander+D&rft.au=Diedrichsen%2C+J%C3%B6rn&rft.au=Kriegeskorte%2C+Nikolaus&rft.date=2023-08-23&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.82566&rft_id=info%3Apmid%2F37610302&rft.externalDocID=PMC10446828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |