Statistical inference on representational geometries

Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference me...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 12
Main Authors Schütt, Heiko H, Kipnis, Alexander D, Diedrichsen, Jörn, Kriegeskorte, Nikolaus
Format Journal Article
LanguageEnglish
Published Cambridge eLife Sciences Publications Ltd 23.08.2023
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox ( rsatoolbox.readthedocs.io ).
AbstractList Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).
Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).
Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox ( rsatoolbox.readthedocs.io ).
Author Diedrichsen, Jörn
Kriegeskorte, Nikolaus
Kipnis, Alexander D
Schütt, Heiko H
Author_xml – sequence: 1
  givenname: Heiko H
  orcidid: 0000-0002-2491-5710
  surname: Schütt
  fullname: Schütt, Heiko H
– sequence: 2
  givenname: Alexander D
  surname: Kipnis
  fullname: Kipnis, Alexander D
– sequence: 3
  givenname: Jörn
  orcidid: 0000-0003-0264-8532
  surname: Diedrichsen
  fullname: Diedrichsen, Jörn
– sequence: 4
  givenname: Nikolaus
  orcidid: 0000-0001-7433-9005
  surname: Kriegeskorte
  fullname: Kriegeskorte, Nikolaus
BookMark eNptkV9LWzEYxsNQpnZe7QsUvBmMav4n52qMsjmh4IUKuws5yZuacpp0yamwb7_YlqFibhLe55eHJ3nO0FHKCRD6TPClEoJfwSIGuNRUSPkBnVIs8Axr_vvoxfkEnde6wm0prjXpPqITpiTBDNNTxO9GO8Y6RmeHaUwBCiQH05ymBTYFKqRnPaemLiGvYSwR6id0HOxQ4fywT9DDzx_381-zxe31zfz7YuaY1HJmlet7ortO2E4HrLy3jjtlqQesqVSeMcl9xxwLpCdYcCKUpspzpQMVSrIJutn7-mxXZlPi2pa_JttodoNclsaWFn0A4zCWijqmHTgelOu8h15LHjC3yhLavL7tvTbbfg3etYcVO7wyfa2k-GiW-ckQzLnUVDeHLweHkv9soY5mHauDYbAJ8rYaqoVklNBONPTiDbrK29I-cUd1gkuheaO-7ilXcq0Fwv80BJvnds2uXbNrt9HkDe3ivpsWNw7v3vkH7zaooQ
CitedBy_id crossref_primary_10_1016_j_neuropsychologia_2024_108962
crossref_primary_10_1038_s44271_025_00214_9
crossref_primary_10_1073_pnas_2317881121
crossref_primary_10_1523_JNEUROSCI_0936_24_2024
crossref_primary_10_3758_s13428_025_02636_z
Cites_doi 10.1098/rstb.2016.0278
10.1038/nature06713
10.5281/zenodo.596855
10.1371/journal.pone.0232551
10.1038/srep27755
10.1371/journal.pcbi.1005508
10.1016/j.media.2007.06.004
10.1146/annurev-neuro-062012-170325
10.2202/1544-6115.1175
10.1103/PhysRevX.8.031003
10.1016/j.conb.2021.10.010
10.51628/001c.27664
10.3389/fninf.2014.00088
10.1146/annurev-psych-120710-100412
10.1038/s41593-018-0210-5
10.1109/MEMS51782.2021.9375160
10.1038/nn.4244
10.1017/s0140525x98001253
10.1073/pnas.2014196118
10.1523/JNEUROSCI.5547-11.2012
10.1214/009053607000000505
10.1016/j.neuroimage.2017.08.077
10.3905/jpm.2004.110
10.1016/j.conb.2019.04.002
10.1038/nn.3839
10.1016/j.tics.2006.07.005
10.1016/j.neuropsychologia.2015.10.023
10.1371/journal.pcbi.1005350
10.1038/nn.2731
10.3389/fninf.2011.00013
10.1038/s41593-018-0108-2
10.1016/j.neuroimage.2013.08.048
10.1371/journal.pcbi.1003915
10.3389/fpsyg.2012.00245
10.1146/annurev.neuro.29.051605.113024
10.1371/journal.pcbi.1006897
10.1016/j.cobme.2021.100288
10.1016/j.neuroimage.2019.06.064
10.1016/j.neuron.2018.03.044
10.1073/pnas.1403112111
10.1038/nature24636
10.1016/j.neuroimage.2010.07.073
10.1016/j.conb.2018.01.009
10.1016/j.neuroimage.2015.12.012
10.1016/j.neuroimage.2016.07.040
10.1016/j.neuroimage.2021.118686
10.1016/j.neuroimage.2007.04.042
10.1038/s41583-021-00502-3
10.1016/j.cobeha.2021.06.002
10.1038/nn.4038
10.1137/0135023
10.1371/journal.pcbi.1003553
10.1162/jocn_a_01755
10.1523/JNEUROSCI.3156-13.2014
10.1109/42.906424
10.1073/pnas.2011417118
10.1006/nimg.1998.0395
10.1038/nature18933
10.1073/pnas.1905544116
10.1126/science.1193125
10.1016/j.neuroimage.2009.06.060
10.1073/pnas.0705654104
10.1098/rstb.2020.0040
10.1201/9780429246593
10.1038/nn.3635
10.1016/j.mathsocsci.2011.08.008
10.1016/s1053-8119(02)91132-8
10.1016/j.neuroimage.2006.09.039
10.1016/j.neuroimage.2012.08.052
10.1146/annurev-vision-082114-035447
10.1016/S1053-8119(09)70884-5
10.1371/journal.pcbi.1006299
10.1038/nature14539
10.1038/nrn1888
10.1038/ncomms15037
10.3389/fninf.2014.00014
10.1371/journal.pcbi.1005604
10.1016/j.neuron.2008.10.043
10.3758/BF03330618
10.1088/1741-2552/ab0ab5
10.1073/pnas.0600244103
10.1016/j.neuron.2017.12.018
10.1109/TMI.2010.2046908
10.1016/j.neuroimage.2007.09.034
10.1038/s41586-019-1346-5
10.1016/j.copsyc.2018.10.003
10.48550/ARXIV.2104.13714
10.1038/s41467-021-22244-7
10.1017/S0140525X20001685
10.1101/2020.03.23.003046
10.32470/CCN.2019.1018-0
10.1016/0010-0285(70)90002-2
10.1038/s41551-019-0455-7
10.1038/s41467-022-28091-4
10.1038/s41593-019-0550-9
10.1101/2021.02.22.432340
10.1137/0701007
10.3389/neuro.06.004.2008
10.1002/(sici)1099-1492(199706/08)10:4/5<171::aid-nbm453>3.0.co;2-l
10.1146/annurev-neuro-080317-061906
10.1038/nn.4504
10.1016/j.neuroimage.2017.08.051
10.1038/s41592-018-0235-4
10.1364/OPTICA.395825
10.1016/j.jmp.2016.10.007
10.1016/j.tics.2013.06.007
10.1016/j.neuroimage.2014.09.060
10.1016/j.tics.2015.03.009
ContentType Journal Article
Copyright 2023, Schütt et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023, Schütt et al.
2023, Schütt et al 2023 Schütt et al
Copyright_xml – notice: 2023, Schütt et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023, Schütt et al.
– notice: 2023, Schütt et al 2023 Schütt et al
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.82566
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_c00672c38cec4f7c9ddeb864f04a7a12
PMC10446828
10_7554_eLife_82566
GrantInformation_xml – fundername: ;
  grantid: Forschungsstipendium SCHU 3351/1-1
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3686-a7cbb18995a98f07ddac4c7a2de08267d3364d93c3f1b1054157827d478f25763
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:30:52 EDT 2025
Thu Aug 21 18:36:38 EDT 2025
Fri Jul 11 08:56:50 EDT 2025
Fri Jul 25 11:51:32 EDT 2025
Tue Jul 01 04:08:33 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3686-a7cbb18995a98f07ddac4c7a2de08267d3364d93c3f1b1054157827d478f25763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Université du Luxembourg, Esch-Belval, Luxembourg.
Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
ORCID 0000-0001-7433-9005
0000-0002-2491-5710
0000-0003-0264-8532
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.82566
PMID 37610302
PQID 2859546584
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_c00672c38cec4f7c9ddeb864f04a7a12
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10446828
proquest_miscellaneous_2856321295
proquest_journals_2859546584
crossref_primary_10_7554_eLife_82566
crossref_citationtrail_10_7554_eLife_82566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-23
PublicationDateYYYYMMDD 2023-08-23
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-23
  day: 23
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle eLife
PublicationYear 2023
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Jozwik (bib50) 2016; 83
Kriegeskorte (bib66) 2008; 60
Kriegeskorte (bib69) 2015; 1
Wandell (bib108) 2015; 19
Fonov (bib38) 2009; 47
Weldon (bib110) 2021; 376
Xue (bib113) 2010; 330
Kay (bib52) 2008; 452
Ejaz (bib36) 2015; 18
Uğurbil (bib106) 2021; 18
Klein (bib60) 2017; 13
Ali (bib4) 2012; 64
Kriegeskorte (bib63) 2006; 103
Ledoit (bib79) 2004; 30
Hebart (bib47) 2014; 8
Edelman (bib34) 1998; 26
Jenkinson (bib49) 2002; 17
Haxby (bib46) 2014; 37
Kell (bib53) 2018; 98
Konkle (bib61) 2022; 13
Kriegeskorte (bib68) 2013; 17
Kriegeskorte (bib71) 2018; 21
Tustison (bib105) 2010; 29
Zhuang (bib119) 2021; 118
Storrs (bib100) 2014
Yarkoni (bib116) 2020; 45
Smith (bib97) 2018; 97
Xu (bib112) 2021; 12
Khaligh-Razavi (bib57) 2017; 76
Chung (bib19) 2021; 70
Baillet (bib9) 2017; 20
Kornblith (bib62) 2019
Kriegeskorte (bib70) 2016; 371
Ramírez (bib90) 2014; 34
Allen (bib6) 2021
Chaimow (bib17) 2018; 164
Bodurka (bib12) 2007; 34
Greve (bib44) 2009; 48
Friston (bib40) 2019; 201
Cichy (bib20) 2014; 17
Abbott (bib2) 2020; 4
Kriegeskorte (bib73) 2019; 55
Cox (bib25) 1997; 10
Kriegeskorte (bib74) 2021; 22
Norman (bib85) 2006; 10
Abadi (bib1) 2015
Steinmetz (bib98) 2018; 50
Gorgolewski (bib43) 2018
Abraham (bib3) 2014; 8
Kriegeskorte (bib64) 2007; 104
Wang (bib109) 2020; 7
Averbeck (bib8) 2006; 7
Dumoulin (bib32) 2008; 39
Efron (bib35) 1994
Yamins (bib115) 2016; 19
Schütt (bib94) 2023
Shepard (bib96) 1970; 1
Mehrer (bib81) 2021; 118
Carlin (bib16) 2017; 13
Horikawa (bib48) 2017; 8
Storrs (bib101) 2021; 33
Mehrer (bib80) 2017
Bandettini (bib10) 2021; 40
Cichy (bib21) 2016; 6
Krizhevsky (bib75) 2012
Connolly (bib24) 2012; 32
Székely (bib103) 2007; 35
Nili (bib84) 2020; 15
Kendall (bib55) 1948
Kriegeskorte (bib72) 2019; 42
Avants (bib7) 2008; 12
Gorgolewski (bib42) 2011; 5
Jun (bib51) 2017; 551
Parvizi (bib86) 2018; 21
Stringer (bib102) 2019; 571
Chung (bib18) 2018; 8
de Vries (bib28) 2020; 23
Glasser (bib41) 2016; 536
Naselaris (bib82) 2011; 56
Kriegeskorte (bib65) 2008; 2
Sejnowski (bib95) 2014; 17
Craik (bib26) 2019; 16
Walther (bib107) 2016; 137
Cichy (bib23) 2021
Khaligh-Razavi (bib56) 2014; 10
Paszke (bib87) 2019
Kietzmann (bib58) 2019; 116
Allefeld (bib5) 2016; 141
Kriegeskorte (bib67) 2012; 3
Cadena (bib13) 2019; 15
Ritchie (bib91) 2021; 245
Kemeny (bib54) 1959; 88
Wu (bib111) 2006; 29
Dale (bib27) 1999; 9
Kipnis (bib59) 2023
Guo (bib45) 2021
Esteban (bib37) 2019; 16
Lanczos (bib77) 1964; 1
Nili (bib83) 2014; 10
Cai (bib15) 2019; 15
Kubilius (bib76) 2019
Cadena (bib14) 2019
LeCun (bib78) 2015; 521
Power (bib89) 2014; 84
Satterthwaite (bib92) 2013; 64
Pedregosa (bib88) 2015; 104
Stevenson (bib99) 2011; 14
Young (bib117) 1978; 35
Freeman (bib39) 2018; 24
Behzadi (bib11) 2007; 37
Diedrichsen (bib31) 2020; 5
Edelman (bib33) 1998; 21
Schäfer (bib93) 2005; 4
Diedrichsen (bib30) 2018; 180
Zhang (bib118) 2001; 20
Tong (bib104) 2012; 63
Diedrichsen (bib29) 2017; 13
Cichy (bib22) 2019
Yamins (bib114) 2014; 111
References_xml – year: 2017
  ident: bib80
  article-title: Deep neural networks trained on ecologically relevant categories better explain human IT
– volume: 371
  year: 2016
  ident: bib70
  article-title: Inferring brain-computational mechanisms with models of activity measurements
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
  doi: 10.1098/rstb.2016.0278
– volume: 452
  start-page: 352
  year: 2008
  ident: bib52
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– volume-title: Zenodo
  year: 2018
  ident: bib43
  article-title: Nipype
  doi: 10.5281/zenodo.596855
– volume: 15
  year: 2020
  ident: bib84
  article-title: Inferring exemplar discriminability in brain representations
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0232551
– volume: 6
  year: 2016
  ident: bib21
  article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
  publication-title: Scientific Reports
  doi: 10.1038/srep27755
– volume: 13
  year: 2017
  ident: bib29
  article-title: Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005508
– volume: 12
  start-page: 26
  year: 2008
  ident: bib7
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2007.06.004
– volume: 37
  start-page: 435
  year: 2014
  ident: bib46
  article-title: Decoding neural representational spaces using multivariate pattern analysis
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev-neuro-062012-170325
– volume: 4
  year: 2005
  ident: bib93
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
  publication-title: Statistical Applications in Genetics and Molecular Biology
  doi: 10.2202/1544-6115.1175
– volume: 8
  year: 2018
  ident: bib18
  article-title: Classification and geometry of general perceptual manifolds
  publication-title: Physical Review X
  doi: 10.1103/PhysRevX.8.031003
– volume: 70
  start-page: 137
  year: 2021
  ident: bib19
  article-title: Neural population geometry: An approach for understanding biological and artificial neural networks
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2021.10.010
– volume: 5
  year: 2020
  ident: bib31
  article-title: Comparing representational geometries using whitened unbiased-distance-matrix similarity
  publication-title: Neurons, Behavior, Data Analysis, and Theory
  doi: 10.51628/001c.27664
– volume: 8
  year: 2014
  ident: bib47
  article-title: The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2014.00088
– volume: 63
  start-page: 483
  year: 2012
  ident: bib104
  article-title: Decoding patterns of human brain activity
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev-psych-120710-100412
– volume: 21
  start-page: 1148
  year: 2018
  ident: bib71
  article-title: Cognitive computational neuroscience
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-018-0210-5
– start-page: 540
  year: 2021
  ident: bib45
  article-title: Flexible, Multi-Shank Stacked Array for High-Density Omini-Directional Intracortical Recording
  doi: 10.1109/MEMS51782.2021.9375160
– volume: 19
  start-page: 356
  year: 2016
  ident: bib115
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4244
– volume: 21
  start-page: 449
  year: 1998
  ident: bib33
  article-title: Representation is representation of similarities
  publication-title: The Behavioral and Brain Sciences
  doi: 10.1017/s0140525x98001253
– volume: 118
  year: 2021
  ident: bib119
  article-title: Unsupervised neural network models of the ventral visual stream
  publication-title: PNAS
  doi: 10.1073/pnas.2014196118
– volume-title: arXiv
  year: 2015
  ident: bib1
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– volume: 32
  start-page: 2608
  year: 2012
  ident: bib24
  article-title: The representation of biological classes in the human brain
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5547-11.2012
– volume: 35
  start-page: 2769
  year: 2007
  ident: bib103
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000505
– year: 2012
  ident: bib75
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 164
  start-page: 32
  year: 2018
  ident: bib17
  article-title: Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.077
– volume-title: Github
  year: 2023
  ident: bib59
  article-title: Fmri-simulations
– volume: 30
  start-page: 110
  year: 2004
  ident: bib79
  article-title: Honey, i shrunk the sample covariance matrix
  publication-title: The Journal of Portfolio Management
  doi: 10.3905/jpm.2004.110
– volume: 55
  start-page: 167
  year: 2019
  ident: bib73
  article-title: Interpreting encoding and decoding models
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2019.04.002
– volume: 17
  start-page: 1440
  year: 2014
  ident: bib95
  article-title: Putting big data to good use in neuroscience
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3839
– volume: 88
  start-page: 577
  year: 1959
  ident: bib54
  article-title: Mathematics without numbers
  publication-title: Daedalus
– volume: 10
  start-page: 424
  year: 2006
  ident: bib85
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2006.07.005
– volume: 83
  start-page: 201
  year: 2016
  ident: bib50
  article-title: Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2015.10.023
– volume: 13
  year: 2017
  ident: bib60
  article-title: Mindboggling morphometry of human brains
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005350
– volume: 14
  start-page: 139
  year: 2011
  ident: bib99
  article-title: How advances in neural recording affect data analysis
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2731
– volume: 5
  year: 2011
  ident: bib42
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2011.00013
– volume: 21
  start-page: 474
  year: 2018
  ident: bib86
  article-title: Promises and limitations of human intracranial electroencephalography
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-018-0108-2
– volume: 84
  start-page: 320
  year: 2014
  ident: bib89
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 10
  year: 2014
  ident: bib56
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1003915
– volume: 3
  year: 2012
  ident: bib67
  article-title: Inverse MDS: Inferring dissimilarity structure from multiple item arrangements
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2012.00245
– volume: 29
  start-page: 477
  year: 2006
  ident: bib111
  article-title: Complete functional characterization of sensory neurons by system identification
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.29.051605.113024
– volume: 15
  year: 2019
  ident: bib13
  article-title: Deep convolutional models improve predictions of macaque V1 responses to natural images
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006897
– volume: 18
  year: 2021
  ident: bib106
  article-title: Ultrahigh field and ultrahigh resolution fMRI
  publication-title: Current Opinion in Biomedical Engineering
  doi: 10.1016/j.cobme.2021.100288
– volume: 201
  year: 2019
  ident: bib40
  article-title: Variational representational similarity analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.064
– volume: 98
  start-page: 630
  year: 2018
  ident: bib53
  article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.044
– volume: 111
  start-page: 8619
  year: 2014
  ident: bib114
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: PNAS
  doi: 10.1073/pnas.1403112111
– volume: 551
  start-page: 232
  year: 2017
  ident: bib51
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature
  doi: 10.1038/nature24636
– volume: 56
  start-page: 400
  year: 2011
  ident: bib82
  article-title: Encoding and decoding in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.073
– volume: 50
  start-page: 92
  year: 2018
  ident: bib98
  article-title: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2018.01.009
– volume: 137
  start-page: 188
  year: 2016
  ident: bib107
  article-title: Reliability of dissimilarity measures for multi-voxel pattern analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.12.012
– volume: 141
  start-page: 378
  year: 2016
  ident: bib5
  article-title: Valid population inference for information-based imaging: From the second-level t-test to prevalence inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.040
– volume: 245
  year: 2021
  ident: bib91
  article-title: The unreliable influence of multivariate noise normalization on the reliability of neural dissimilarity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118686
– volume: 37
  start-page: 90
  year: 2007
  ident: bib11
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 22
  start-page: 703
  year: 2021
  ident: bib74
  article-title: Neural tuning and representational geometry
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/s41583-021-00502-3
– volume: 40
  start-page: 189
  year: 2021
  ident: bib10
  article-title: Challenges and opportunities of mesoscopic brain mapping with fMRI
  publication-title: Current Opinion in Behavioral Sciences
  doi: 10.1016/j.cobeha.2021.06.002
– volume: 18
  start-page: 1034
  year: 2015
  ident: bib36
  article-title: Hand use predicts the structure of representations in sensorimotor cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4038
– volume: 35
  start-page: 285
  year: 1978
  ident: bib117
  article-title: A consistent extension of condorcet’s election principle
  publication-title: SIAM Journal on Applied Mathematics
  doi: 10.1137/0135023
– volume: 10
  year: 2014
  ident: bib83
  article-title: A toolbox for representational similarity analysis
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1003553
– volume: 33
  start-page: 2044
  year: 2021
  ident: bib101
  article-title: Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_01755
– year: 2019
  ident: bib14
  article-title: How well do deep neural networks trained on object recognition characterize the Mouse visual system?
– volume: 34
  start-page: 12155
  year: 2014
  ident: bib90
  article-title: The neural code for face orientation in the human fusiform face area
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3156-13.2014
– start-page: 1
  volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: bib76
– volume: 20
  start-page: 45
  year: 2001
  ident: bib118
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.906424
– volume: 118
  year: 2021
  ident: bib81
  article-title: An ecologically motivated image dataset for deep learning yields better models of human vision
  publication-title: PNAS
  doi: 10.1073/pnas.2011417118
– start-page: 8024
  volume-title: Advances in Neural Information Processing System
  year: 2019
  ident: bib87
– volume: 9
  start-page: 179
  year: 1999
  ident: bib27
  article-title: Cortical Surface-Based Analysis
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0395
– volume: 536
  start-page: 171
  year: 2016
  ident: bib41
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 116
  start-page: 21854
  year: 2019
  ident: bib58
  article-title: Recurrence is required to capture the representational dynamics of the human visual system
  publication-title: PNAS
  doi: 10.1073/pnas.1905544116
– volume: 330
  start-page: 97
  year: 2010
  ident: bib113
  article-title: Greater neural pattern similarity across repetitions is associated with better memory
  publication-title: Science
  doi: 10.1126/science.1193125
– volume: 48
  start-page: 63
  year: 2009
  ident: bib44
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.060
– volume: 104
  start-page: 20600
  year: 2007
  ident: bib64
  article-title: Individual faces elicit distinct response patterns in human anterior temporal cortex
  publication-title: PNAS
  doi: 10.1073/pnas.0705654104
– volume: 376
  year: 2021
  ident: bib110
  article-title: Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
  doi: 10.1098/rstb.2020.0040
– volume-title: An Introduction to the Bootstrap
  year: 1994
  ident: bib35
  doi: 10.1201/9780429246593
– volume: 17
  start-page: 455
  year: 2014
  ident: bib20
  article-title: Resolving human object recognition in space and time
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3635
– volume: 64
  start-page: 28
  year: 2012
  ident: bib4
  article-title: Experiments with Kemeny ranking: What works when?
  publication-title: Mathematical Social Sciences
  doi: 10.1016/j.mathsocsci.2011.08.008
– volume: 17
  start-page: 825
  year: 2002
  ident: bib49
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1016/s1053-8119(02)91132-8
– volume: 34
  start-page: 542
  year: 2007
  ident: bib12
  article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise—Implications for fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.039
– volume: 64
  start-page: 240
  year: 2013
  ident: bib92
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.052
– volume: 1
  start-page: 417
  year: 2015
  ident: bib69
  article-title: Deep neural networks: A new framework for modeling biological vision and brain information processing
  publication-title: Annual Review of Vision Science
  doi: 10.1146/annurev-vision-082114-035447
– volume: 47
  year: 2009
  ident: bib38
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)70884-5
– volume: 15
  year: 2019
  ident: bib15
  article-title: Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006299
– volume: 521
  start-page: 436
  year: 2015
  ident: bib78
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 7
  start-page: 358
  year: 2006
  ident: bib8
  article-title: Neural correlations, population coding and computation
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/nrn1888
– volume: 8
  year: 2017
  ident: bib48
  article-title: Generic decoding of seen and imagined objects using hierarchical visual features
  publication-title: Nature Communications
  doi: 10.1038/ncomms15037
– volume: 8
  year: 2014
  ident: bib3
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2014.00014
– volume-title: Software Heritage
  year: 2023
  ident: bib94
  article-title: Representational Similarity Analysis 3.0
– volume: 13
  year: 2017
  ident: bib16
  article-title: Adjudicating between face-coding models with individual-face fMRI responses
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005604
– volume: 60
  start-page: 1126
  year: 2008
  ident: bib66
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.043
– volume: 26
  start-page: 309
  year: 1998
  ident: bib34
  article-title: Toward direct visualization of the internal shape representation space by fMRI
  publication-title: Psychobiology
  doi: 10.3758/BF03330618
– volume: 16
  year: 2019
  ident: bib26
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ab0ab5
– volume: 103
  start-page: 3863
  year: 2006
  ident: bib63
  article-title: Information-based functional brain mapping
  publication-title: PNAS
  doi: 10.1073/pnas.0600244103
– volume: 97
  start-page: 263
  year: 2018
  ident: bib97
  article-title: Statistical challenges in “big data” human neuroimaging
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.12.018
– volume: 29
  start-page: 1310
  year: 2010
  ident: bib105
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 39
  start-page: 647
  year: 2008
  ident: bib32
  article-title: Population receptive field estimates in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.034
– volume: 571
  start-page: 361
  year: 2019
  ident: bib102
  article-title: High-dimensional geometry of population responses in visual cortex
  publication-title: Nature
  doi: 10.1038/s41586-019-1346-5
– volume: 24
  start-page: 83
  year: 2018
  ident: bib39
  article-title: The neural representational geometry of social perception
  publication-title: Current Opinion in Psychology
  doi: 10.1016/j.copsyc.2018.10.003
– volume-title: arXiv
  year: 2021
  ident: bib23
  article-title: The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion
  doi: 10.48550/ARXIV.2104.13714
– volume: 12
  year: 2021
  ident: bib112
  article-title: Limits to visual representational correspondence between convolutional neural networks and the human brain
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-22244-7
– volume: 45
  start-page: 1
  year: 2020
  ident: bib116
  article-title: The generalizability crisis
  publication-title: The Behavioral and Brain Sciences
  doi: 10.1017/S0140525X20001685
– volume-title: bioRxiv
  year: 2014
  ident: bib100
  article-title: Noise Ceiling on the Crossvalidated Performance of Reweighted Models of Representational Dissimilarity: Addendum to Khaligh-Razavi & Kriegeskorte (2014)
  doi: 10.1101/2020.03.23.003046
– year: 2019
  ident: bib22
  article-title: The Algonauts Project: A Platform for Communication between the Sciences of Biological and Artificial Intelligence
  doi: 10.32470/CCN.2019.1018-0
– volume: 1
  start-page: 1
  year: 1970
  ident: bib96
  article-title: Second-order isomorphism of internal representations: Shapes of states
  publication-title: Cognitive Psychology
  doi: 10.1016/0010-0285(70)90002-2
– volume: 4
  start-page: 232
  year: 2020
  ident: bib2
  article-title: A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-019-0455-7
– volume: 13
  year: 2022
  ident: bib61
  article-title: A self-supervised domain-general learning framework for human ventral stream representation
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-28091-4
– volume: 23
  start-page: 138
  year: 2020
  ident: bib28
  article-title: A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-019-0550-9
– volume-title: bioRxiv
  year: 2021
  ident: bib6
  article-title: A Massive 7T fMRI Dataset to Bridge Cognitive and Computational Neuroscience
  doi: 10.1101/2021.02.22.432340
– volume: 1
  start-page: 76
  year: 1964
  ident: bib77
  article-title: Evaluation of Noisy Data
  publication-title: Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis
  doi: 10.1137/0701007
– volume: 2
  year: 2008
  ident: bib65
  article-title: Representational similarity analysis - connecting the branches of systems neuroscience
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/neuro.06.004.2008
– volume: 10
  start-page: 171
  year: 1997
  ident: bib25
  article-title: Software tools for analysis and visualization of fMRI data
  publication-title: NMR in Biomedicine
  doi: 10.1002/(sici)1099-1492(199706/08)10:4/5<171::aid-nbm453>3.0.co;2-l
– volume: 42
  start-page: 407
  year: 2019
  ident: bib72
  article-title: Peeling the onion of brain representations
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev-neuro-080317-061906
– year: 2019
  ident: bib62
  article-title: Similarity of Neural Network Representations Revisited
– volume: 20
  start-page: 327
  year: 2017
  ident: bib9
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4504
– volume: 180
  start-page: 119
  year: 2018
  ident: bib30
  article-title: Pattern component modeling: A flexible approach for understanding the representational structure of brain activity patterns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.051
– volume: 16
  start-page: 111
  year: 2019
  ident: bib37
  article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI
  publication-title: Nature Methods
  doi: 10.1038/s41592-018-0235-4
– volume: 7
  year: 2020
  ident: bib109
  article-title: Three-photon neuronal imaging in deep mouse brain
  publication-title: Optica
  doi: 10.1364/OPTICA.395825
– volume: 76
  start-page: 184
  year: 2017
  ident: bib57
  article-title: Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models
  publication-title: Journal of Mathematical Psychology
  doi: 10.1016/j.jmp.2016.10.007
– volume-title: Rank Correlation Methods
  year: 1948
  ident: bib55
– volume: 17
  start-page: 401
  year: 2013
  ident: bib68
  article-title: Representational geometry: integrating cognition, computation, and the brain
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2013.06.007
– volume: 104
  start-page: 209
  year: 2015
  ident: bib88
  article-title: Data-driven HRF estimation for encoding and decoding models
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.09.060
– volume: 19
  start-page: 349
  year: 2015
  ident: bib108
  article-title: Computational neuroimaging and population receptive fields
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2015.03.009
SSID ssj0000748819
Score 2.419216
Snippet Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Accuracy
Brain
Calcium imaging
Computational neuroscience
Estimates
Functional magnetic resonance imaging
Geometry
human
mouse
Nervous system
Neural networks
Neuroimaging
Neuroscience
Neurosciences
representational similarity analysis
Statistical inference
toolbox
Tools and Resources
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP7E6pcJOQl3bpE16VFGGqCcHu4U0P3Sgnbjt4H_ve2k7VxC8eGz7KOl7Sd77muT7CBlQmhtq0ySyDnowIAYeFTHDS-WEctYqr0Xw-JSPxux-kk3WpL5wT1hND1w7bqj9YqGmQlvNHNcFjMdS5MzFTHHl9YVTyHlrYMrPwRw6ZlLUB_I4pMyhfZg6ewl4yPMh_qQgz9TfKS-7myPXss3dDtluysTwqm7eLtmw1R7ZrIUjv_YJwxrRUyyD0bQ9sxfOqtCTVLYHivAVL3b27lWz5gdkfHf7fDOKGv2DSNNc5JHiuiwTAESZKoSLuTFKM81Vaiwk7pwbcDQzBdXUJSXUSZCLId9zw7hwiCPoIelVs8oekTA2RZoagA8WCdygVBWp40plmcthmoldQC5al0jdkIOjRsWbBJCA_pPef9L7LyCDlfFHzYnxu9k1-nZlgkTW_gaEVzbhlX-FNyD9NjKyGV1ziaR7KOIuWEDOV49hXOBih6rsbOltcgp5ucgCIjoR7TSo-6SavnqG7QSXuQGLHv_HJ5yQLdSoxx_RKe2T3uJzaU-hklmUZ77TfgM6hPQW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgRn1hfrLAnodo2aZOeRMVlEfXkwt5KmocuaKuuHvz3zmTb1YJ4bDu0ZfL4ZjLJ9wH0GcsMs0kcWoc9GDMGEeYRp0vlpHLWKq9FcHefDUf8ZpyOmwW3abOtsp0T_URtak1r5GdEtEbC3ZKfv76FpBpF1dVGQmMRlom6jLZ0ibGYr7EgPEpEvNmxPIHAeWZvJ86eYlbkWRF_gMjz9XeCzO4WyV-YM1iHtSZY7F3MWncDFmy1CSsz-civLeAUKXqiZTSatCf3enXV81SV7bEiesWjrV-8dtZ0G0aD64erYdioIISaZTILldBlGWNalKpcukgYozTXQiXGInxnwqC7ucmZZi4uMVpCREbUF4YL6SibYDuwVNWV3YVeZPIkMZhEWKJxw4BVJk4olaYuw8kmcgGctC4pdEMRTkoVzwWmCuS_wvuv8P4LoD83fp0xY_xtdkm-nZsQnbW_Ub8_Fs3oKLSvCGsmtdXcCZ3jpFvKjLuIK6HiJICDtmWKZoxNi58eEcDx_DGODip5qMrWn94mY4jOeRqA7LRo54e6T6rJk-fZjqnYjRnp3v9f34dV0qCnheaEHcDSx_unPcRI5aM88t3xG_pK6uM
  priority: 102
  providerName: ProQuest
Title Statistical inference on representational geometries
URI https://www.proquest.com/docview/2859546584
https://www.proquest.com/docview/2856321295
https://pubmed.ncbi.nlm.nih.gov/PMC10446828
https://doaj.org/article/c00672c38cec4f7c9ddeb864f04a7a12
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB78gcUX0WpprB5X8KmQM8ludjdPoqKIVCmlB_cWNvtDD65Jeyrof9-ZveRoxCcfk8yGMLuz881u9vsAjhgTlrksjZ3HEYwVg4yLhNOl9kp753TQIri5FVdjfj3JJyvQiXG2Dnx4s7QjPanxfDZ6_vtyggGP-HUkMRseu-9T70ZY6gixCuuYkiRF6E2L88OULHGcpsXifN7rNpvwAaOM5LayXnIKHP494Nn_bfK_PHS5DVstgByeLnp8B1Zc_RE2FpKSL7vACT0G8mU0mnan-YZNPQz0ld1RI3rFnWt-Bz2thz0YX178Or-KW2WE2DChRKylqaoUS6VcF8on0lptuJE6sw5TupAWu4Dbghnm0woRFGZpRALScqk8VRjsE6zVTe0-wzCxRZZZLCwcUbshiFWZl1rnuRc4ASU-gm-dS0rT0oaTesWsxPKBXFkGV5bBlREcLY3_LNgy3jY7I98uTYjiOtxo5ndlGzGlCbvEhinjDPfSFDgRV0pwn3AtdZpFcND1TNkNm5Lo-EjeXfEIvi4fY8TQNoiuXfMUbATDjF3kEahej_Y-qP-knt4H7u2UNsCxSt1_f9MvsEma9bQwnbEDWHucP7lDRDaP1QBW5UQOYP3s4vbHz0FYHxiEkfwPiyH-Mw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB7qKaIv4hWjVSPUFyE22d1kNw8iVltO7elBpIW-xc1e6gFNak-L9E_5G53ZJKcGxLc-JhmSMDu7881evg9gk_PCcseyxHmMYKwYZFKmgi61V9o7p4MWwcG8mB6JT8f58Rr8Hs7C0LbKYUwMA7VtDc2RbxHRGgl3K_Hu9GdCqlG0ujpIaHRhse8uf2HJtny79xHb9xVjuzuHH6ZJryqQGF6oItHS1HWGZUauS-VTaa02wkjNrMN0WEiLvy9syQ33WY3oAzMcZlFphVSe0DnH996AdcGxlJnA-vbO_POX1awOJmSFObY7CCgxVW-52cK7N1iHBR7Gq9QXFAJGsHa8KfOvLLd7F-708DR-38XTPVhzzX242QlWXj4AQdg0UDuj0WI4Kxi3TRzIMYeDTPSKE9f-CGpdy4dwdC0eegSTpm3cY4hTWzJmsWxxRByHEFkxL7XOc1_g8Jb6CF4PLqlMT0pO2hjfKyxOyH9V8F8V_BfB5sr4tOPi-LfZNvl2ZUIE2uFGe3ZS9f2xMmEN2nBlnBFemhKH-VoVwqdCS52xCDaGlqn6Xr2srmIwgperx9gfaZFFN669CDYFRzxQ5hGoUYuOfmj8pFl8C8zeGS2vYw385P9ffwG3pocHs2q2N99_CrcZ4i6a5mZ8AybnZxfuGeKk8_p5H5wxfL3u_vAHDJwniQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4gRsML8RoKqDXBF5N62t1td_tgjIonIEh8kOS81e1e4CTaAgdi-Gv-Ome27cEmxjce20627ezMzsxevg9gh_PCcseyxHm0YKwYZFKmgi61V9o7pwMXwZejYu9YfJ7lsxX4PZyFoW2Vw5gYBmrbGpojnxDQGhF3KzHx_baIr7vTd2fnCTFI0UrrQKfRmciBu_6F5dvi7f4u9vUrxqafvn3cS3qGgcTwQhWJlqauMyw5cl0qn0prtRFGamYdhsZCWvwVYUtuuM9qzEQw2mFElVZI5SlT59juHbgreZ6Rj8mZXM7vYGhWGG27I4ESg_bEHc69e4MVWUBkvAmCgStglOCOt2f-Fe-mD2C9T1Tj951lPYQV1zyCex115fVjEJSlBpBnFJoPpwbjtokDTOZwpImaOHHtz8DbtXgCx7ein6ew2rSN24A4tSVjFgsYRxBymCwr5qXWee4LHOhSH8HrQSWV6eHJiSXjR4VlCumvCvqrgv4i2FkKn3WoHP8W-0C6XYoQlHa40V6cVL1nViasRhuujDPCS1PigF-rQvhUaKkzFsH20DNV79-L6sYaI3i5fIyeScstunHtVZApOGYGZR6BGvXo6IPGT5r5acD4zmihHavhzf-__QXcRy-oDvePDrZgjWECRvPdjG_D6uXFlXuGCdNl_TxYZgzfb9sV_gCBfCpZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+on+representational+geometries&rft.jtitle=eLife&rft.au=Sch%C3%BCtt%2C+Heiko+H&rft.au=Kipnis%2C+Alexander+D&rft.au=Diedrichsen%2C+J%C3%B6rn&rft.au=Kriegeskorte%2C+Nikolaus&rft.date=2023-08-23&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.82566&rft_id=info%3Apmid%2F37610302&rft.externalDocID=PMC10446828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon