Production of Biobased Ethylbenzene by Cascade Biocatalysis with an Engineered Photodecarboxylase

Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one‐pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we d...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 8; pp. e202314566 - n/a
Main Authors Qin, Zhaoyang, Zhou, Yi, Li, Zhi, Höhne, Matthias, Bornscheuer, Uwe T., Wu, Shuke
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.02.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one‐pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non‐natural three‐enzyme cascade for one‐pot conversion of biobased l‐phenylalanine into ethylbenzene. The key rate‐limiting photodecarboxylase was subjected to structure‐guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3‐fold higher productivity. With this improved photodecarboxylase, an optimized two‐cell sequential process was developed to convert l‐phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one‐pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals. Production of commodity chemicals from renewable resources is vital for a sustainable society. A non‐natural three‐enzyme cascade is reported for the one‐pot conversion of biobased L‐phenylalanine into ethylbenzene with up to 82 % conversion. The key enzyme, a photodecarboxylase, was semirationally engineered to boost productivity. The cascade was integrated with a fermentation process to yield ethylbenzene from biobased glycerol.
AbstractList Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one‐pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non‐natural three‐enzyme cascade for one‐pot conversion of biobased l‐phenylalanine into ethylbenzene. The key rate‐limiting photodecarboxylase was subjected to structure‐guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3‐fold higher productivity. With this improved photodecarboxylase, an optimized two‐cell sequential process was developed to convert l‐phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one‐pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Abstract Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one‐pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non‐natural three‐enzyme cascade for one‐pot conversion of biobased l ‐phenylalanine into ethylbenzene. The key rate‐limiting photodecarboxylase was subjected to structure‐guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3‐fold higher productivity. With this improved photodecarboxylase, an optimized two‐cell sequential process was developed to convert l ‐phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one‐pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one‐pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non‐natural three‐enzyme cascade for one‐pot conversion of biobased l‐phenylalanine into ethylbenzene. The key rate‐limiting photodecarboxylase was subjected to structure‐guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3‐fold higher productivity. With this improved photodecarboxylase, an optimized two‐cell sequential process was developed to convert l‐phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one‐pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals. Production of commodity chemicals from renewable resources is vital for a sustainable society. A non‐natural three‐enzyme cascade is reported for the one‐pot conversion of biobased L‐phenylalanine into ethylbenzene with up to 82 % conversion. The key enzyme, a photodecarboxylase, was semirationally engineered to boost productivity. The cascade was integrated with a fermentation process to yield ethylbenzene from biobased glycerol.
Author Li, Zhi
Zhou, Yi
Wu, Shuke
Höhne, Matthias
Bornscheuer, Uwe T.
Qin, Zhaoyang
Author_xml – sequence: 1
  givenname: Zhaoyang
  surname: Qin
  fullname: Qin, Zhaoyang
  organization: Huazhong Agricultural University
– sequence: 2
  givenname: Yi
  orcidid: 0000-0003-3467-193X
  surname: Zhou
  fullname: Zhou, Yi
  email: zhouyi1213@mail.hzau.edu.cn
  organization: Huazhong Agricultural University
– sequence: 3
  givenname: Zhi
  orcidid: 0000-0001-7370-2562
  surname: Li
  fullname: Li, Zhi
  organization: National University of Singapore
– sequence: 4
  givenname: Matthias
  orcidid: 0000-0002-2542-725X
  surname: Höhne
  fullname: Höhne, Matthias
  organization: Technische Universität Berlin
– sequence: 5
  givenname: Uwe T.
  orcidid: 0000-0003-0685-2696
  surname: Bornscheuer
  fullname: Bornscheuer, Uwe T.
  email: uwe.bornscheuer@uni-greifswald.de
  organization: University of Greifswald
– sequence: 6
  givenname: Shuke
  orcidid: 0000-0003-0914-9277
  surname: Wu
  fullname: Wu, Shuke
  email: shukewu@mail.hzau.edu.cn
  organization: University of Greifswald
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37947487$$D View this record in MEDLINE/PubMed
BookMark eNqF0M9PHCEcBXBibOqvXns0k3jpZbYwMMAcdbNtTYx60DMB5ouLmQWFmej0ry-btTbpxRMcPu8F3hHaDzEAQl8JXhCMm-86eFg0uKGEtZzvoUPSNqSmQtD9cmeU1kK25AAd5fxYvJSYf0YHVHRMMCkOkb5NsZ_s6GOooqsufDQ6Q1-txvU8GAi_IUBl5mqps9U9bIHVox7m7HP14sd1pUO1Cg8-AKSSu13HMfZgdTLxdR5K1wn65PSQ4cvbeYzuf6zulr_qq5ufl8vzq9pSLnnNhGY9F7SVraFaWqcbwolzDDpuaCMMpg4LLoksn-gJpbo1jgtnemOxI5weo2-73qcUnyfIo9r4bGEYdIA4ZVViXcNYh1mhZ__RxzilUF6nmmJkJ1vcFrXYKZtizgmcekp-o9OsCFbb8dV2fPU-fgmcvtVOZgP9O_-7dgHdDrz4AeYP6tT59eXqX_kfnJGSnA
Cites_doi 10.1002/cssc.202102709
10.1002/anie.201915108
10.1002/anie.201807119
10.1002/bit.27366
10.1002/anie.201409033
10.1002/anie.202208358
10.1039/D0CS00155D
10.1039/D0CS01575J
10.1021/sb300037w
10.1038/s41557-022-00931-2
10.1038/s43586-021-00044-z
10.1016/j.phytochem.2004.05.006
10.1002/anie.202004248
10.1186/s40643-021-00434-x
10.1016/j.biortech.2013.05.097
10.1016/j.apcatb.2019.118143
10.1038/s41467-021-24259-6
10.1038/s41929-020-00556-z
10.1021/acs.chemrev.7b00033
10.1038/s41929-022-00909-w
10.1039/C9GC04246F
10.1002/chem.201702235
10.1038/s41570-018-0055-1
10.1002/cssc.201800709
10.1038/s41467-020-16099-7
10.1002/anie.202215935
10.1002/anie.201902761
10.1021/acs.chemrev.1c00574
10.1016/j.cogsc.2022.100591
10.1039/C6SC02842J
10.1016/j.cell.2016.02.004
10.1021/jacs.8b12282
10.1002/anie.201903165
10.1002/cssc.202102645
10.1016/j.ymben.2016.02.002
10.1039/D1CS00100K
10.1002/anie.202100778
10.1021/acs.chemrev.7b00203
10.1002/anie.202112835
10.1002/cctc.201801063
10.1126/science.abd5687
10.1039/D0EE00095G
10.1021/acs.chemrev.1c00121
10.1016/S1872-2067(15)60965-2
10.1126/science.aan6349
10.1002/anie.201102117
10.1002/cssc.202200402
10.1002/anie.202006648
10.1002/anie.202112855
10.1002/anie.202107694
10.1021/cr400309c
10.1038/s41929-022-00800-8
10.1021/acscatal.0c01708
10.1016/j.ymben.2019.08.008
10.1126/science.1218930
10.1126/science.aay3060
10.1016/j.tibtech.2017.05.006
10.1016/j.cogsc.2022.100700
10.1016/j.ab.2020.113749
10.1186/s12934-019-1090-4
10.1002/anie.202113842
10.1002/cssc.202102628
10.3389/fbioe.2020.00407
10.1002/anie.201606235
10.1002/anie.201710793
10.1016/j.cbpa.2020.08.006
10.1016/j.biotechadv.2019.04.008
10.1038/s41929-020-0422-4
10.1021/acscatal.6b02979
10.1002/cssc.202201275
ContentType Journal Article
Copyright 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202314566
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Open Access Backfiles (Open Access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202314566
37947487
ANIE202314566
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
– fundername: Natural Science Foundation of Hubei Province
  funderid: 2021CFB05
– fundername: National Natural Science Foundation of China
  funderid: 32100060; 32101229
– fundername: Alexander von Humboldt-Stiftung
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2662021SKQD001; 2662021JC006
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2021CFB05
– fundername: National Natural Science Foundation of China
  grantid: 32100060
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2662021SKQD001
– fundername: National Natural Science Foundation of China
  grantid: 32101229
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2662021JC006
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3686-47a4d673585b3a8cfa2161ff4e96b327b03f076818288d133a5bf67fbdbc0f163
IEDL.DBID 24P
ISSN 1433-7851
1521-3773
IngestDate Sat Aug 17 04:23:45 EDT 2024
Wed Oct 23 05:13:13 EDT 2024
Wed Oct 23 14:23:37 EDT 2024
Wed Oct 23 10:04:34 EDT 2024
Sat Aug 24 00:56:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Renewable Resources
Biocatalysis
Enzyme Cascades
Protein Engineering
Photodecarboxylase
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3686-47a4d673585b3a8cfa2161ff4e96b327b03f076818288d133a5bf67fbdbc0f163
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2542-725X
0000-0003-3467-193X
0000-0003-0685-2696
0000-0003-0914-9277
0000-0001-7370-2562
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202314566
PMID 37947487
PQID 2924898505
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2889244904
proquest_journals_2924898505
crossref_primary_10_1002_anie_202314566
pubmed_primary_37947487
wiley_primary_10_1002_anie_202314566_ANIE202314566
PublicationCentury 2000
PublicationDate February 19, 2024
PublicationDateYYYYMMDD 2024-02-19
PublicationDate_xml – month: 02
  year: 2024
  text: February 19, 2024
  day: 19
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 65
2017; 7
2017; 8
2013; 2
2019; 11
2023; 6
2019; 58
2020; 600
2020; 59
2020; 58
2019; 18
2020; 13
2020; 367
2020; 11
2020; 10
2021; 121
2016; 37
2017; 357
2016; 35
2022; 122
2020; 8
2023; 62
2018; 2
2020; 3
2017; 35
2022; 34
2020; 49
2012; 337
2022; 38
2021; 8
2021; 4
2022; 51
2020; 260
2019; 37
2015; 54
2017; 23
2013; 143
2021; 1
2021; 50
2019; 141
2014; 114
2016; 164
2016; 55
2021; 57
2021; 12
2022; 61
2022; 5
2018; 118
2011; 50
2022; 14
2020; 117
2022; 15
2021; 372
2020; 22
2021; 60
2018; 11
2018; 57
e_1_2_3_71_2
e_1_2_3_50_2
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_4_2
e_1_2_3_37_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_12_1
e_1_2_3_56_2
e_1_2_3_79_2
e_1_2_3_33_2
e_1_2_3_58_2
e_1_2_3_8_1
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_35_2
e_1_2_3_52_2
e_1_2_3_75_2
e_1_2_3_77_1
e_1_2_3_73_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_54_1
e_1_2_3_83_1
e_1_2_3_81_2
e_1_2_3_60_1
e_1_2_3_26_2
e_1_2_3_49_2
e_1_2_3_28_2
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_68_2
e_1_2_3_24_1
e_1_2_3_47_2
e_1_2_3_89_1
e_1_2_3_41_2
e_1_2_3_64_2
e_1_2_3_66_1
e_1_2_3_87_1
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_62_2
e_1_2_3_85_2
e_1_2_3_72_1
e_1_2_3_70_2
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_55_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_57_2
e_1_2_3_78_2
e_1_2_3_30_2
e_1_2_3_51_2
e_1_2_3_76_2
e_1_2_3_32_2
e_1_2_3_53_2
e_1_2_3_74_2
e_1_2_3_61_1
e_1_2_3_82_2
e_1_2_3_80_2
Zhou Y. (e_1_2_3_34_2) 2021; 57
e_1_2_3_27_2
e_1_2_3_29_1
e_1_2_3_69_1
e_1_2_3_23_2
e_1_2_3_48_1
e_1_2_3_25_2
e_1_2_3_46_2
e_1_2_3_67_2
e_1_2_3_65_1
e_1_2_3_88_1
e_1_2_3_40_2
e_1_2_3_44_1
e_1_2_3_86_1
e_1_2_3_21_2
e_1_2_3_42_2
e_1_2_3_63_2
e_1_2_3_84_2
References_xml – volume: 3
  start-page: 181
  year: 2020
  end-page: 183
  publication-title: Nat. Catal.
– volume: 13
  start-page: 1818
  year: 2020
  end-page: 1831
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 4615
  year: 2020
  end-page: 4636
  publication-title: Chem. Soc. Rev.
– volume: 34
  year: 2022
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 37
  year: 2019
  publication-title: Biotechnol. Adv.
– volume: 12
  start-page: 3983
  year: 2021
  publication-title: Nat. Commun.
– volume: 58
  start-page: 10120
  year: 2019
  end-page: 10125
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 2258
  year: 2021
  end-page: 2278
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 225
  year: 2019
  end-page: 243
  publication-title: ChemCatChem
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 1871
  year: 2014
  end-page: 1908
  publication-title: Chem. Rev.
– volume: 372
  year: 2021
  publication-title: Science
– volume: 65
  start-page: 1557
  year: 2004
  end-page: 1564
  publication-title: Phytochemistry
– volume: 1
  start-page: 46
  year: 2021
  publication-title: Nat. Rev. Methods Primers
– volume: 117
  start-page: 2340
  year: 2020
  end-page: 2350
  publication-title: Biotechnol. Bioeng.
– volume: 50
  start-page: 10502
  year: 2011
  end-page: 10509
  publication-title: Angew. Chem. Int. Ed.
– volume: 37
  start-page: 16
  year: 2016
  end-page: 26
  publication-title: Chin. J. Catal.
– volume: 57
  start-page: 1214
  year: 2018
  end-page: 1217
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  start-page: 75
  year: 2016
  end-page: 82
  publication-title: Metab. Eng.
– volume: 11
  start-page: 2258
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 91
  year: 2021
  publication-title: Bioresour. Bioprocess.
– volume: 357
  start-page: 903
  year: 2017
  end-page: 907
  publication-title: Science
– volume: 22
  start-page: 1842
  year: 2020
  end-page: 1850
  publication-title: Green Chem.
– volume: 58
  start-page: 146
  year: 2020
  end-page: 154
  publication-title: Curr. Opin. Chem. Biol.
– volume: 23
  start-page: 12040
  year: 2017
  end-page: 12063
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 98
  year: 2021
  end-page: 104
  publication-title: Nat. Catal.
– volume: 14
  start-page: 489
  year: 2022
  end-page: 499
  publication-title: Nat. Chem.
– volume: 367
  start-page: 397
  year: 2020
  end-page: 400
  publication-title: Science
– volume: 35
  start-page: 785
  year: 2017
  end-page: 796
  publication-title: Trends Biotechnol.
– volume: 2
  start-page: 409
  year: 2018
  end-page: 421
  publication-title: Nat. Chem. Rev.
– volume: 8
  start-page: 407
  year: 2020
  publication-title: Front. Bioeng. Biotechnol.
– volume: 121
  start-page: 10367
  year: 2021
  end-page: 10451
  publication-title: Chem. Rev.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 20144
  year: 2021
  end-page: 20165
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 3116
  year: 2019
  end-page: 3120
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 41
  year: 2019
  publication-title: Microb. Cell Fact.
– volume: 38
  year: 2022
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 118
  start-page: 270
  year: 2018
  end-page: 348
  publication-title: Chem. Rev.
– volume: 600
  year: 2020
  publication-title: Anal. Biochem.
– volume: 8
  start-page: 1406
  year: 2017
  end-page: 1413
  publication-title: Chem. Sci.
– volume: 55
  start-page: 11647
  year: 2016
  end-page: 11650
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 83
  year: 2013
  publication-title: ACS Synth. Biol.
– volume: 260
  year: 2020
  publication-title: Appl. Catal. B
– volume: 118
  start-page: 801
  year: 2018
  end-page: 838
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2221
  year: 2018
  end-page: 2228
  publication-title: ChemSusChem
– volume: 50
  start-page: 8003
  year: 2021
  end-page: 8049
  publication-title: Chem. Soc. Rev.
– volume: 122
  start-page: 1052
  year: 2022
  end-page: 1126
  publication-title: Chem. Rev.
– volume: 54
  start-page: 3328
  year: 2015
  end-page: 3350
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 94
  year: 2020
  end-page: 132
  publication-title: Metab. Eng.
– volume: 7
  start-page: 710
  year: 2017
  end-page: 724
  publication-title: ACS Catal.
– volume: 51
  start-page: 594
  year: 2022
  end-page: 627
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 59
  year: 2013
  end-page: 67
  publication-title: Bioresour. Technol.
– volume: 164
  start-page: 1185
  year: 2016
  end-page: 1197
  publication-title: Cell
– volume: 6
  start-page: 137
  year: 2023
  end-page: 151
  publication-title: Nat. Catal.
– volume: 10
  start-page: 8418
  year: 2020
  end-page: 8427
  publication-title: ACS Catal.
– volume: 5
  start-page: 534
  year: 2022
  publication-title: Nat. Catal.
– volume: 60
  start-page: 20695
  year: 2021
  end-page: 20699
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 8474
  year: 2019
  end-page: 8478
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 88
  year: 2021
  end-page: 119
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 7024
  year: 2020
  end-page: 7028
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 10611
  year: 2021
  end-page: 10674
  publication-title: Chem. Commun.
– volume: 337
  start-page: 695
  year: 2012
  end-page: 699
  publication-title: Science
– volume: 57
  start-page: 13648
  year: 2018
  end-page: 13651
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– ident: e_1_2_3_28_2
  doi: 10.1002/cssc.202102709
– ident: e_1_2_3_75_2
  doi: 10.1002/anie.201915108
– ident: e_1_2_3_73_2
  doi: 10.1002/anie.201807119
– ident: e_1_2_3_46_2
  doi: 10.1002/bit.27366
– ident: e_1_2_3_12_1
– ident: e_1_2_3_50_2
  doi: 10.1002/anie.201409033
– ident: e_1_2_3_38_2
  doi: 10.1002/anie.202208358
– ident: e_1_2_3_52_2
  doi: 10.1039/D0CS00155D
– ident: e_1_2_3_21_2
  doi: 10.1039/D0CS01575J
– ident: e_1_2_3_48_1
– ident: e_1_2_3_87_1
  doi: 10.1021/sb300037w
– ident: e_1_2_3_9_2
– ident: e_1_2_3_37_2
  doi: 10.1038/s41557-022-00931-2
– ident: e_1_2_3_20_2
  doi: 10.1038/s43586-021-00044-z
– ident: e_1_2_3_65_1
  doi: 10.1016/j.phytochem.2004.05.006
– ident: e_1_2_3_53_2
  doi: 10.1002/anie.202004248
– ident: e_1_2_3_59_2
  doi: 10.1186/s40643-021-00434-x
– ident: e_1_2_3_61_1
– ident: e_1_2_3_13_2
  doi: 10.1016/j.biortech.2013.05.097
– ident: e_1_2_3_14_2
  doi: 10.1016/j.apcatb.2019.118143
– ident: e_1_2_3_82_2
  doi: 10.1038/s41467-021-24259-6
– ident: e_1_2_3_72_1
– ident: e_1_2_3_63_2
  doi: 10.1038/s41929-020-00556-z
– ident: e_1_2_3_31_2
  doi: 10.1021/acs.chemrev.7b00033
– ident: e_1_2_3_64_2
  doi: 10.1038/s41929-022-00909-w
– ident: e_1_2_3_83_1
– ident: e_1_2_3_15_2
  doi: 10.1039/C9GC04246F
– ident: e_1_2_3_62_2
  doi: 10.1002/chem.201702235
– ident: e_1_2_3_17_2
  doi: 10.1038/s41570-018-0055-1
– ident: e_1_2_3_8_1
– ident: e_1_2_3_45_2
  doi: 10.1002/cssc.201800709
– ident: e_1_2_3_74_2
  doi: 10.1038/s41467-020-16099-7
– ident: e_1_2_3_88_1
  doi: 10.1002/anie.202215935
– ident: e_1_2_3_42_2
  doi: 10.1002/anie.201902761
– ident: e_1_2_3_22_2
  doi: 10.1021/acs.chemrev.1c00574
– ident: e_1_2_3_35_2
  doi: 10.1016/j.cogsc.2022.100591
– ident: e_1_2_3_68_2
  doi: 10.1039/C6SC02842J
– ident: e_1_2_3_51_2
  doi: 10.1016/j.cell.2016.02.004
– ident: e_1_2_3_78_2
  doi: 10.1021/jacs.8b12282
– ident: e_1_2_3_80_2
  doi: 10.1002/anie.201903165
– ident: e_1_2_3_24_1
– ident: e_1_2_3_16_1
– volume: 57
  start-page: 10611
  year: 2021
  ident: e_1_2_3_34_2
  publication-title: Chem. Commun.
  contributor:
    fullname: Zhou Y.
– ident: e_1_2_3_47_2
  doi: 10.1002/cssc.202102645
– ident: e_1_2_3_1_1
– ident: e_1_2_3_67_2
  doi: 10.1016/j.ymben.2016.02.002
– ident: e_1_2_3_23_2
  doi: 10.1039/D1CS00100K
– ident: e_1_2_3_5_2
  doi: 10.1002/anie.202100778
– ident: e_1_2_3_25_2
  doi: 10.1021/acs.chemrev.7b00203
– ident: e_1_2_3_54_1
– ident: e_1_2_3_7_2
  doi: 10.1002/anie.202112835
– ident: e_1_2_3_32_2
  doi: 10.1002/cctc.201801063
– ident: e_1_2_3_71_2
  doi: 10.1126/science.abd5687
– ident: e_1_2_3_79_2
  doi: 10.1039/D0EE00095G
– ident: e_1_2_3_27_2
  doi: 10.1021/acs.chemrev.1c00121
– ident: e_1_2_3_10_2
  doi: 10.1016/S1872-2067(15)60965-2
– ident: e_1_2_3_70_2
  doi: 10.1126/science.aan6349
– ident: e_1_2_3_2_2
  doi: 10.1002/anie.201102117
– ident: e_1_2_3_60_1
  doi: 10.1002/cssc.202200402
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.202006648
– ident: e_1_2_3_43_2
  doi: 10.1002/anie.202112855
– ident: e_1_2_3_81_2
  doi: 10.1002/anie.202107694
– ident: e_1_2_3_49_2
  doi: 10.1021/cr400309c
– ident: e_1_2_3_29_1
– ident: e_1_2_3_85_2
  doi: 10.1038/s41929-022-00800-8
– ident: e_1_2_3_18_2
  doi: 10.1021/acscatal.0c01708
– ident: e_1_2_3_57_2
  doi: 10.1016/j.ymben.2019.08.008
– ident: e_1_2_3_3_2
  doi: 10.1126/science.1218930
– ident: e_1_2_3_4_2
  doi: 10.1126/science.aay3060
– ident: e_1_2_3_55_2
  doi: 10.1016/j.tibtech.2017.05.006
– ident: e_1_2_3_36_2
  doi: 10.1016/j.cogsc.2022.100700
– ident: e_1_2_3_89_1
  doi: 10.1016/j.ab.2020.113749
– ident: e_1_2_3_56_2
  doi: 10.1186/s12934-019-1090-4
– ident: e_1_2_3_39_1
– ident: e_1_2_3_86_1
  doi: 10.1002/anie.202113842
– ident: e_1_2_3_6_2
  doi: 10.1002/cssc.202102628
– ident: e_1_2_3_44_1
– ident: e_1_2_3_58_2
  doi: 10.3389/fbioe.2020.00407
– ident: e_1_2_3_40_2
  doi: 10.1002/anie.201606235
– ident: e_1_2_3_41_2
  doi: 10.1002/anie.201710793
– ident: e_1_2_3_69_1
– ident: e_1_2_3_33_2
  doi: 10.1016/j.cbpa.2020.08.006
– ident: e_1_2_3_84_2
  doi: 10.1016/j.biotechadv.2019.04.008
– ident: e_1_2_3_26_2
  doi: 10.1038/s41929-020-0422-4
– ident: e_1_2_3_77_1
– ident: e_1_2_3_11_2
– ident: e_1_2_3_30_2
  doi: 10.1021/acscatal.6b02979
– ident: e_1_2_3_76_2
  doi: 10.1002/cssc.202201275
– ident: e_1_2_3_66_1
SSID ssj0028806
Score 2.4986348
Snippet Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society....
Abstract Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202314566
SubjectTerms Benzene
Benzene - metabolism
Benzene Derivatives - metabolism
Biocatalysis
Cascade chemical reactions
Catalysis
Commodities
Enzyme Cascades
Ethyl benzene
Ethylbenzene
Fermentation
Phenylalanine
Phenylalanine - metabolism
Photodecarboxylase
Protein Engineering
Renewable Resources
Sustainable yield
Toluene
Toluene - metabolism
Xylenes
Title Production of Biobased Ethylbenzene by Cascade Biocatalysis with an Engineered Photodecarboxylase
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202314566
https://www.ncbi.nlm.nih.gov/pubmed/37947487
https://www.proquest.com/docview/2924898505
https://www.proquest.com/docview/2889244904/abstract/
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86D3oRv61OiSB4irZJ1qTHOTem4BjiYLeSNCkK0so-wPnX-9Ku1eFB8FJamjTlvZe838vH7yF0qY0GtyN8Aq6EEx4FikgTJURQEzAB-J4WdE2Pg7A_4g_j1vjHKf6SH6KecHM9oxivXQdXenrzTRrqTmBfu-TfAWCAcB1tALaRzq4pH9YhF1hneb6IMeLS0Fe0jT69Wa2_6pZ-Yc1V6Fr4nt4O2l6CRtwutbyL1my2hzY7Va62faSGJXErCBnnKb59zZ13MrgLanjTNvuEEQ3rBe6oqdsP7woU8zaOjgS7qVisMlxRE0K94Us-y41N1ETnHwsA2PYAjXrd506fLJMnkISFMiRcKG5CwSAc0EzJJFUUwF2achuFmlGhfZa6VTiIL6QEvTDV0mkoUlBe4qeA0g5RI8sze4yw4UZZ5cMHNeMqYNJaEFnSsomhMrTcQ1eV7OL3kiMjLtmQaeykHNdS9lCzEm287CvTmEIIKCMJUMxDF_VrEKBbulCZzedQRkooxSMfGjsqVVI3BSbFBcRdHqKFjv74h7g9uO_WTyf_qXSKtuCeu83bQdREjdlkbs8Am8z0eWF-cL17ol8P5ttn
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HPQivl2fEQRP1TbJtulRl5VdXZc9KHgrSZOiIK3oLrj-emfabWXxIHhsmzRhJsl8M0m-ATgz1qDZiXwPTYn0ZBxoT9k49SJuAxEhvuclXdP9MOw9ytundn2akO7CVPwQTcCNZka5XtMEp4D05Q9rKF3BvqDs3wGCgHARliWxwRG5sxw1PhcOz-qCkRAe5aGveRt9fjlff94u_QKb89i1ND4367A2Q43sqlLzBiy4fBNWOnWyti3Qo4q5FaXMioxdvxRknizroh5ejcu_cEljZso6-oMOxFOBMnBDfCSMYrFM56zmJsR6o-diXFiX6ndTfE4RYbtteLzpPnR63ix7gpeKUIWejLS0YSTQHzBCqzTTHNFdlkkXh0bwyPgio204dDCUQsUI3TZZGGWovdTPEKbtwFJe5G4PmJVWO-3jD42QOhDKORRZ2nap5Sp0sgXnteySt4okI6nokHlCUk4aKbfgsBZtMpssHwlHH1DFCrFYC06bzyhA2rvQuSsmWEYpLCVjHxvbrVTSNIVjSkboeLWAlzr6ow_J1bDfbZ72_1PpBFZ6D_eDZNAf3h3AKr6XdJI7iA9hafw-cUcIVMbmuByK375r3eY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gHoR367PCIKnaptk0_So6y4-lz0oeCtJk6Ag7aIrqL_eSbutLh4Ej22TtnyTZL7J4xuAQ200up04DNCV8IAnkQqkSbIgpiZiMfJ7Wso13fbFxT2_emg__DjFX-lDNBNuvmeU47Xv4EPjTr5FQ_0J7GOf_DtCDiCmYZYLpA9e25kPmpALW2d1voixwKehr2UbQ3oyWX_SLf3impPUtfQ9vSVYHJNGclpZeRmmbL4C8506V9sqqEEl3Iogk8KRs6fCeydDumiGZ23zTxzRiP4gHfXq98P7AuW8jZcjIX4qlqic1NKEWG_wWIwKYzP1oov3DyTYdg3ue927zkUwTp4QZExIEfBYcSNihuGAZkpmTlEkd85xmwjNaKxD5vwqHMYXUqJdmGprJ2KHxstChyxtHWbyIrebQAw3yqoQX6gZVxGT1iJkWdtmhkpheQuOauzSYaWRkVZqyDT1KKcNyi3YqaFNx33lNaUYAspEIhVrwUHzGAH0Sxcqt8UblpESS_EkxI9tVCZpPoVNiscYd7WAljb64x_S0_5lt7na-k-lfZgbnPfSm8v-9TYs4G3u93FHyQ7MjF7e7C7SlJHeK1viF3SB3Q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+Biobased+Ethylbenzene+by+Cascade+Biocatalysis+with+an+Engineered+Photodecarboxylase&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Qin%2C+Zhaoyang&rft.au=Zhou%2C+Yi&rft.au=Li%2C+Zhi&rft.au=H%C3%B6hne%2C+Matthias&rft.date=2024-02-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=8&rft_id=info:doi/10.1002%2Fanie.202314566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202314566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon